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Abstract : A theorem of Arens and Calderon states that if A is a commutative Banach algebra with

Jacobson radical Rad(A), and if a0, . . . , an ∈ A with a0 ∈ Rad(A) and a1 an invertible element of
A, then there exists y ∈ Rad(A) such that

∑n
k=0 aky

k = 0. In this paper, we give extensions of this

result to commutative non-normed topological algebras, as this is vital for extending an embedding

theorem of Allan in [2] regarding the embedding of the formal power series algebra C[[X]] into a
commutative Banach algebra.

Key words: Formal power series; theorem of Arens and Calderon; commutative topological algebra;

functional calculus.
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1. Introduction

In [16], one of the main questions raised is whether for a given topological
algebra A[τ ] and an element x ∈ A, there exists a unital homomorphism
ψ : C[[X]] → A such that ψ(X) = x. Here, C[[X]] denotes the algebra of
all complex formal power series with indeterminate X. This question was
answered positively by G.R. Allan in [2, Theorem 2] for the case where A is a
commutative Banach algebra, and x is in the (Jacobson) radical of A for which
there exists a natural number m ≥ 1 such that {0} 6= Axm ⊂ Axm+1. The
proof of Allan’s result in [2] is entirely algebraic, except in an application of the
following theorem of Arens and Calderon, which relies on A being a Banach
algebra: Let A be a commutative Banach algebra with identity and Jacobson
radical Rad(A). If n ∈ N and a0, . . . , an ∈ A are such that a0 ∈ Rad(A) and
a1 is invertible, then there exists y ∈ Rad(A) such that

∑n
k=0 aky

k = 0.
This observation immediately yields a strategy for answering the above

ISSN: 0213-8743 (print), 2605-5686 (online)

c©The author(s) - Released under a Creative Commons Attribution License (CC BY-NC 4.0)

https://doi.org/10.17398/2605-5686.39.1.19
mailto:Martin.Weigt@mandela.ac.za
mailto:weigt.martin@gmail.com
mailto:gzarak@hotmail.gr
https://revista-em.unex.es/index.php/EM/
https://creativecommons.org/licenses/by-nc/4.0/


20 m. weigt, i. zarakas

question by only having to extend the above result of Arens and Calderon
to general commutative topological algebras. This is precisely the purpose of
this manuscript. Namely, we extend the above result of Arens and Calderon
to commutative Fréchet locally m-convex algebras having weakly compact
character space (see Theorem 4.2 below), the algebras in Theorem 5.2 and to
all Mackey-complete Gelfand Mazur Q-algebras with continuous inversion and
nonempty character space (see Corollary 5.10 below). The proof of the original
theorem of Arens and Calderon for commutative Banach algebras in the first
paragraph above relies heavily on complex analysis of several variables (see
[11, Lemma 3.2.8]) and the proofs of our extended Arens-Calderon theorems
alluded to above will therefore also rely on several complex variable function
theory.

This paper is organized as follows: Section 2 contains all background ma-
terial required in order to prove the main results of this paper. Section 3 gives
a detailed exposition of the proof of the Arens-Calderon theorem for commu-
tative Banach algebras, as given in [11, Lemma 3.2.8], as this proof gives us
the strategy to prove the main results mentioned in the previous paragraph,
given in Sections 4 and 5 of this manuscript.

2. Preliminaries

All algebras are assumed to have an identity element 1, unless stated
otherwise. A topological algebra A[τ ] is a complex algebra equipped with
a topology τ making A a Hausdorff topological vector space, such that the
multiplication on A is separately continuous. We say that a topological algebra
is a Fréchet algebra if it is complete and metrizable. A locally convex algebra
is a topological algebra which is locally convex as a topological vector space.
A Q-algebra will mean a topological algebra in which the set of invertible
elements GA of A is an open subset of A.

We say that a topological algebra A[τ ] is a locally m-convex algebra
if it its topology is defined by a directed family of submultiplicative semi-
norms. By a submultiplicative seminorm, we mean a seminorm p such that
p(xy) ≤ p(x)p(y) for all x, y ∈ A. Observe that every Banach algebra is
a locally m-convex algebra and that every locally m-convex algebra is a lo-
cally convex algebra. Let A[τ ] be a locally m-convex algebra defined by a
family of submultiplicative seminorms {pγ : γ ∈ Γ}. For every γ ∈ Γ, let
Nγ = {x ∈ A : pγ(x) = 0}. Then A/Nγ is a normed algebra with respect to
the seminorm ṗγ , where ṗγ(x+Nγ) = pγ(x) for all x ∈ A, and its completion
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with respect to the seminorm ṗγ is denoted by Aγ . It can be shown that
A = lim←(A/Nγ) up to topological isomorphism, where lim←(A/Nγ) denotes
the inverse limit of the normed algebras A/Nγ , γ ∈ Γ. If, in addition, A is
complete, then A = lim←Aγ up to topological isomorphism (we refer to [9, p.
15-16] for details). If A is complete, then A = lim←Aγ will be referred to as
the Arens-Michael decomposition of A, and an element a = (aγ)γ will refer
to a typical element in the Arens-Michael decomposition of A.

