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Abstract : Let H be a Hilbert space. In this paper we show among others that, if f, g are continuous

on the interval I with

0 < γ ≤
f (t)

g (t)
≤ Γ for t ∈ I

and if A and B are selfadjoint operators with Sp (A), Sp (B) ⊂ I, then[
f1−ν (A) gν (A)

]
⊗
[
fν (B) g1−ν (B)

]
≤ (1− ν) f (A)⊗ g (B) + νg (A)⊗ f (B)

≤
[

(γ + Γ)2

4γΓ

]R [
f1−ν (A) gν (A)

]
⊗
[
fν (B) g1−ν (B)

]
.

The above inequalities also hold for the Hadamard product “ ◦ ” instead of tensorial product “⊗ ”.
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1. Introduction

Let I1, . . . , Ik be intervals from R and let f : I1 × · · · × Ik → R be an
essentially bounded real function defined on the product of the intervals. Let
A = (A1, . . . , An) be a k-tuple of bounded selfadjoint operators on Hilbert
spaces H1, . . . ,Hk such that the spectrum of Ai is contained in Ii for i =
1, . . . , k. We say that such a k-tuple is in the domain of f . If

Ai =

∫
Ii

λidEi (λi)
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is the spectral resolution of Ai for i = 1, . . . , k; by following [2], we define

f (A1, . . . , Ak) :=

∫
I1

· · ·
∫
Ik

f (λ1, . . . , λk) dE1 (λ1)⊗ · · · ⊗ dEk (λk) (1.1)

as a bounded selfadjoint operator on the tensorial product H1 ⊗ · · · ⊗Hk.
If the Hilbert spaces are of finite dimension, then the above integrals be-

come finite sums, and we may consider the functional calculus for arbitrary
real functions. This construction [2] extends the definition of Korányi [11] for
functions of two variables and have the property that

f (A1, . . . , Ak) = f1(A1)⊗ · · · ⊗ fk(Ak),

whenever f can be separated as a product f(t1, . . . , tk) = f1(t1) · · · fk(tk) of
k functions each depending on only one variable.

It is know that, if f is super-multiplicative (sub-multiplicative) on [0,∞),
namely

f (st) ≥ (≤) f (s) f (t) for all s, t ∈ [0,∞)

and if f is continuous on [0,∞), then [13, p. 173]

f (A⊗B) ≥ (≤) f (A)⊗ f (B) for all A,B ≥ 0. (1.2)

This follows by observing that, if

A =

∫
[0,∞)

tdE (t) and B =

∫
[0,∞)

sdF (s)

are the spectral resolutions of A and B, then

f (A⊗B) =

∫
[0,∞)

∫
[0,∞)

f (st) dE (t)⊗ dF (s) (1.3)

for the continuous function f on [0,∞).
Recall the geometric operator mean for the positive operators A,B > 0

A#tB := A1/2(A−1/2BA−1/2)tA1/2,

where t ∈ [0, 1] and

A#B := A1/2(A−1/2BA−1/2)1/2A1/2.

By the definitions of # and ⊗ we have

A#B = B#A and (A#B)⊗ (B#A) = (A⊗B) # (B ⊗A) .
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In 2007, S. Wada [16] obtained the following Callebaut type inequalities
for tensorial product

(A#B)⊗ (A#B) ≤ 1

2
[(A#αB)⊗ (A#1−αB) + (A#1−αB)⊗ (A#αB)]

≤ 1

2
(A⊗B +B ⊗A) (1.4)

for A,B > 0 and α ∈ [0, 1].
Recall that the Hadamard product of A and B in B(H) is defined to be

the operator A ◦B ∈ B(H) satisfying

〈(A ◦B) ej , ej〉 = 〈Aej , ej〉 〈Bej , ej〉

for all j ∈ N, where {ej}j∈N is an orthonormal basis for the separable Hilbert
space H.

