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Abstract: We deal with a natural generalization of the classical Fundamental Theorem of Affine
Geometry to the case of non bijective maps. This extension geometrically characterizes semiaffine
morphisms. It was obtained by W. Zick in 1981, although it is almost unknown. Our aim is to
present and discuss a simplified proof of this result.
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INTRODUCTION

A map ¢p: R™ — R™ between real affine spaces is an affine morphism if it
has equations of the form

Y1 = a11r1 + - + apx, + by

Ym = aAm1T1 + 4 T + by

with a;;,b; € R. Its equations are polynomials of degree < 1 hence, in some
sense, affine morphisms are the simplest maps, apart of constant maps.

If moreover ¢ is bijective, that is, n = m and det (a;;) # 0, then ¢ is
an affinity. The Fundamental Theorem geometrically characterizes affinities:
For n > 2, collineations ¢: R™ — R™ (bijections transforming lines into lines)
are just affinities.

The Fundamental Theorem holds more generally for affine spaces over
arbitrary fields of scalars:

Let A, A’ be affine spaces of dimensions > 2 over division rings K, K’,
respectively (of orders # 2). The classical Fundamental Theorem states that
collineations A — A’ are just semiaffinities.
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This theorem was first proved by E. Kamke [10] and is collected in many
textbooks (see [2, [3, 4] [I5]). More information about its history can be found
in [I1), pp. 51—52].

The classical theorem is restricted to bijective maps; it leaves open the
question of a geometrical characterization of non-bijective semiaffine mor-
phisms. In [9, Part I, Chapter V, Theorem 1], Frenkel characterized injective
semiaffine maps, with an associated bijective ring morphism K — K’. In
1981, W. Zick obtains a general result without any injective or surjective
condition. To improve Frenkel’s result, he introduces a notion of morphism
preserving parallelism, valid for non-injective maps, and he removes the tra-
ditional (and artificial) condition that the ring map K — K’, associated with
a semilinear map, be bijective.

In our opinion, Zick’s result is the ultimate version of the Fundamental
Theorem of Affine Geometry. Unfortunately, his work hasn’t been published
and it seems to be almost totally unknown (we learned about its existence
from the paper [13]). Our purpose is to give a simplified proof of this result
and to explain its interest for the foundations of affine geometry.

The geometric characterization of affine maps is only one aspect of the
Fundamental Theorem. It has also a role in the foundations of affine geom-
etry. There essentially exist two ways to define affine space. On the one
hand, a synthetic definition using axioms based on the intuitive properties of
points, lines and parallelism. On the other hand, an algebraic definition us-
ing algebraic structures such as fields and vector spaces. Both definitions are
equivalent, but they apparently suggest very different notions of morphism
between affine spaces. Its equivalence is the substance of the Fundamental
Theorem.

This article is divided into three sections. In the first one, we recall the
synthetic and algebraic definitions of affine space; their equivalence is not
trivial and for its proof the reader is addressed to the literature. In the
second section, we explain that both definitions of affine space induce different
notions of morphism: Parallel morphisms in the synthetic case and semiaffine
morphisms in the algebraic case. The last section contains the proof of the
general version of the Fundamental Theorem, which states the equivalence
between parallel and semiaffine morphisms. The classical version for bijective
maps is obtained as a consequence.
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1. THE DEFINITION OF AFFINE SPACE

THE SYNTHETIC POINT OF VIEW

A synthetic definition of affine space is given by means of terms and axioms
that are evident to our geometric intuition, without using of coordinates or
algebraic structures. In the literature there are several of these definitions.
The definition that we state below is due to O. Tamaschke [16]. We prefer
this definition because it emphasizes parallelism as a primitive element in the
concept of affine space (for a definition where parallelism is not involved, using
only incidence axioms, see [17]).

DEFINITION 1.1. An affine space is a set A # () (whose elements are
named points), with a family £ of subsets (named lines) endowed with an
equivalence relation || (named parallelism), satisfying the following axioms:

Al. any two different points lie in a unique line;

A2. any line has at least two points;

A3. (parallel axiom) given a line L and a point p there is a unique parallel
line to L passing through p;

A4. (similar triangles axiom) let a,b,c be three non-collinear points and
let a’,b" be two different points such that ab || a’t’. The line parallel
to ac through o' and the line parallel to bc through o' intersect at a
point .

o

DEFINITION 1.2. A subset S C A is said to be a subspace when it fulfills
the following conditions:

(a) the line joining any two different points of S is contained in S

(b) for any line L C S and any point p € S, the parallel line to L passing
through p also is contained in S.