A Gelfand-Mazur algebra is a topological algebra A[τ ] such that A/M is
topological isomorphic to C for all M ∈ M(A), where M(A) denotes the set
of all closed two-sided ideals of A which are maximal as left or right ideals
of A. If M(A) = ∅, then A[τ ] is trivially a Gelfand-Mazur algebra. For
any topological algebra A[τ ], we let X(A) denote the set of all continuous
characters of A, i.e., the set of all continuous nonzero multiplicative linear
functionals of A. If A[τ ] is a Gelfand-Mazur algebra with M(A) 6= ∅, then
M ∈ M(A) if and only if M is the kernel of some φ ∈ X(A). The reader is
referred to [1] for a more thorough investigation of Gelfand-Mazur algebras.

The spectrum of an element x in an algebra A is the set

SpA(x) = {λ ∈ C : x− λ1 /∈ GA}.

Also, we let ρA(x) = sup{|λ| : λ ∈ SpA(x)}, the spectral radius of x.

More generally, if x1, . . . , xn ∈ A, then the joint spectrum SpA(x1, . . . , xn)
of (x1, . . . , xn) ∈ An is the complement in Cn of the following set:{

(λ1, . . . , λn) ∈ Cn : ∃ b1, . . . , bn ∈ A such that
∑n

k=1
bk(λk1− xk) = 1

}
.

For an open subset U of Cn, we let Hol(U) denote the set of all analytic
functions on U . If ∆ is a compact subset of Cn, we define Hol(∆) as the direct
limit of Hol(U) for all open subsets U of Cn with ∆ ⊂ U .

Let b1, . . . , bn ∈ A. An open subset V of Cn is said to be an elemen-
tary resolvent set for (b1, . . . , bn) ∈ An if there exist q1, q2, . . . , qn ∈ Hol(V )
such that

∑n
k=1 qk(λ)(λk1 − bk) = 1 for all λ = (λ1, λ2, . . . , λn) ∈ V . The

resolvent set of (b1, . . . , bn) ∈ An is the union of all elementary resolvent
sets for (b1, . . . , bn) ∈ An and is an open subset of Cn. The complement
τ(b1, . . . , bn, A) in Cn of the resolvent set of (b1, . . . , bn) ∈ An is called the
analytic joint spectrum of (b1, . . . , bn) ∈ An and is a closed subset of Cn. We
refer to [4] for further details.

The proof of the following proposition is the same as that of [6, Proposition
19.8].



22 m. weigt, i. zarakas

Proposition 2.1. Let A[τ ] be a commutative Gelfand-Mazur algebra
with X(A) 6= ∅. Let b1, . . . , bn ∈ A. Then

SpA(b1, . . . , bn, A) =
{
φ(b1), . . . , φ(bn) : φ ∈ X(A)

}
.

3. The Arens-Calderon theorem for
commutative Banach algebras

The Arens-Calderon Theorem for commutative Banach algebras is the fol-
lowing result.

Theorem 3.1. ([11, Lemma 3.2.8]) Let A be a commutative Banach al-
gebra with identity, and let a0, a1, . . . , an ∈ A with a0 ∈ Rad(A) and a1 invert-
ible in A. Then there exists y ∈ Rad(A) such that a0 + a1y + · · ·+ any

n = 0.

Theorem 3.1 was originally proved in [5, Theorem 7.3], which is a more
general result. The proofs of Theorem 3.1 in [5] and [11] involve complex
analysis of several variables. It would be interesting to know if one can extend
Theorem 3.1 to commutative Fréchet locally convex algebras with identity. We
therefore give a detailed proof of Theorem 3.1, as given in [11], as this serves as
the foundation on which to extend the result. Observe that the result is trivial
if the algebra A is semi-simple (for then a0 = 0, and therefore y = 0 ∈ Rad(A)
is a solution). Without loss of generality, we may assume that a1 = 1.

Proof. (of Theorem 3.1) We give the proof as in [11, Lemma 3.2.8]. With-
out loss of generality, we may assume that a1 = 1. Consider the equation
z0 + w + z2w

2 + · · · + znw
n = 0, where z0, z2, . . . , zn, w are complex vari-

ables. By the implicit function theorem [11, Theorem 2.1.2], there is a unique
analytic solution to the previous equation, say w, where w is analytic in a
neighbourhood of 0 in Cn and w = 0 when z0 = z2 = · · · = zn = 0. The
function w can be written as w(z) =

∑
α cαz

α, where z = (z0, z2, . . . , zn),
α = (α0, α2, . . . , αn). Also, there exists r > 0 such that

∑
α |cα|r|α| < ∞,

where |α| = α0 + α2 + · · ·+ αn.
Let w(a) = Σα 6=0cαa

α, where a = (a0, a2, . . . , an). We show that w(a) is
absolutely convergent. Choose R > 1 such that ‖aj‖ < Rj−1 for all 2 ≤ j ≤ n.
If α = (α0, α2, . . . , αn) with L(α) > 0, then