It is known that, see [6], we have the representation

A ◦B = U∗ (A⊗B)U (1.5)

where U : H → H ⊗H is the isometry defined by Uej = ej ⊗ ej for all j ∈ N.
If f is super-multiplicative operator concave (sub-multiplicative operator

convex) on [0,∞), then also [13, p. 173]

f (A ◦B) ≥ (≤) f (A) ◦ f (B) for all A,B ≥ 0. (1.6)

We recall the following elementary inequalities for the Hadamard product

A1/2 ◦B1/2 ≤
(
A+B

2

)
◦ 1 for all A,B ≥ 0

and Fiedler inequality

A ◦A−1 ≥ 1 for A > 0. (1.7)

As extension of Kadison’s Schwarz inequality on the Hadamard product, Ando
[1] showed that

A ◦B ≤
(
A2 ◦ 1

)1/2 (
B2 ◦ 1

)1/2
for all A,B ≥ 0

and Aujla and Vasudeva [3] gave an alternative upper bound

A ◦B ≤
(
A2 ◦B2

)1/2
for A,B ≥ 0.
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It has been shown in [10] that
(
A2 ◦ 1

)1/2 (
B2 ◦ 1

)1/2
and

(
A2 ◦B2

)1/2
are

incomparable for 2-square positive definite matrices A and B.
The famous Young inequality for scalars says that, if a, b > 0 and ν ∈ [0, 1],

then
a1−νbν ≤ (1− ν) a+ νb (1.8)

with equality if and only if a = b. The inequality (1.8) is also called ν-weighted
arithmetic-geometric mean inequality.

Kittaneh and Manasrah [8, 9] provided a refinement and an additive reverse
for Young inequality (1.8) as follows:

r
(√

a−
√
b
)2
≤ (1− ν) a+ νb− a1−νbν ≤ R

(√
a−
√
b
)2

(1.9)

where a, b > 0, ν ∈ [0, 1], r = min {1− ν, ν} and R = max {1− ν, ν}. The
case ν = 1

2 reduces (1.9) to an identity and is of no interest.
We recall that Specht’s ratio is defined by [14]

S (h) :=


h

1
h−1

e ln
(
h

1
h−1
) if h ∈ (0, 1) ∪ (1,∞) ,

1 if h = 1.

(1.10)

It is well known that limh→1 S (h) = 1, S (h) = S
(

1
h

)
> 1 for h > 0, h 6= 1.

The function S is decreasing on (0, 1) and increasing on (1,∞).
The following inequality provides a refinement and a multiplicative reverse

for Young’s inequality (1.8)

S
((a

b

)r)
a1−νbν ≤ (1− ν) a+ νb ≤ S

(a
b

)
a1−νbν , (1.11)

where a, b > 0, ν ∈ [0, 1], r = min {1− ν, ν}.
The second inequality in (1.11) is due to Tominaga [15] while the first one

is due to Furuichi [7].
It is an open question for the author if in the right hand side of (1.11) we

can replace S
(
a
b

)
by S

((
a
b

)R)
where R = max {1− ν, ν}.

Kittaneh and Manasrah result provides upper and lower bounds for the dif-
ference between the weighted arithmetic mean and geometric mean while Tom-
inaga and Furuichi results provides bounds for the quotient of these means.
They cannot be compared in general.

We consider the Kantorovich’s ratio defined by

K (h) :=
(h+ 1)2

4h
, h > 0. (1.12)
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The function K is decreasing on (0, 1) and increasing on [1,∞), K (h) ≥ 1 for
any h > 0 and K (h) = K

(
1
h

)
for any h > 0.

The following multiplicative refinement and reverse of Young inequality in
terms of Kantorovich’s ratio holds

Kr
(a
b

)
a1−νbν ≤ (1− ν) a+ νb ≤ KR

(a
b

)
a1−νbν , (1.13)

where a, b > 0, ν ∈ [0, 1], r = min {1− ν, ν} and R = max {1− ν, ν}.
The first inequality in (1.13) was obtained by Zuo et al. in [17] while the

second by Liao et al. [12].

In [17] the authors also showed that

Kr (h) ≥ S (hr) for h > 0 and r ∈
[
0,

1

2

]

implying that the lower bound in (1.13) is better than the lower bound
from (1.11).

In [5] the authors showed that neither of the upper bounds in (1.11) and
(1.13) is always best.

We can give here a simple direct proof for (1.13) as follows.