Condition (b) is superfluous when the lines of A have at least three points.
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DEFINITION 1.3. The dimension of a non empty subspace S C A is the
supremum of the naturals n such that there exists a strictly increasing
sequence of subspaces ) # Sp C ---C S, = S.

Points and lines are just subspaces of dimension 0 and 1, respectively.
Subspaces of dimension 2 are named planes.

DEFINITION 1.4. Two non-empty subspaces S and S’ are said to be
parallel (we put S || S’) when for any line L C S there is a parallel line
L’ C S and, conversely, for any line L' C S’ there is a parallel line L C S.

THE ALGEBRAIC POINT OF VIEW

In undergraduate courses it is usual to define affine spaces in terms of
certain algebraic structures (fields or, more generally, division rings, vector
spaces or group actions).

DEFINITION 1.5. An affine space is a set A # () (whose elements are
named points) together with a vector space V over a division ring K and
amap +: A xV — A (p,v) — p+ v, such that the following axioms are
satisfied:

(1) (p+vi)+ve=p+(vi+wvy) forallpeA vi,veV;
(2) p+v=p <<= wv=0 forallpeA veV;
(3) given two points p,p € A there is a vector v € V (necessarily unique)
such that p =p + v.
An affine space (A, V,+) will be simply denoted A.

Note that each vector v € V defines a bijective map 7,: A — A, p — p+w,
named translation with respect to v. Definition captures the idea that an
affine space is a set with a distinguished group of transformations (the group
of translations) isomorphic to the additive group (V,+) of a vector space.

Alternatively, in the language of group actions, one may define an affine
space as a set A endowed with a free and transitive action +: A x V' — A of
the additive group of a vector space V.

The dimension of an affine space A is defined to be the dimension of the
vector space V' (possibly infinite).
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1.6. COORDINATES. Let A, be an affine space of finite dimension n. An
affine reference is a sequence {pg,vi,...,v,} where py € A is a point (named
origin of the reference) and {v1,...,v,} is a basis of V.

Now, given a point p € A,, we have p = pg + v for a unique vector v € V.
Writing v = z1v1 + - - - + £, We obtain

p = po+x1U1 + -+ TpUp

for a unique sequence of scalars x1,...,x, € K, named affine coordinates
of p. Assigning its coordinates to each point, we obtain a bijection

A, "5 Kx-"xK.

DEFINITIONS 1.7. A non-empty subset S C A is a affine subspace when
it is
S=p+W:={ptw:weW}
where p € A is a point and W C V is a vector subspace. Then W is said to

be the direction of S.
We agree that the empty subset also is a subspace.

Remark that a non-empty subspace S of direction W is an affine space
(S,W,4). So the dimension of S is the dimension of its direction W as a
vector space.

Points are just subspaces of dimension 0. Subspaces of dimension 1 are
named lines and subspaces of dimension 2, planes.

DEFINITION 1.8. Two non-empty subspaces S =p+ W and S’ = p' + W’
are said to be parallel when both have the same direction: S || §/ <—
W =W

Note that parallel subspaces have the same dimension.

Of course, two distinct lines are parallel if and only if they are coplanar
and do not intersect.

EQUIVALENCE OF DEFINITIONS

The algebraic definition of affine space is deep and very convenient for
an efficient development of Affine Geometry. Although, in a certain sense it
is not a primary definition, since it requires some motivation or explanation.
There is a great gap between ordinary spatial intuition, with its informal ideas
of point, line, parallelism, and an abstract definition in terms of algebraic



226 J.B. SANCHO DE SALAS

structures such as a field of scalars or a vector space. The emergence of these
structures is a beautiful surprise, formulated as Theorem below.

It is an easy exercise to check that any affine space, in the sense of the
algebraic definition fulfills the synthetic definition

The converse is not so easy. An essential role is played by Desargues’s
Theorem, which holds in any algebraic affine space and also in any synthetic
affine space of dimension > 3. However, there exist synthetic affine planes
where Desargues’s Theorem fails to hold (an easy example is the Moulton
plane [2]). With the exception of non-Desarguesian planes, the algebraic and
synthetic notions of affine space are equivalent:

THEOREM 1.9. Let A be a synthetic affine space of dimension > 3 (or of
dimension 2 and Desarguesian). There exist, canonically associated to A, a

division ring K, a K-vector space V and a map A x V 5 A such that:

(i) (A,V,+) is an algebraic affine space;

(ii) subspaces of the algebraic affine space (A,V,+) are just subspaces of
the synthetic affine space A.