‖aα‖ = ‖aα0
0 aα2

2 · · · a
αn
n ‖ ≤ ‖a

α0
0 ‖ · ‖a

α2
2 ‖ · · · ‖a

αn
n ‖

≤ ‖aα0
0 ‖ · ‖a2‖α2 · · · ‖an‖αn < ‖aα0

0 ‖(R
2−1)α2 · · · (Rn−1)αn

= ‖aα0
0 ‖R

α2+···+(n−1)αn < ‖aα0
0 ‖R

α2+···+(n−1)αn+L(α) = ‖aα0
0 ‖R

α0 .
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Since a0 ∈ Rad(A), we get that ρA(a0) = 0, and therefore limα0→∞ ‖a
α0
0 ‖

1
α0 =

0. Without loss of generality, we may assume that r < 1. Since ‖aα0
0 ‖

1
α0 → 0

for α0 large enough, we have that ‖aα0
0 ‖

1
α0 ≤ r2

R . Hence ‖aα0
0 ‖ · Rα0 ≤ r2α0 .

Since r < 1, we have that rα0 ≤ rα2+···+αn for α0 large enough. We therefore
get that r2α0 ≤ r|α|. It follows that ‖aα‖ < ‖aα0

0 ‖ ·Rα0 ≤ r|α|. Therefore w(a)
is absolutely convergent.

Since all terms in the series are in Rad(A), and since Rad(A) is closed
(since all maximal ideals are closed), it follows that w(a) ∈ Rad(A). By
what we have in the first paragraph of the proof, and by the fact that A
is commutative, it follows that y = w(a) is a solution to a0 + a1y +
· · ·+ any

n = 0.

4. The locally m-convex case

The main result of this section is Theorem 4.2 below. To prove this result,
we require the analytic functional calculus for complete locally m-convex bar-
relled topological algebras, which is [8, Lemma 0.2]. The proof of the latter
result in [8] has some detail missing, and in [16, Theorem 3.13] we gave a proof
of this result in the one variable case for which all Banach algebras appearing
in the Arens-Michael decomposition of the algebra are semi-simple. We made
the assumption of semi-simplicity on all of these Banach algebras in order to
circumvent the usage of [8, Lemma 0.1]. We therefore begin this section by
giving a detailed proof of [8, Lemma 0.1], which therefore completes the proof
in [8] of the analytic functional calculus result that we require, namely, [8,
Lemma 0.2].

Theorem 4.1. ([8, Lemma 0.1]) Let A be a complete locally m-convex
barrelled topological algebra. The following are equivalent:

(i) GA is open.

(ii) X(A) (the character space of A) is a compact set of A′ (the dual space
of A) in the weak topology.

(iii) The topology of A is determined by a family (pγ)γ∈Γ of algebra semi-
norms, such that for all γ ∈ Γ, X(A) is homeomorphic to X(Aγ) when
these spaces are endowed with the weak topologies.

Proof. (i)⇒ (ii): Since A is unital and if we suppose that X(A) 6= ∅, then
the implication follows by [9, Theorem 6.11].
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(ii)⇒ (iii): Let X(A) be compact with respect to the weak topology. We
first show that X(A) is bounded with respect to the topology of simple con-
vergence, i.e., with respect to the weak topology. Towards this purpose, let U
be an open subset of A′ containing 0, say

U =
{
ψ ∈ A′ : |ψ(xj)| < ε, ε > 0, x1, x2, . . . , xn ∈ A

}
.

Now for every φ ∈ X(A), we consider the open set

U(φ) =
{
ψ ∈ A′ : |(ψ − φ)(xj)| < δ, j = 1, 2, . . . , n

}
, for δ > 0.

Since X(A) ⊆ ∪φ∈X(A)U(φ) and given that X(A) is weakly compact by hy-
pothesis, we get that there are φ1, φ2, . . . , φm ∈ X(A) such that

X(A) ⊆ ∪mi=1U(φi).

Let 0 < ω < ε. For every i ∈ 1, 2, . . . ,m, there exists λi > 0 such that
|φi(xj)| < λi · ω for all j = 1, 2, . . . , n.

Consider λ = max{λ1, λ2, . . . , λm,
δ

ε−ω}.
Let φ ∈ X(A). Then φ ∈ U(φi) for some i ∈ {1, 2, . . . ,m}. Hence, for all

j = 1, 2, . . . , n, we have that

|φ(xj)| ≤ |(φ− φi)(xj)|+ |φi(xj)| < δ + λ · ω ≤ λ · ε.

So 1
λφ ∈ U and thus φ ∈ λU . Therefore, X(A) ⊆ λU , thus X(A) is

bounded with respect to the weak topology.
Then, since A is barrelled, by [13, Theorem 4.2] we have that X(A) is

equicontinuous. Hence, given a 0-neighborhood V in C, say V = {λ ∈ C :
|λ| < 1}, there exists a neighborhood U of 0 in A, say U = {a ∈ A : pγ0(a) <
δ}, for some γ0 ∈ Γ and δ > 0 such that φ(U) ⊆ V for all φ ∈ X(A).
Equivalently, we have that

X(A) ⊆ {a ∈ A : pγ0(a) < δ}◦.

Hence, if a ∈ Nγ0 , then for every φ ∈ X(A), we get that |φ(na)| < 1, for all
n ∈ N and hence φ(a) = 0. So we conclude that Nγ0 ⊆ Ker(φ).

