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1. INTRODUCTION

In [I9] Theorem 4.3] we determine exactly which fans have hyperspaces
that are cones; namely, it is proven that for a fan F', the hyperspace of sub-
continua of F' is a cone if and only if F' itself is a cone. In [I5], it is shown
that if a fan is a cone, then then each of its hyperspaces is homeomorphic to
the cone over a compactum. We continue our study of classes of continua X
such that the hyperspace of subcontinua of X is a cone. Our main results
are Theorem Theorem and Theorem We obtain many Peano
continua with such a property which, in general, are different from the ones
considered in [12].

Observe that the case when the n-fold hyperspaces (n > 1) of a continuum
X is of finite dimension has essentially been done in [11], 12} 13} 14, 15, [16,
17, 18, 19]. Hence, we consider continua X whose hyperspace of subcontinua
has infinite dimension.

This reseach started in the first half of 2001, while the first named author
spent a sabbatical year at West Virginia University (2000-2001) with Profes-
sor Sam B. Nadler, Jr. After I left West Virginia, we worked on the paper
via e-mail. After some time my computer broke and I lost the KTEX file of
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the manuscript and I only had a pdf file. While trying, for a very long time,
to recover the source file, Professor Nadler’s health deteriorated and, unfortu-
nately, he passed away on 4 February, 2016. Once I recovered the IXTEX file,
I decided to update it and to publish it as dedication to his memory and in
gratitude to all the things he taught me over the years that I had the pleasure
to work with him.

2. NOTATION AND TERMINOLOGY

We denote the unit interval [0, 1] by I. We denote the Hilbert cube by I°°.

A Hilbert cube manifold is a separable metric space M such that each
point of M has a closed neighborhood homeomorphic to I°°.

A continuum is a nonempty compact connected metric space. A Peano
continuum is a continuum which is locally connected.

The term map means a continuous function. We use the double headed
arrow in f: X — Y to signify that the map f is surjective; i.e., f(X) =Y.

A closed subset A of a continuum X is a Z-set provided that for every
e > 0, there exists a map f.: X — X \ A such that d(z, f(x)) < e for all
points z of X.

The hyperspace of closed subsets of a continuum X is the space 2% of all
nonempty closed subsets of X with the Hausdorff metric [22, Theorem (0.2)];
‘H always denotes the Hausdorff metric.

NoOTATION 2.1. Let X be a continuum and let k > 2 be an integer. Then
there exists a union map
up: 2% x oo x 2% 52X
| ——
k times

given by ug((Ai1, ..., Ar)) = A1U- - -UAg. It is easy to see that uy is continuous
for each k > 2 [22] Lemma (1.48)].

Given a positive integer n, the n-fold hyperspace of a continuum X is the
space:
Co(X) = {A € 2% : Ahas at most n components},

a lot of information of this hyperspace may be found in [I7]. Note that C;(X)
is the hyperspace of subcontinua of X.
Given a continuum X and a closed subset A of X, let

Ci(A, X)={K €C(X) : AC K}.
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If A= {p}, we write C;1(p, X) instead of C;({p}, X).

Given a map f: X — Y between continua and a positive integer n, we
define the induced map Cy(f): Cn(X) — Cn(Y) by Cn(f)(A) = f(A). Tt is
known that C,(f) is continuous [I7, Corollary 8.2.3].

LEMMA 2.2. Let X be a continuum and let A be a nonempty closed subset
of X. If Ais a Z-set in X, then C1(A, X) is a Z-set in C1(X).

Proof. Let € > 0. Since Ais a Z-set in X, there existsamap f.: X — X\A
such that d(z, f-(z)) < e. Hence, C1(f:): C1(X) — Ci1(X) is a map. Also,
since f-(X) N A = 0, we have that C1(f:)(C1(X)) NC1(4,X) = (. Now, by
[17, Lemma 8.2.13], we have that H(B,Ci1(f:)(B)) < ¢, for all B in C;(X).
Therefore, C1(A, X) is a Z-set in C1(X). 1

Remark 2.3. It is well known that the manifold boundary, D, of an n-
cell I" is a Z-set of I". Hence, Ci(D,I") is a Z-set in C;(I") (Lemma [2.2).
Also, for each point x € D, we have that Ci(x,I") is a Z-set of Ci(I").
Another example is Sierpiriski universal plane curve [17, pp. 230—-231] S. By
[4, Example 3.10], one may prove that the boundary of the unit square, D
(biggest square), is a Z-set of S. Thus, Ci(D,S) is a Z-set of Ci(S). For
this continuum, we also have that if x € D, then Ci(x,S) is a Z-set of C1(S).
Observe that these two continua provide examples of continua B that satisfy
the hypothesis of Theorem [3.4}

A fan is an arcwise connected hereditarily unicoherent continuum with
only one ramification point; i.e., a point that is the only endpoint in common
of at least three otherwise disjoint arcs. The unique ramification point of a
fan F' is called the top of F. The set of endpoints, in the classical sense, of a
fan F' is denoted by E(F'). Given two points x and y of a fan F', Ty denotes
the unique arc in F' whose endpoints are  and y. For a fan F' with top T,

N[Ci(F)] ={7z : z € F'};

N[Cy(F)] is called the natural part of Ci(F). Also,

T = |J e

e€E(F)

we call T[C1(F)] the two-dimensional part of C1(F') (which is justified by [19,
Lemma 3.1]).
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A fan F is said to be smooth provided that whenever {x,}7° , is a sequence
in F' converging to a point x of F', then {7z, }22; converges to 7z, with respect
to the Hausdorff metric. Thus, a fan is smooth if and only if the natural
map ¢: F — N[Ci(F)], given by ¢(x) = Tz, is continuous and, in fact, a
homeomorphism.