Variations of this theorem can be found in [2} [4] [16].

2. WHICH ARE THE morphisms BETWEEN AFFINE SPACES?

The algebraic and synthetic definitions of affine space, although equivalent
by Theorem suggest different definitions of “morphism” between affine
spaces. We will show that the Fundamental Theorem states the equivalence
of both notions of morphism.

MORPHISMS IN THE ALGEBRAIC CASE

In the case of algebraic structures, such as group, ring or vector space, the
(homo)morphisms are defined to be maps preserving the structure. Typically,
an algebraic structure consists of some sets (and their direct products) with
certain maps between them (named operations) satisfying certain identities
(named axioms). A map between two structures of the same kind is said
to preserve the structure when it is compatible with the operations in an
obvious sense. .

For example, a group is a set G with operations G x G — G, G — G,

PLIN G, satisfying the usual axioms. A morphism between groups ¢: G — G’
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is defined to be a map preserving the structure, in the sense that the following
diagrams are commutative,

GxG 25 G/ x G G —— a * *
l l , invl linv , 1l ll
¢ —s G ¢ — G G —— ¢

The commutativity of the first diagram states that ¢(g1-92) = ¢(g1)-©(g2)
for all g1, g2 € G. The other two diagrams state that p(g~!) = (g)~! for all
g € G and ¢(1) =1 (in fact both follow from the former condition, due to the
axioms of group). Hence a map ¢: G — G’ preserves the structure when it
fulfills the condition ¢(g1 - g2) = ¢(g1) - ¢(g2) for all g1, g2 € G, which is the
standard definition of group morphism.

Now let us consider the case of vector spaces. A vector space is a list
(V,K,-) where V is an abelian group, K is a division ring and K x V — V,
(A, v) — X -wv, is a map satisfying certain axioms. Therefore, a morphism
between vector spaces (V, K, -) and (V/, K’,-) should be defined by two maps
¢:V =V o: K— K', where ¢ is a morphism of groups, ¢ is a morphism
of rings and the following diagram is commutative

KxV 229 gyt

l ¢ l

that is to say, ¢(A-v) =c(A) - ¢(v) for all A € K, v € V. Assuming that ¢
is not null then ¢ is uniquely determined by ¢. So we arrive to the following
definition.

DEFINITION 2.1. Let V, V' be vector spaces over division rings K, K’,
respectively. A map ¢: V — V' is said to be semilinear when:
(a) it is additive: p(v1 4+ va) = p(v1) + p(v2) for all vy, vy € V;
(b) there is a ring morphism o: K — K’ such that p(A\v) = o(N)p(v) for
all A € K, v € V. We do not require that o: K — K’ be surjective.

Analogously, a morphism between algebraic affine spaces (A,V,+) and
(A’; V' 4) should be defined by two maps ¢: A — A’, 3: V — V' where Z is
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semilinear, satisfying the commutative diagram

AxV 2P ar sy

+| |+
A 2 N
that is to say, ¢(p + v) = ¢(p) + F(v). This equality implies that J is deter-
mined by . So we arrive to the following definition.

DEFINITION 2.2. Let (A, V,4) and (A", V', +) be affine spaces over divi-
sion rings K and K’, respectively. A map ¢: A — A’ is a semiaffine morphism
when there is a semilinear map @: V' — V' such that

o(p+v) = o(p) + @) VpeA, veV

The semilinear map ¢ is unique and it is named differential of ¢.

A semiaffine morphism ¢: A — A’ is a semiaffine isomorphism or a semi-
affinity when both ¢ and the ring morphism o: K — K’ (associated to )
are bijective. In such case the inverse map ¢~ !: A’ — A also is a semiaffine
isomorphism.

The prefix semi in the terms semilinear, semiaffine, semiaffinity is deleted
when K = K’ and the associated ring morphism o: K — K is the identity.

2.3. Any vector space V has an underlying structure of affine space (A =
V, V,+), where the map +: A x V' — A is just the addition of vectors,

AxV=VxV — 5 V=A.