Thus every φ ∈ X(A) induces a character on A/Nγ0 , say φγ0 : A/Nγ0 → C,
such that φγ0(a + Nγ0) := φ(a), which is continuous with respect to ṗγ0 :
A ∼=←γ Aγ up to topological ∗-isomorphism: If aλ + Nγ0 → a + Nγ0 with
respect to ṗγ0 , then pγ0(aλ − a) → 0. Therefore, if λ is large enough, it
follows from the above that aλ − a ∈ U , and hence φ(aλ − a) ∈ V . Therefore
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φγ0((aλ + Nγ0) − (a + Nγ0)) ∈ V . Since V is, without loss of generality, an
arbitrary neighbourhood of 0 ∈ C, we get that φγ0 is continuous. The map
φγ0 is therefore a character on the Banach algebra Aγ and is continuous.

The same holds for every γ ≥ γ0, i.e., we get characters φγ : A/ ker pγ → C.
Now for all γ, δ ≥ γ0, it is easily seen that the maps h′δγ : A′γ → A′δ map X(Aγ)
bijectively onto X(Aδ). This bijection is also a homeomorphism, since both
spaces involved are Hausdorff and compact. Since X(A) ' lim

→
X(Aγ), the

result follows.

(iii)⇒ (i): By the assumption X(A) ' X(Aγ) for all γ ∈ Γ, an element
x ∈ A is invertible in A if and only if φ(x) 6= 0 for all φ ∈ X(A). Also, by
X(A) ' X(Aγ),

X(A) ⊂
{
φ ∈ A′ : |φ(b)| < 1 for all b ∈ V

}
,

where V = {b ∈ A : pγ(b) < 1}, for some γ ∈ Γ.

Then 1 + 1
2V ⊆ GA. Indeed if ω ∈ V , then |φ(ω)| < 1 (∗), for all φ in

X(A). Therefore φ
(
1+ 1

2ω
)

= 1+ 1
2φ(ω) 6= 0 (for otherwise we would get that

φ(ω) = −2, a contradiction to (∗)). Therefore 1 + 1
2ω ∈ GA.

Now let x ∈ GA. By continuity of multiplication, there is a 0-neighborhood
in A, say Ω, such that x−1Ω ⊆ 1

2V . Hence Ω ⊆ 1
2xV . So we have the following:

1 +
1

2
V ⊆ GA ⇒ x−1

(
x+

1

2
xV
)
⊆ GA ⇒

x+
1

2
xV ⊆ xGA ⊆ GA ⇒ x+ Ω ⊆ GA.

Therefore for x ∈ GA, there is a neighbourhood x + Ω of x in A such that
x+ Ω ⊆ GA, which shows that GA is open.

The proof of Theorem 4.2 below is based on the proof of Theorem 3.1.
However, in the proof of Theorem 3.1, w(a) is regarded as a series which
is shown to be convergent. In the non-normed case, it is not immediately
apparent as to why the series converges. For this reason, in the proof of
Theorem 4.2 below, w(a) is considered to be the functional calculus of w(z).

Theorem 4.2. Let A[τ ] be a commutative Fréchet locally m-convex al-
gebra with weakly compact character space. Let a0 ∈ Rad(A), a1 invertible
and a2, . . . , an ∈ A. Then there exists y ∈ Rad(A) such that

a0 + a1y + · · ·+ any
n = 0.
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Proof. We first note that A[τ ] is barrelled, as it is a Fréchet locally convex
algebra. Without loss generality, a1 = 1. Consider the equation z0+w+z2w

2+
· · ·+ znw

n = 0, where z0, z2, . . . , zn, w are complex variables. By the implicit
function theorem [11, Theorem 2.1.2], there is a unique analytic solution to
the previous equation, say w, where w is analytic in a neighbourhood of 0 in
Cn and w = 0 when z0 = z2 = · · · = zn = 0. The function w can be written as
w(z) =

∑
α cαz

α, where z = (z0, z2, . . . , zn), α = (α0, α2, . . . , αn). Also, there
exists r > 0 such that

∑
α |cα|r|α| <∞, where |α| = α0 + α2 + · · ·+ αn.

Now consider the equation

a0 + a1y + · · ·+ any
n = 0. (4.1)

Let w(a) be the analytic functional calculus of w(z). Then w(a) is a solution
to the above equation, where a = (a0, a2, . . . , an).

We now show that w(a) ∈ Rad(A). Note that w(a) is of the form θ :
Hol(K)→ A, where K = SpA(a0, a2, . . . , an) and θ(w) = w(a) and θ(zi) = ai
for all 0 ≤ i ≤ n (by [8, Lemma 0.2]).

We have to show that w(a) is well defined, i.e., we have to show that the
domain of the analytic function z ∈ Cn 7→ w(z) contains K. Let x ∈ A. Since
X(A) is weakly compact, there exists Mx > 0 such that |x̂(φ)| ≤ Mx for all
φ ∈ X(A). Let

M =
(
M2
a0 +M2

a2 + · · ·+M2
an

) 1
2 .