The cone over a continuum Y, denoted by Cone(Y), is the quotient space
(Y x I)/(Y x {1}) obtained from the cartesian product Y x I by shrinking
Y x {1} to a point v called the vertex of the cone [23, 3.15]. The base of
Cone(Y) is {(y,0) : y € Y}, which we denote by B(Y). A coning arc is the
image under the quotient map of an arc in Y x [ of the form {y} x I.

NOTATION 2.4. Recall that if X is a Peano continuum with a convex
metric p, then the function K, :[0,00) x C;(X) — C1(X) given by

K,(t,A)={z e X : p(z,a) <t for some a € A}

is continuous [21] Corollary (3.4)]. We assume that if X is a Peano continuum,
then the metric p on X is convex ([I] and [20]).

3. CONTINUA WHOSE ONE-FOLD HYPERSPACE IS A CONE
Our first main result is Theorem 3.4, We begin with the following lemmas.

LEMMA 3.1. Let X,Y and Z be nondegenerate continua such that X N
Y NZ#(. Assume X NY consists of at most two points and that X N Z =
YNZ ={p}. Let GG ={HUE : H € Ci(p,X) and E € Ci(p,Y)} and
let G = {HUEUG : H € Ci(p,X),E € Ci(p,Y) and G € Ci(p,2)}.
Then G is homeomorphic to C1(p, X) x C1(p,Y) and Gy is homeomorphic to
Cl(p,X) X Cl(p, Y) X Cl(p, Z)

Proof. We show that Gs is homeomorphic to Ci(p, X) xC1(p,Y) xCi(p, Z).
The proof of the fact that G; is homeomorphic to Ci(p, X) x Ci(p,Y) is done
in a similar way. Let ¢: Ci(p, X) x C1(p,Y) x C1(p,Z) — Gy be given by
¢((H,E,G)) = HU EUG (Notation 2.1). Then ¢ is a homeomorphism. 1

LEMMA 3.2. Let X be a nondegenerate Peano continuum, and let Y be
any continuum. If XNY = {q}, thenC1(q,Y) is a Z-set in C1(X)UC; (g, XUY).

Proof. Let p be a convex metric for X ([1] and [20]). Let € > 0 be given.
Define f.: C1(X)UCi(¢, X UY) — C1(X)UCi(q, X UY) as follows: For all
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AeCi(X)UCi(q, X UY), let
f(A) = K, (E,A N X) U(ANY)
2
(Notation [2.4). Then f. is continuous, f-(Ci(¢q,Y))NCi(¢q,Y) =0 and
H(Aa f&‘(A)) < 87

for each A € C1(X) U Ci(¢, X UY). Therfore, since Ci(g,Y) is a closed
subset of C1(X) U Ci(q,X UY), we have that Ci(q,Y) is a Z-set in
Cl(X) UCl(q,XUY). |

COROLLARY 3.3. Let X be a nondegenerate Peano continuum, and let F
be a smooth fan with top 7. If X N F = {7}, then N[Ci(F)] is a Z-set in
Cl(X) UCl(T,X UF).

Proof. Since F is a smooth fan, AN[Ci(F)] is homeomorphic to F
[8, p. 282]. Hence, N[Cy1(F)] is a closed subset of C1(X)UCy (7, X UF). Thus,
since N[C1(F)] C Ci(7, F) and Cy(7, F) is a Z-set in C1(X) UCi(r, X UF)
(Lemma [3.2)), we obtain that N[Ci(F)] is a Z-set in C1(X)UCi(1,X UF). 1

THEOREM 3.4. Let B be a nondegenerate Peano continuum without free
arcs, and let F' be a fan with top T such that F is a cone. Let X = BU F.
Suppose BNF = {7} and Ci(, B) is a Z-set in C1(B). Then C;(X) is a cone.

Proof. Since F is a cone, F' is a smooth fan. Hence, C;(F) = Cy(r, F) U
T[C1(F)] and Cy (1, F)NT[C1(F)] = N[C1(F)] [8, Theorem 3.1]. Observe that
Ci(X) =Ci(B)UCi(, X) UCL(F)
=C1(B)UCi (1, X)UCy(T, F) UT[Cl(F)}
= Cl(B) U Cl<7',X) U T[Cl(F)]
and
[C1(B) U Ci(7, X)I N TICL(F)] = NCL(F)].