Conversely, given an affine space (A,V,+) and a fixed point py € A we
have an affine isomorphism

Vv —/—= A, v—rpot+v.

Observe that 0 — pg. This isomorphism supports the colloquial statement
that an affine space is a vector space where we have forgotten the origin; once
we fix a point pg € A as the origin we have an identification A = V.

2.4. Let V and V' be vector spaces, hence also affine spaces, over division
rings K and K’, respectively. A map ¢: V — V'’ is a semiaffine morphism if
and only if it is

V L=V, p)=¢@wv)+b,
where @: V — V' is a semilinear map and b := ¢(0).
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2.5. EQUATIONS OF A SEMIAFFINE MORPHISM. Let p: A, — A/ be a
semiaffine morphism, between affine spaces of finite dimension, with associated
ring morphism K — K',  — 2/. Given affine coordinates {x1,...,z,} and
{y1,...,ym} of A, and A/, respectively, the equations of ¢ are

n = $l1a11+"‘+1';1a1n + by

Ym = xllaml + - +$Inamn +bm

where (a;;) is the matrix of the semilinear map ¢: V' — V', and (b1, ..., bp)
are the coordinates of b = p(py).

MORPHISMS IN THE SYNTHETIC CASE

Now, the synthetic definition of affine space is not algebraic as the previous
structures, so that it is not evident what does it mean to say that a map
o: A — A’ between synthetic affine spaces, preserves the structure. Let us
consider the proposal of W. Zick. First, we introduce the following

2.6. NOTATION. Given points pg,p1 € A, let pg V p1 be the smallest affine
subspace containing po, p1. If po, p1 are distinct points, then pg V p; is a line.
If po = p1 then po V p1 = po = p1.

Recall that any two parallel subspaces have equal dimension. Therefore
the expression (a V b) || (¢ V d) means that both a Vb and ¢V d are parallel
lines or both are points (a = b and ¢ = d).

DEFINITION 2.7. (Z1cK) A map ¢: A — A’ between affine spaces, is a
parallel morphism when

(@vd) | (cvd) = (pla)Ve®d) ] () Ve(d)
for all a,b,c,d € A.

Since the synthetic notion of affine space is based on the relations
of collinearity and parallelism, it seems reasonable at first sight to say that
morphism ¢: A — A’ preserving the structure are parallel morphisms. This
intuition is confirmed by the Fundamental Theorem stating the equiva-
lence between the semiaffine and the parallel morphisms.

In conclusion, Theorem (1.9 and the Fundamental Theorem [3.9| are the
mathematical formulation of the equivalence between the algebraic and syn-
thetic points of views on Affine Geometry.
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3. FUNDAMENTAL THEOREM
SEMIAFFINE MORPHISMS ARE PARALLEL MORPHISMS
LEMMA 3.1. Any parallel morphism ¢: A — A’ satisfies the property

rg € ;1 Vry = @(xo) € p(x1)V @(r2)

for any xg,x1, T € A.

Proof. If 1 = x5 then g = 1 = x9 and it is clear. Otherwise xg is
not xy or o, let us assume that xg # x2. We have x1 V 22 = xg V To9,
hence x1 V z2 || xg V 2, so that ¢(z1) V o(z2) || ¢(xo) V ¢(x2), and then

p(x1) V (z2) = @(x0) V 0(22) 3 @(0). 1

As a consequence, the restriction of a parallel morphism p: A — A’ to a
line is constant or it is an injection into a line of A’. Now the next statement
directly follows from the definition.

3.2. A map p: A — A’, between affine spaces, is a parallel morphism if
and only if it satisfies the following condition:

For any two parallel lines L1, Ly C A the restrictions @1, and ¢, are
both constant or both injective, and in such case p(L1) C L}, ¢(L2) C L,
where L, LY, are two parallel lines in A’.

PROPOSITION 3.3. Any semiaffine morphism ¢: A — A’ is a parallel
morphism.

Proof. Let L1 = p1 + (v), Ly = p2 + (v) be two parallel lines of A. If

P(v) =0 then ¢(L1) = ¢(p1) and p(L2) = @(p2). If F(v) # 0 then ¢ embeds
the lines L; = p; + (v) into the lines L, = ¢(p;) + (F(v)), (i = 1,2), which are
parallel. By [3:2] ¢ is a parallel morphism. 1

PARALLEL MORPHISMS ARE SEMIAFFINE

In this subsection, V, V’ are vector spaces over division rings K, K’,
respectively.