Then (
|φ(a0)|2 + |φ(a2)|2 + · · ·+ |φ(an)|2

) 1
2 ≤M

for all φ ∈ X(A). By Proposition 2.1 (in particular, for any complete commu-
tative locally m-convex algebra),

K =
{

(φ(a0), φ(a2), . . . , φ(an)) : φ ∈ X(A)
}
.

There exists k > 0 such that M
k < r. Now

1

k2

(
|φ(a0)|2 + |φ(a2)|2 + · · ·+ |φ(an)|2

)
≤ M2

k2
< r2.

Therefore ∣∣∣φ(1

k
a0

)∣∣∣2 +
∣∣∣φ(1

k
a2

)∣∣∣2 + · · ·+
∣∣∣φ(1

k
an

)∣∣∣2 < r2,

and hence (∣∣∣φ(1

k
a0

)∣∣∣2 +
∣∣∣φ(1

k
a2

)∣∣∣2 + · · ·+
∣∣∣φ(1

k
an

)∣∣∣2) 1
2

< r,
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for all φ ∈ X(A). One can therefore change the original equation to

1

k
z0 +

1

k
w +

1

k
z2w

2 + · · ·+ 1

k
znw

n = 0,

as this equation has precisely the same solutions as the original equation.
Therefore z ∈ Cn 7→ w(z) is the unique analytic solution to the last displayed
(second) equation referred to above. Observe that

SpA

(1

k
a0,

1

k
a2, . . . ,

1

k
an

)
=
{
φ
(1

k
a0

)
, φ
(1

k
a2

)
, . . . , φ

(1

k
an

)
: φ ∈ X(A)

}
.

Therefore

SpA

(1

k
a0,

1

k
a2, . . . ,

1

k
an

)
is inside B(0, r), and therefore SpA

(
1
ka0,

1
ka2, . . . ,

1
kan
)

is inside an open set
on which w is analytic. We therefore obtain that w

(
1
ka0,

1
ka2, . . . ,

1
kan
)

is
the solution to the second polynomial equation, and therefore the original
equation (4.1). We may therefore assume, without loss of generality, that the
domain of the analytic function z ∈ Cn 7→ w(z) contains K.

By the proof of [8, Lemma 0.2] in [8],

K = SpA(a0, a2, . . . , an) = SpAγ
(
(a0)γ , (a2)γ , . . . , (an)γ

)
for all γ, where A = lim←Aγ is the Arens-Michael decomposition of A. Ob-
serve that, here, we use the fact that the character space of A is weakly com-
pact (see Theorem 4.1). Then we have the Banach algebra analytic functional
calculus wγ : Hol(K)→ Aγ of w(z). For every γ, we have that wγ(zi) = (ai)γ
and w(a) = lim←wγ(a) (by the proof of [8, Lemma 0.2]). Now(
a0 + y + a2y

2 + · · ·+ any
n
)
γ

= (a0)γ + yγ + (a2)γy
2
γ + · · ·+ (an)γy

n
γ = 0,

where y = (yγ)γ ∈ lim←Aγ = A. For every γ, note that (a1)γ is invertible
in Aγ .

Observe that also for every γ, (a0)γ ∈ Rad(Aγ): By [17, Proposition
11.2 and Corollary 11.6], we get that SpAγ ((a0)γ) ⊆ SpA(a0) = {0}. So
(a0)γ ∈ Rad(Aγ), by [17, Corollary 11.6].

Therefore, by the Arens-Calderon theorem for Banach algebras (Theorem
3.1) , wγ(aγ) ∈ Rad(Aγ) (by the proof of Theorem 3.1 above, wγ(aγ) is a series
and all corresponding series terms are in Rad(Aγ). Hence wγ(aγ) ∈ Rad(Aγ),
as Rad(Aγ) is closed by [17, Proposition 10.14]). Hence ργ(wγ(aγ)) = 0 for
all γ, where ργ(wγ(aγ)) denotes the spectral radius of wγ(aγ) for all γ ∈ Γ.
Therefore ρA(w(a)) = 0, and hence w(a) ∈ Rad(A).
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The following corollary follows immediately from the above result and the
remarks following [16, Theorem 3.10]. It is also a straight consequence of [3,
Theorem 7].

Corollary 4.3. Let A[τ ] be a commutative Fréchet locally m-convex
algebra with identity and having weakly compact character space. Let x ∈
Rad(A) be such that {0} 6= Axm ⊆ Axm+1 for some m ≥ 1. Then there is a
unital injective algebra homomorphism ψ : C[[X]]→ A such that ψ(X) = x.

5. The general case: beyond the m-convex case

In [4, Theorem 4.6], and the middle of page 425 in [4], an analytic func-
tional calculus is given for all topological algebras A[τ ] of the following type:
A[τ ] is a unital commutative locally convex algebra such that every compact
subset of A is contained in a convex compact subset of A.

In [4, p. 406], it is noted, without proof or reference, that every Banach
algebra is an algebra of this type. We therefore give a proof of this fact, for
sake of completeness, in the next observation, as it appears not be very well
known.

Proposition 5.1. Every compact subset of a Banach space X is con-
tained in a compact convex subset of X.