Recall the following result obtained by the author in 2006 [4] that provides
a refinement and a reverse for the weighted Jensen’s discrete inequality:

n min
j∈{1,2,...,n}

{pj}

 1

n

n∑
j=1

Φ (xj)− Φ

 1

n

n∑
j=1

xj

 (1.14)

≤ 1

Pn

n∑
j=1

pjΦ (xj)− Φ

 1

Pn

n∑
j=1

pjxj


≤ n max

j∈{1,2,...,n}
{pj}

 1

n

n∑
j=1

Φ (xj)− Φ

 1

n

n∑
j=1

xj

 ,
where Φ : C → R is a convex function defined on convex subset C of the linear
space X, {xj}j∈{1,2,...,n} are vectors in C and {pj}j∈{1,2,...,n} are nonnegative

numbers with Pn =
∑n

j=1 pj > 0.
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For n = 2, we deduce from (1.14) that

2 min {ν, 1− ν}
[

Φ(x) + Φ(y)

2
− Φ

(
x+ y

2

)]
(1.15)

≤ νΦ (x) + (1− ν) Φ (y)− Φ [νx+ (1− ν) y]

≤ 2 max {ν, 1− ν}
[

Φ(x) + Φ(y)

2
− Φ

(
x+ y

2

)]
for any x, y ∈ R and ν ∈ [0, 1].

Now, if we write the inequality (1.15) for the convex function Φ (x) =
− lnx, and for the positive numbers a and b we get (1.13).

Motivated by the above results, in this paper we show among others that,
if f, g are continuous on the interval I with

0 < γ ≤ f (t)

g (t)
≤ Γ for t ∈ I

and if A and B are selfadjoint operators with Sp (A), Sp (B) ⊂ I, then[
f1−ν (A) gν (A)

]
⊗
[
fν (B) g1−ν (B)

]
≤ (1− ν) f (A)⊗ g (B) + νg (A)⊗ f (B)

≤

[
(γ + Γ)2

4γΓ

]R [
f1−ν (A) gν (A)

]
⊗
[
fν (B) g1−ν (B)

]
.

The above inequalities also hold for the Hadamard product “ ◦ ” instead of
tensorial product “⊗ ”.

2. Main results

We have:

Theorem 1. Let I and J be two intervals and f, g defined and continuous
on an interval containing I ∪ J . Assume that

0 < γ1 ≤
f (t)

g (t)
≤ Γ1 for t ∈ I

and

0 < γ2 ≤
f (s)

g (s)
≤ Γ2 for s ∈ J.
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Define

U (γ1,Γ1, γ2,Γ2) :=


K
(

Γ1
γ2

)
if 1 ≤ γ1

Γ2
,

max
{
K
(

Γ1
γ2

)
,K
(
γ1

Γ2

)}
if γ1

Γ2
< 1 < Γ1

γ2
,

K
(
γ1

Γ2

)
if Γ1

γ2
≤ 1,

and

u (γ1,Γ1, γ2,Γ2) =


K
(
γ1

Γ2

)
if 1 ≤ γ1

Γ2
,

1 if γ1

Γ2
< 1 < Γ1

γ2
,

K
(

Γ1
γ2

)
if Γ1

γ2
≤ 1.

If A and B are selfadjoint operators with Sp (A) ⊂ I and Sp (B) ⊂ J , then

ur (γ1,Γ1, γ2,Γ2)
[
f1−ν (A) gν (A)

]
⊗
[
fν (B) g1−ν (B)

]
(2.1)

≤ (1− ν) f (A)⊗ g (B) + νg (A)⊗ f (B)

≤ UR (γ1,Γ1, γ2,Γ2)
[
f1−ν (A) gν (A)

]
⊗
[
fν (B) g1−ν (B)

]
for ν ∈ [0, 1], where r = min {1− ν, ν} and R = max {1− ν, ν}.

Proof. If a ∈ [γ1,Γ1] ⊂ (0,∞) and b ∈ [γ2,Γ2] ⊂ (0,∞), then

a

b
∈
[
γ1

Γ2
,
Γ1

γ2

]
⊂ (0,∞) .

The function K is decreasing on (0, 1) and increasing on [1,∞), then we
observe that

max
τ∈
[
γ1
Γ2
,
Γ1
γ2

]K (τ) = U (γ1,Γ1, γ2,Γ2)

and
min

τ∈
[
γ1
Γ2
,
Γ1
γ2

]K (τ) = u (γ1,Γ1, γ2,Γ2) .