LEMMA 3.4. ([6]) Let ¢,¢: V — V' be additive maps. If for any x € V
we have ¢(z) € K'-¢(x) and the image of ¢ contain two linearly independent
vectors, then there is a scalar A\ € K’ such that ¢ = \ - .
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Proof. For any z € V' \ ker ¢ we have ¢(z) = A; - ¢(z) for a unique scalar
Az € K'. We have to show that A\, does not depend on x. Let z,y € V' \ ker ¢;
we distinguish two cases.

1. ¢(x) and ¢(y) are linearly independent. Then x,y, z+y € V \ker p and

the equality ¢(z+y) = ¢(z)+¢(y) shows that Ay p(z+y) = Azp(z)+ 0 (y),
that is to say, Mgty @(2) +Aapy0(y) = Ae@(z)+Ay0(y), hence Ay = Apyy = Ay

2. ¢(z) and ¢(y) are linearly dependent. Take z € V such that ¢(z) is
linearly independent of both vectors. According to the former case, we have
Az ==Xy 1

PROPOSITION 3.5. (ZICK) Let ¢: V — V' be an additive map, such that
o(Kz) C K'p(x) for all x € V, and such that the image contains two linearly
independent vectors. Then ¢: V — V' is semilinear.

Proof. ([6]) Given A € K we define the additive map ¢y (z) := ¢(Az). By
Lemma [3.4] there is a scalar o(A\) € K’ such that ¢ = o(\)p, that is to say,
o(Ax) = o(N)p(x). We have to check that o: K — K’ is a ring morphism.

Taking z € V' \ ker ¢ we have

o((AM1+ A2)z) = a(A1 + A2)p(x)
and moreover

(M1 + A2)x) = (A + Aox)
= o(M)p(z) + o(A2)p(z) = (a(M) +a(X2))p(w),

so that o(A1 + A2) = o(A\1) + o(N2). Analogously we prove that o(A1A2) =
o(A1)o(A2). 1

Recall (see [2.3]) that a vector space V also is an affine space.

LEMMA 3.6. Let ¢: V. — V' x> 2/, be a parallel morphism. If ¢(0) =0
and dim (p(V)) > 2, then ¢: V — V' is additive.

Proof. Since ¢ transforms the parallelogram (eventually degenerated) with
vertices 0, x,y,x + y into a parallelogram 0,2',v/, (x 4+ y)’, we have

(z+y) =x'+y =2 +py (1)

for certain A\, u € K.
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When ¢ ¢ (2') then (z+y)’ =2’ + ¥/, because either 2’ = 0, so that we
put Az’ =z’ en (1)), or 2’ and y' are linearly independent (so that A = p = 1).
The case z’ ¢ (y') is similar.

Otherwise we have (z') = (y'). By hypothesis, there exists z € V such
that 2/ ¢ (2/) = (y') and by we also have 2z’ ¢ ((z +y)’). By the former
case, we have (y +2) =y’ + 2’ ¢ (2/) and

x/+y/+zlzx/+(y+z>/:(x+y+z)/:(x+y)/+zl7
hence 2/ +vy' = (z +y)". 1

LeEMMA 3.7. Let ¢: V — V' be a parallel morphism. If ¢(0) = 0 then we
have p(Kz) C K' ¢(x) for allz € V.

Proof. By Lemma [3.1] we have o(21 V z2) C ¢(z1) V ¢(22), so that

p(Kz) = o(0Vz) Cp(0)Ve(r) =0Ve() = Ke().
|

PROPOSITION 3.8. Let ¢p: V. — V' # 0 be a paralle] morphism. If the
image of ¢ is not contained in an affine line, then ¢ is a semiaffine morphism,
that is to say, we have

p(xr) = F(z) +b,

where §: V' — V' is a semilinear map and b = ¢(0).

Proof. Composing ¢ with a translation we may assume that ¢(0) = 0.
The above two lemmas show that ¢: V' — V' fulfills the hypotheses of
Proposition [3.5] hence p: V — V' is semilinear. [

According toany affine space is isomorphic (an affinity) to its direction:
A ~ V. Combining [3.3] and [3.8] we finally obtain

3.9. FUNDAMENTAL THEOREM (Zick [I8]) Let ¢: A — A’ # % be a
map such that the image is not contained in a line. Then ¢ is a semiaffine
morphism if and only if it is a parallel morphism.