Proof. Let K be a compact subset of X. By [12, Proposition 1.e.2], there
is a sequence (xn) in X such that xn → 0 with respect to the norm topology on
X, and K ⊆ conv(xn), the closed convex hull of (xn). We show that conv(xn)
is a compact subset of X.

First consider a sequence (un) in conv(xn), the convex hull of (xn). Then
un =

∑mn
k=1 λk,nyk,n, where λk,n ∈ C, 0 ≤ λk,n ≤ 1,

∑mn
k=1 λk,n = 1 and

(yk,n) is a subsequence of (xn). We show that it has a convergent subsequence
converging to an element in conv(xn).

Observe that 0 ≤ ‖un‖ ≤
∑mn

k=1 λk,n‖yk,n‖. Let ε > 0. Note that yk,n → 0
as n → ∞, for all k ∈ N. Therefore, for all k ∈ N, there exists Nk ∈ N such
that ‖yk,Nk‖ < ε. Therefore

0 ≤ ‖uNk‖ ≤
mNk∑
k=1

λk,Nkε ≤ ε.

This yields a subsequence (uNk) of (un) with uNk → 0. Now 0 ∈ conv(xn), as



arens-calderon theorem 29

conv(xn) is closed, (uNk) is in conv(xn) and uNk → 0. Therefore (un) has a
subsequence which converges to an element in conv(xn).

Now let (vm) be a sequence in conv(xn). Then there is a subsequence
(vj,m) of (vm) such that vj,m → vm as j → ∞ for all m ∈ N. From what
is proved above, it follows that there is a subsequence (vjk,mk) of (vj,n) such
that (vjk,mk)→ 0. Let ε > 0. Then there exists N ∈ N such that ‖vjk,mk‖ < ε
for all jk,mk ≥ N . So ‖vmk‖ = limjk ‖vjk,mk‖ ≤ ε if mk ≥ N . So vmk → 0 ∈
conv(xn). Therefore X is compact.

Theorem 5.2. Let A[τ ] be a unital commutative locally convex algebra
such that every compact subset of A is contained in a convex compact subset
of A. Assume also that the following conditions are satisfied.

(i) For each b1, . . . , bn ∈ A, (λ1− bi)−1 → 0 uniformly as |λ| → ∞.

(ii) For each b1, . . . , bn ∈ A, τ(b1, . . . , bn, A) ⊆ ∆ for some compact
subset ∆ of Cn. Here, τ(b1, . . . , bn, A) denotes the topological joint
spectrum of b1, . . . , bn in A, as defined in the paragraph just before
Proposition 2.1.

(iii) Rad(A) is closed.

Let a0 ∈ Rad(A), a1 invertible and a2, . . . , an ∈ A. Then there exists y ∈
Rad(A) such that a0 + a1y + · · ·+ any

n = 0.

Proof. We follow the same argument and notation as in the proof of
Theorem 3.1. Let w(z) =

∑
α 6=0 cαz

α. There exists r > 0 such that∑
α 6=0 |cα|r|α| < ∞. We start off by showing, without loss of generality, that

z ∈ Cn 7→ w(z) is analytic on a neighbourhood of τ(a0, a2, . . . , an, A). By
definition of analytic joint spectrum, it follows easily that

τ
(1

k
a0,

1

k
a2, . . . ,

1

k
an, A

)
=

1

k
τ(a0, a2, . . . , an, A)

for all k > 0. By (ii), τ(a0, a2, . . . , an, A) is a bounded subset of Cn, and there-
fore, there exists M > 0 such that ‖z‖ ≤ M for all z ∈ τ(a0, a2, . . . , an, A).
Let k1 > 0 such that M

k1
< r. Then

1

k1
z ∈ τ

( 1

k1
a0,

1

k1
a2, . . . ,

1

k1
an, A

)
if z ∈ τ(a1, a2, . . . , an, A). Therefore

τ
( 1

k1
a0,

1

k1
a2, . . . ,

1

k1
an, A

)
⊆ B(0, r).
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Take ∆ to be τ
(

1
k1
a0,

1
k1
a2, . . . ,

1
k1
an, A

)
. Then ∆ is a compact subset of Cn,

as it is bounded and closed in Cn by definition of analytic joint spectrum. By
changing to the equation

1

k1
z0 +

1

k1
w +

1

k1
z2w

2 + · · ·+ 1

k1
znw

n = 0,

we can reason as in the proof of Theorem 4.2 to obtain, without loss of general-
ity, that z ∈ Cn 7→ w(z) is analytic on a neighbourhood of τ(a0, a2, . . . , an, A).

It now follows that we may define the analytic functional calculus w(a) =∑
α6=0 cαa

α of a, as defined in [4, Theorem 4.6], where a = (a0, a2, . . . , an):
w(a) = J∆(w) as in [4, Theorem 4.6]. Furthermore, by [4, Theorem 4.6], J∆ is
a continuous homomorphism. Therefore the above series for w(a) converges,
i.e., w(a) is well defined.

Now aα ∈ Rad(A) by the same reason as that given in the proof of Theorem
3.1 above. Therefore, all terms in the series for w(a) above belong to Rad(A).
Consequently, since Rad(A) is closed, the series converges to an element in
Rad(A), i.e., w(a) ∈ Rad(A). Now y = w(a) ∈ Rad(A) is the solution to
a0 + a1y + · · ·+ any

n = 0.