By (1.13) we then get

ur (γ1,Γ1, γ2,Γ2) a1−νbν ≤ Kr
(a
b

)
a1−νbν ≤ (1− ν) a+ νb (2.2)

≤ KR
(a
b

)
a1−νbν ≤ UR (γ1,Γ1, γ2,Γ2) a1−νbν ,
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where r = min {1− ν, ν} and R = max {1− ν, ν}.
Now, if we take

a =
f (t)

g (t)
, t ∈ I and b =

f (s)

g (s)
, s ∈ J

in (2.2), then we get

ur (γ1,Γ1, γ2,Γ2)

(
f (t)

g (t)

)1−ν (f (s)

g (s)

)ν
(2.3)

≤ (1− ν)
f (t)

g (t)
+ ν

f (s)

g (s)

≤ UR (γ1,Γ1, γ2,Γ2)

(
f (t)

g (t)

)1−ν (f (s)

g (s)

)ν
,

for t ∈ I and s ∈ J .
This is equivalent to

ur (γ1,Γ1, γ2,Γ2)f1−ν (t) gν (t) fν (s) g1−ν (s) (2.4)

≤ (1− ν) f (t) g (s) + νg (t) f (s)

≤ UR (γ1,Γ1, γ2,Γ2) f1−ν (t) gν (t) fν (s) g1−ν (s) ,

for t ∈ I and s ∈ J .
If

A =

∫
I
tdE (t) and B =

∫
J
sdF (s)

are the spectral resolutions of A and B, then by taking the integral
∫
I

∫
J over

dE (t)⊗ dF (s) in (2.4), we derive that

ur(γ1,Γ1, γ2,Γ2)

∫
I

∫
J
f1−ν (t) gν (t) fν (s) g1−ν (s) dE (t)⊗ dF (s) (2.5)

≤
∫
I

∫
J

[(1− ν) f (t) g (s) + νg (t) f (s)] dE (t)⊗ dF (s)

≤ UR (γ1,Γ1, γ2,Γ2)

∫
I

∫
J
f1−ν (t) gν (t) fν (s) g1−ν (s) dE (t)⊗ dF (s) .

By utilizing (1.1) we get∫
I

∫
J
f1−ν (t) gν (t) fν (s) g1−ν (s) dE (t)⊗ dF (s)

=
[
f1−ν (A) gν (A)

]
⊗
[
fν (B) g1−ν (B)

]
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and∫
I

∫
J

[(1− ν)f(t)g(s) + νg(t)f(s)] dE(t)⊗ dF (s)

= (1− ν)

∫
I

∫
J
f(t)g(s)dE(t)⊗ dF (s) + ν

∫
I

∫
J
g(t)f(s)dE(t)⊗ dF (s)

= (1− ν)f(A)⊗ g(B) + νg(A)⊗ f(B).

Therefore, by (2.5) we obtain the desired result (2.1).

Corollary 1. With the assumptions of Theorem 1,

ur (γ1,Γ1, γ2,Γ2)
[
f1−ν (A) gν (A)

]
◦
[
fν (B) g1−ν (B)

]
(2.6)

≤ (1− ν) f (A) ◦ g (B) + νg (A) ◦ f (B)

≤ UR (γ1,Γ1, γ2,Γ2)
[
f1−ν (A) gν (A)

]
◦
[
fν (B) g1−ν (B)

]
for ν ∈ [0, 1].

Proof. We have the representation

X ◦ Y = U∗ (X ⊗ Y )U ,

where U : H → H ⊗H is the isometry defined by Uej = ej ⊗ ej for all j ∈ N.
If we take U∗ at the left and U at the right in (2.1), then we get

ur(γ1,Γ1,γ2,Γ2)U∗
([
f1−ν (A) gν (A)

]
⊗
[
fν (B) g1−ν (B)

])
U

≤ U∗ [(1− ν) f (A)⊗ g (B) + νg (A)⊗ f (B)]U

≤ UR (γ1,Γ1, γ2,Γ2)U∗
([
f1−ν (A) gν (A)

]
⊗
[
fν (B) g1−ν (B)

])
U ,

which is equivalent to

ur(γ1,Γ1,γ2,Γ2)U∗
([
f1−ν (A) gν (A)

]
◦
[
fν (B) g1−ν (B)

])
U

≤ (1− ν)U∗ [f (A) ◦ g (B)]U + νU∗ [g (A) ◦ f (B)]U

≤ UR (γ1,Γ1, γ2,Γ2)U∗
([
f1−ν (A) gν (A)

]
◦
[
fν (B) g1−ν (B)

])
U

and the inequality (2.6) is obtained.