3.10. Case K = K' = R. It is elementary that the only ring morphism
R — R is the identity (see [I5, p. 86]). So, in the case of real affine spaces,
we may drop the prefix semi in the above theorem. A stronger result may be
obtained:
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Let ¢: A — A’ be a map, between real affine spaces, such that the image
is not contained in a line. Then ¢ is an affine morphism if and only if for any
Do, P1, P2 € A the following condition holds:

po € p1Vp2 = ©(po) € w(p1) V p(p2) - (2)

This statement is an easy consequence of the following more general result
(Lenz |14, Hilfssatz 3]): Let P and P’ be real projective spaces, with dimP <
oo, and let U C P be an open set. Let p: U — P’ be a map satisfying
such that the image is not contained in a line. Then ¢ is a linear map in
homogeneous coordinates.

Lenz’s result was generalized by Frank [§] for projective spaces, endowed
with a linear topology, over division rings.

3.11. Over arbitrary division rings, maps A — A’ satisfying condition ([2))
are algebraically characterized as fractional semiaffine morphisms (see [19]).

A map p: A — A’ is called a lineation if the image by ¢ of any three
collinear points are collinear. It is a weaker condition than (2). See [5] for a
version of the fundamental theorem for surjective lineations.

In [1], several generalizations of the fundamental theorem are obtained,
where collinearity preservation is assumed only for a finite number of directions
of lines.

3.12. In the case of projective spaces, Faure-Frolicher [7] and Havlicek [12]
extended the classical Fundamental Theorem of Projective Geometry to non
necessarily bijective maps. See also [6].

THE CLASSICAL FUNDAMENTAL THEOREM

Now we examine the case of bijective maps to obtain the classical version
of the Fundamental Theorem.

LEMMA 3.13. Let V be a vector space over a division ring K with |K| # 2.
Let W C V be a subset such that:

(a) 0e W;

(b) if wy,wy € W, then (1 — t)wy + twy € W for all t € K (that is to say,
wi,we €W = wy Vwy C W)

Then W is a vector subspace.
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Proof. 1t is enough to show that (w1, ws) C W whenever wy,we € W.

Remark that if w € W then (w) C W: For any t € K we have tw =
(I1-=t)0+tweW.

Now, given wy,ws € W, for all z,y € K we have zw, yws € W, hence

W 3 (1 —t)zwy + tyws = Twy + Jws , where z:=(1—1t)z, y:=ty.

Taking t # 0,1 (since |K| # 2), the values of Z,y are arbitrary, so that the
vector Twy + yws is any vector of (wi,wsz). |

Any affine subspace S C A satisfies
r1, 19 €S = x1Vry CS.

That is to say, any affine subspace S C A contains the line joining any two
different points of S. Reciprocally,

PROPOSITION 3.14. Let A be an affine space over a division ring K, with
|K| # 2. If a subset S C A contains the line joining any two different points
of S, then S is an affine subspace.

Proof. Fix py € S and consider the affine isomorphism V ~ A, v — py+v.
Via this isomorphism, the subset S corresponds to a subset W C V fulfilling
the conditions of the lemma, so that W is a vector (hence affine) subspace of
V' and, therefore, S is a subspace of A. 1

DEFINITION 3.15. A bijective map ¢: A — A’ is a collineation if the
image of each line L of A is a line ¢(L) of A’

Note that the inverse of a collineation is also a collineation.

THEOREM 3.16. Let A and A’ be affine spaces of dimensions > 2 over
division rings K and K', respectively, with |K|,|K'| # 2. A bijective map
©: A — A’ is a semiaffinity if and only if it is a collineation.

Proof. (=): Any line L = p + (v) goes to a line (L) = ¢(p) + (F(v)).

(«<): By Proposition any collineation ¢: A — A’ transforms sub-
spaces into subspaces. In particular, ¢ transforms planes into planes and then
preserves parallelism, that is to say, ¢ is a parallel morphism. By the Fun-
damental Theorem  is a semiaffine morphism. Analogously, the inverse
collineation ¢! is a semiaffine morphism, hence ¢ is a semiaffinity.
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