The following corollary follows immediately from the above result and the
remarks following [16, Theorem 3.10].

Corollary 5.3. Let A[τ ] be a unital commutative locally convex algebra
such that every compact subset of A is contained in a convex compact subset
of A. Assume also that the following conditions are satisfied.

(i) For each b1, . . . , bn ∈ A, (λ1− bi)−1 → 0 uniformly as |λ| → ∞.

(ii) For each b1, . . . , bn ∈ A, τ(b1, . . . , bn, A) ⊆ ∆ for some compact subset
∆ of Cn.

(iii) Rad(A) is closed.

Let x ∈ Rad(A) be such that {0} 6= Axm ⊆ Axm+1 for some m ≥ 1.
Then there is a unital injective algebra homomorphism ψ : C[[X]] → A such
that ψ(X) = x.

In light of the above observations, it would be interesting to know when
Rad(A) is closed. Below, we give an answer to this question, and the proof is
similar to that of [17, Proposition 10.14].
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Proposition 5.4. If A[τ ] is a unital commutative Gelfand-Mazur algebra
with X(A) 6= ∅ and

GA =
{
x ∈ A : φ(x) 6= 0 for all φ ∈ X(A)

}
,

then Rad(A) is closed.

Proof. Rad(A) ⊆ B := ∩{M : M a closed maximal ideal of A}. Now let
x ∈ B. Then x ∈ Ker(φ) for all φ ∈ X(A), as A[τ ] is a Gelfand-Mazur algebra.
So φ(x) = 0 for all φ ∈ X. Hence φ(1 + xy) = φ(1) + φ(x)φ(y) = 1 for all φ ∈
X(A) for all y ∈ A. Therefore φ(1+xy) 6= 0 for all φ ∈ X(A) and for all y ∈ A.
Therefore, by hypothesis, 1 + xy ∈ GA for all y ∈ A, and hence x ∈ Rad(A).
So B ⊆ Rad(A) and hence Rad(A) = ∩{M : M a closed maximal ideal of A}.
Therefore Rad(A) is closed.

For the next corollary, we recall that every Fréchet locally convex algebra
is a Gelfand-Mazur algebra [1].

Corollary 5.5. If A[τ ] is a unital commutative Fréchet locally convex
algebra with X(A) 6= ∅ and

GA = {x ∈ A : φ(x) 6= 0 for all φ ∈ X(A)
}
,

then Rad(A) is closed.

Remark 5.6. The assumption in Theorem 4.2 that the unital commutative
Frechet locally m-convex algebra A[τ ] have weakly compact character space
leads automatically to the fact that K = SpA(a1, . . . , an) is compact, and
therefore bounded. This is not always true if A[τ ] is just an m-convex algebra
with character space not necessarily weakly compact. The reason is that then
A[τ ] is not necessarily a Q-algebra, by [8, Lemma 0.1], so that K need not
be bounded, and hence not compact. In [4, Theorem 5.3], the assumption
that A[τ ] have weakly compact character space is removed, with no other
assumptions added to the hypothesis.

The following result generalizes Theorem 4.2, in that we drop the assump-
tion of a weakly compact character space, assuming that every compact subset
is contained in a compact convex subset of the algebra.

Theorem 5.7. Let A[τ ] be a commutative Fréchet locally m-convex al-
gebra which satisfies conditions (i) and (ii) in Theorem 5.2, and such that
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every compact subset of A is contained in a compact convex subset of A. Let
a0 ∈ Rad(A), a1 invertible and a2, . . . , an ∈ A. Then there exists y ∈ Rad(A)
such that

a0 + a1y + · · ·+ any
n = 0.

Proof. By [17, Proposition 10.14], Rad(A) is closed. We now follow the
same thread and notation as in the proof of Theorem 4.2. Let ∆ be a compact
subset of Cn. By the proof of Theorem 5.2, we may assume, without loss of
generality, that the analytic function given by w(z) = Σαcαz

α (as in the proof
of Theorem 4.2) is analytic on a neighbourhood U containing a compact subset
∆ of Cn, and that ∆ contains τ(a0, a2, . . . , an, A). We observe that w(a) can
be taken to be the image of w(z) = Σαcαz

α via the analytic functional calculus
given in [4, Theorem 5.3], namely,

J∆ : Hol(U,A)→ A, J∆(w) = w(a),

where Hol(U,A) denotes the set of all A-valued analytic functions on an open
set U in Cn. Note that z 7→ w(z) is in Hol(U) for some open subset U of Cn,
and can be considered to be in Hol(U,A): note that C is naturally embedded
into A by observing that C ·1 ⊆ A. In this regard, one also needs the fact that
there is a family of seminorms defining the topology τ of A, all of which map
the identity element of A to that of C. Since A[τ ] is Fréchet, the existence of
such a family of seminorms can be assumed. The rest of the proof remains
the same as that of Theorem 4.2.