Corollary 2. Assume that f, g are continuous on I and

0 < γ ≤ f (t)

g (t)
≤ Γ for t ∈ I.
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If A and B are selfadjoint operators with Sp (A), Sp (B) ⊂ I, then[
f1−ν (A) gν (A)

]
⊗
[
fν (B) g1−ν (B)

]
(2.7)

≤ (1− ν) f (A)⊗ g (B) + νg (A)⊗ f (B)

≤

[
(γ + Γ)2

4γΓ

]R [
f1−ν (A) gν (A)

]
⊗
[
fν (B) g1−ν (B)

]
.

We also have for B = A that[
f1−ν (A) gν (A)

]
⊗
[
fν (A) g1−ν (A)

]
(2.8)

≤ (1− ν) f (A)⊗ g (A) + νg (A)⊗ f (A)

≤

[
(γ + Γ)2

4γΓ

]R [
f1−ν (A) gν (A)

]
⊗
[
fν (A) g1−ν (A)

]
.

The proof follows by taking γ1 = γ2 = γ and Γ1 = Γ2 = Γ in Theorem 1.
We also have:

Theorem 2. With the assumptions of Theorem 1, we have

ur (γ1,Γ1, γ2,Γ2) ≤ (1− ν)
[
fν (A) g−ν (A)

]
⊗
[
f−ν (B) gν (B)

]
(2.9)

+ ν
[
g1−ν (A) f−1+ν (A)

]
⊗
[
g−1+ν (B) f1−ν (B)

]
≤ UR (γ1,Γ1, γ2,Γ2) ,

for all ν ∈ [0, 1].

Proof. From (2.4) we also have

ur (γ1,Γ1, γ2,Γ2) ≤ (1− ν) f (t) g (s) + νg (t) f (s)

f1−ν (t) gν (t) fν (s) g1−ν (s)

≤ UR (γ1,Γ1, γ2,Γ2) ,

namely

ur (γ1,Γ1, γ2,Γ2) ≤ (1− ν) fν (t) g−ν (t) f−ν (s) gν (s) (2.10)

+ νg1−ν (t) f−1+ν (t) g−1+ν (s) f1−ν (s)

≤ UR (γ1,Γ1, γ2,Γ2) ,
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for t ∈ I and s ∈ J .

By taking the integral
∫
I

∫
J over dE (t) ⊗ dF (s) in (2.10), we derive the

desired inequality (2.9).

Remark 1. The above inequalities (2.7), (2.8) and (2.9) also hold for the
Hadamard product “ ◦ ” instead of tensorial product “⊗ ”. They can be proved
by making use of a similar argument to the one in the proof of Corollary 1.

3. Inequalities for sums

We can state the following result:

Proposition 1. With the assumptions of Theorem 1 and if Ai and Bi are
selfadjoint operators with Sp (Ai) ⊂ I and Sp (Bi) ⊂ J , pi ≥ 0, i ∈ {1, . . . , n}
with

∑n
i=1 pi = 1, then

ur(γ1,Γ1, γ2,Γ2)

[
n∑
i=1

pif
1−ν(Ai)g

ν(Ai)

]
⊗

[
n∑
i=1

pif
ν(Bi)g

1−ν(Bi)

]

≤ (1− ν)

(
n∑
i=1

pif(Ai)

)
⊗

(
n∑
i=1

pig(Bi)

)
(3.1)

+ ν

(
n∑
i=1

pig(Ai)

)
⊗

(
n∑
i=1

pif(Bi)

)

≤ UR (γ1,Γ1, γ2,Γ2)

[
n∑
i=1

pif
1−ν(Ai)g

ν(Ai)

]
⊗

[
n∑
i=1

pif
ν(Bi)g

1−ν(Bi)

]

for ν ∈ [0, 1], where r = min {1− ν, ν} and R = max {1− ν, ν}.