Corollary 5.8. Let A[τ ] be a commutative Fréchet locally m-convex al-
gebra with identity, which satisfies conditions (i) and (ii) in Theorem 5.2.
Let x ∈ Rad(A) be such that {0} 6= Axm ⊆ Axm+1 for some m ≥ 1.
Then there is a unital injective algebra homomorphism ψ : C[[X]] → A such
that ψ(X) = x.

Theorem 5.9. ([7, Theorem 4.8]) Let A[τ ] be a Mackey-complete
commutative Q-algebra with continuous inversion. For every open subset
U of Cn, let

AU =
{

(x1, x2, . . . , xn) ∈ An : SpA(x1, x2, . . . , xn) ⊆ U
}
.

There is a unique family of maps θA,U : Hol(U) × AU → A, where U is any
open subset of Cn, such that for every a ∈ AU , θA,U : f 7→ θA,U (f, a) is
a continuous unital algebra homomorphism which maps the jth-coordinate
function ζ ∈ Cn 7→ ζj to xj .
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The above theorem generalizes the analytic functional calculus for Fréchet
commutative locally m-convex algebras with weakly compact character space,
as in [8, Lemma 0.2]: we recall here that weakly compact character space
implies that A[τ ] is a Q-algebra, by Theorem 4.1, and all complete m-convex
algebras have continuous inversion. Also, every Fréchet locally convex algebra
is Mackey-complete (see, for instance, [10, p. 13]).

Furthermore, in Q-algebras with continuous inversion, one has always has
that the joint spectrum of a finite number of elements in the algebra is compact
[7, Section 2].

Corollary 5.10. Let A[τ ] be a Mackey-complete commutative Q-
algebra with continuous inversion, which is also a Gelfand-Mazur algebra with
nonempty character space. Let a0 ∈ Rad(A), a1 invertible and a2, . . . , an ∈ A.
Then there exists y ∈ Rad(A) such that a0 + a1y + · · ·+ any

n = 0.

Proof. Since A[τ ] is a Q-algebra, all maximal ideals are closed, and there-
fore Rad(A) is closed. By the same argument given in the proof of The-
orem 4.2, we get that z ∈ Cn 7→ w(z), as in the proof of Theorem 4.2,
is analytic on a neighbourhood of the joint spectrum SpA(a0, a2, . . . , an) of
a = (a0, a2, . . . , an). Here, we need the facts that A[τ ] is a Gelfand-Mazur al-
gebra with nonempty character space, in order to be able to apply Proposition
2.1 to get that

SpA(a0, a2, . . . , an) =
{
φ(a0), φ(a2), . . . , φ(an) : φ ∈ X(A)

}
.

The result now follows from Theorem 5.9 (instead of [4, Theorem 4.6]) and
the rest of the proof of Theorem 5.2.

Corollary 5.11. Let A[τ ] be a unital Mackey-complete commutative Q-
algebra with continuous inversion, which is also a Gelfand-Mazur algebra with
nonempty character space. Let x ∈ Rad(A) be such that {0} 6= Axm ⊆ Axm+1

for some m ≥ 1. Then there is a unital injective algebra homomorphism
ψ : C[[X]]→ A such that ψ(X) = x.

The class of mb-algebras, as defined in [15, p. 531-532], is a commuta-
tive locally convex algebra A[τ ] which is a directed union of Banach algebras
{Aα:α∈Λ}, such that every bounded subset of A is a bounded subset of some
Aα (see the proposition on p. 532 in [15]). For every mb-algebra A[τ ], and
every x1, . . . , xn ∈ A, there exists a bounded unital algebra homomorphism
θ : Hol(SpA(x1, . . . , xn))→ A which maps the coordinate function zi to xi for
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all 1 ≤ i ≤ n (by the proposition on p. 532 in [15]). The above homomorphism
is only known to be bounded and not necessarily continuous. It is therefore
not so immediate if one can obtain similar results of an Arens-Calderon nature
for mb-algebras.

An analytic functional calculus for commutative b-algebras has been ob-
tained by L. Waelbroeck, which is [14, Chapter VI, Proposition 4]. A commu-
tative b-algebra is a commutative locally algebra A[τ ] of which every element
in the topological boundedness is a completant subset of A. Here, and from
here on, we refer to [14, Chapter 2] for all unexplained concepts appearing in
this definition. Furthermore, the multiplication of a commutative b-algebra is
bounded and a product of bounded sets is bounded (see [14, Chapter II, Propo-
sition 4] and its proof for details). To be more specific, the analytic functional
calculus in the setting of a commutative b-algebra is the following result [14,
Chapter VI, Proposition 4]: If A[τ ] is a unital commutative b-algebra, then
there exists a unital algebra homomorphism Hol(Spr(a1, . . . , an))→ A which
maps the projection maps zi of (z1, . . . , zn) to ai, where all ai are regular
elements of A, i.e., (λ1 − ai)−1 → 0 as |λ| → ∞, for all 1 ≤ i ≤ n. Here,
Spr(a1, . . . , an) denotes the regular joint spectrum of (a1, . . . , an). It follows
from the proof of [14, Chapter VI, Proposition 4] that the above algebra ho-
momorphism is bounded, but it appears not necessarily to be continuous. It is
again not so immediate to obtain similar results of an Arens-Calderon nature
for commutative b-algebras.
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