Proof. From (2.1) we get

ur(γ1,Γ1, γ2,Γ2)
[
f1−ν(Ai)g

ν(Ai)
]
⊗
[
fν(Bj)g

1−ν(Bj)
]

(3.2)

≤ (1− ν)f(Ai)⊗ g(Bj) + νg(Ai)⊗ f(Bj)

≤ UR(γ1,Γ1, γ2,Γ2)
[
f1−ν(Ai)g

ν(Ai)
]
⊗
[
fν(Bj)g

1−ν(Bj)
]

for i, j ∈ {1, . . . , n}.
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If we multiply (3.2) by pipj ≥ 0 and sum, then we get

ur(γ1,Γ1, γ2,Γ2)

n∑
i,j=1

pipj
[
f1−ν (Ai) g

ν (Ai)
]
⊗
[
fν (Bj) g

1−ν (Bj)
]

(3.3)

≤ (1− ν)
n∑

i,j=1

pipjf (Ai)⊗ g (Bj) + ν
n∑

i,j=1

pipjg (Ai)⊗ f (Bj)

≤ UR (γ1,Γ1, γ2,Γ2)
n∑

i,j=1

pipj
[
f1−ν (Ai) g

ν (Ai)
]
⊗
[
fν (Bj) g

1−ν (Bj)
]
,

which is equivalent to (3.1).

Remark 2. Assume that f, g are continuous on I and

0 < γ ≤ f (t)

g (t)
≤ Γ for t ∈ I.

For Bi = Ai, i ∈ {1, . . . , n} we get from (3.1) that[
n∑
i=1

pif
1−ν(Ai)g

ν(Ai)

]
⊗

[
n∑
i=1

pif
ν(Ai)g

1−ν(Ai)

]

≤ (1− ν)

(
n∑
i=1

pif(Ai)

)
⊗

(
n∑
i=1

pig(Ai)

)
(3.4)

+ ν

(
n∑
i=1

pig(Ai)

)
⊗

(
n∑
i=1

pif(Ai)

)

≤

[
(γ + Γ)2

4γΓ

]R [ n∑
i=1

pif
1−ν(Ai)g

ν(Ai)

]
⊗

[
n∑
i=1

pif
ν(Ai)g

1−ν(Ai)

]
.

From (3.4) we get a similar inequality for the Hadamard product “ ◦ ”.

4. Examples

Assume that the operators A and B satisfy the conditions

0 < m ≤ A,B ≤M

for some constants m and M .
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Consider the functions f (t) = tp, g (t) = tq for t > 0 and p 6= q are real
numbers. We have tp

tq = tp−q and

mp−q ≤ f (t)

g (t)
≤Mp−q for p > q

and

Mp−q ≤ f (t)

g (t)
≤ mp−q for p < q

for all t ∈ [m,M ].
For p > q we get by Corollary 2 that

A(1−ν)p+νq ⊗Bνp+(1−ν)q ≤ (1− ν)Ap ⊗Bq + νAq ⊗Bp (4.1)

≤

[
(mp−q +Mp−q)

2

4mp−qMp−q

]R
A(1−ν)p+νq ⊗Bνp+(1−ν)q

where ν ∈ [0, 1] and R = max {1− ν, ν}.
In particular,

A
p+q

2 ⊗B
p+q

2 ≤ 1

2
[Ap ⊗Bq +Aq ⊗Bp]

≤ mp−q +Mp−q

2m
p−q

2 M
p−q

2

A
p+q

2 ⊗B
p+q

2 .

(4.2)

We also have for B = A that

A(1−ν)p+νq ⊗Aνp+(1−ν)q ≤ (1− ν)Ap ⊗Aq + νAq ⊗Ap (4.3)

≤

[
(mp−q +Mp−q)

2

4mp−qMp−q

]R
A(1−ν)p+νq ⊗Aνp+(1−ν)q.

In particular,

A
p+q

2 ⊗A
p+q

2 ≤ 1

2
[Ap ⊗Aq +Aq ⊗Ap]

≤ mp−q +Mp−q

2m
p−q

2 M
p−q

2

A
p+q

2 ⊗A
p+q

2 .

(4.4)

The above inequalities (4.1)-(4.1) also hold for the Hadamard product “ ◦ ”
instead of tensorial product “⊗ ”.

Similar inequalities may be stated if one consider the functions f (t) =
exp (αt), g (t) = exp (βt) with α 6= β and t ∈ R. The details are omitted.
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