Since B is a Peano continuum without free arcs, C1(B) is a Hilbert cube
[0, Theorem 4.1]. Also, Ci(r, B) is a Hilbert cube [6, Theorem 5.2].

Since F' is a smooth fan, Ci(7, F') is either an n-cell, for some positive
integer n, or a Hilbert cube [8, Theorem 3.1 (3)].
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Note that, by Lemma 3.1}, C1 (7, X) is homeomorphic to Cy (7, B) x Cy (1, F).
Since Ci(1,B) is a Hilbert cube and Ci(7,F) is either an n-cell or a
Hilbert cube, Ci(7, B) x Ci(7, F') is a Hilbert cube. Therefore, C;(7,X) is
a Hilbert cube.

Since C1(B), Ci(1,X) and Ci(1, B) = C1(B) N Ci(7, X) are Hilbert cubes
and since Ci(7, B) is a Z-set in C;(B), by assumption, we have that C;(B) U
Ci1(7, X) is a Hilbert cube [9, Theorem 1].

Since F is fan that is a cone, F' is the cone over E(F) [19, Lemma 4.2].
Hence, E(F') is a compact totally disconnected space. Therefore, E(F) can
be embedded in I, [10, Theorem V2, p. 56]

Let g: E(F') — I be an embedding of E(F) in I. For each e € E(F), let L.
be the convex arc in 1°° whose endpoints are (0,0,0,...) and (1, g(e),0,0,...).
Let L = U,cp Le- Then L is a Z-set in I*°. Also, N[Ci(F)] is a Z-set in
C1(B) UCi(r, X) (Lemma [3.2)), and NV[Ci (F)] is homeomorphic to L (since F
is a smooth fan). Hence, there exists a homeomorphism ¢ : C;(B)UCy (7, X) —
I such that Y(N[C1(F)]) = L [3, Theorem 11.1].

For each e € E(F), let G. be the convex arc in I°° whose endpoints are
(1,4(e),0,0,0,...) and (1,g(e),1,0,0,0,...).

For each e € E(F), let D, be the convex hull in I*° of L. U Ge. Let
D = UeeE(F) D.. Tt is easy to see that there exists a homeomorphism
&: TIC1(F)] — D such that £(A) = ¢(A), for each A € N[Cy1(F)].

Therefore, the map (: C1(X) — I®° UD given by

(4) = {w(A), if AeCi(B)UC(T,X),

§(4), if AeT[Cu(F)),

is a homeomorphism. Moreover, as is easy to see, I°° U ® is homeomorphic
to the cone over (UeeE(F) Ge> U{(xn)se, € I® : 1 = 1}, with vertex
(0,0,0,...). Therefore, C;(X) is a cone. 1

LEMMA 3.5. Let Y and Z be continua and let A be an arc such that
Y NA = {p,q}, where p and q are the endpoints of A, and (Y UA)NZ = {q}.
IfGi ={KUR : K €Ci(q,Y) and R € C1(¢,A)}, Go={KURUG : K €
Ci(q,Y),R € Ci(q,A) and G € C1(¢,Z)} and E ={KUA : K € Ci1(q,Y)},
then &£ is a Z-set in G and in Gs.

Proof. We prove that £ is a Z-set in Go. The proof that £ is a Z-set in G
is similar.
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Let ¢ > 0. Let h: A — A\{p} be amap such that h(q) = g and d(z, h(z)) <
e. Let fo: Go — Go be given by fo(KURUG) = KUh(R)UG. Then f. is
continuous, f:(£)NE =0 and H(KURUG, fo(KURUQG)) < e. Therefore,
Eisa Z-setin Go. 1

Let X be a continuum and let C be a finite subset of X. We say that C is
a Z*-set in X provided that for each element ¢y of C' and every € > 0, there
exists a map f.: X — X \ {¢o} such that f.(c) = ¢, for each ¢ € C'\ {¢p}, and
d(z, f-(x)) < ¢, for all points = in X. Note that, by [3, Theorem 3.1 (3)], each
Z*-set in X is a Z-set in X. Also, observe that if F' is a fan that is a cone
and R is a finite subset of B(F'), then R is a Z*-set in F.

LEMMA 3.6. Let B be a nondegenerate Peano continuum without free
arcs. If {p,q,r} is a Z*-set in B, then Cy(p, B)UC1(q, B), C1(p, B)UC1(q, B)U
Ci(r,B), and Ci(p, B) UC1({q,r}, B) are Hilbert cubes.

Proof. To show that C;(p, B)UCi (g, B) is a Hilbert cube, note that C;(p, B)
and Cy (g, B) are Hilbert cubes [0, Theorem 5.2]. Also, observe that C;(p, B)N
Ci(¢, B) = C1({p, ¢}, B), and C1({p, ¢}, B) is a Hilbert cube [5, Theorem 5.2].
Since {p,q} is a Z*-set in B, for each ¢ > 0 there exists a map f.: B —
B\ {q} such that f.(p) = p and d(z, f-(z)) < €. Hence, the induced map
Ci(fs): C1(B) — Cy(B) satisfies H(A,C1(f:)(A)) < e, for each A € Ci(B)
[17, Lemma 8.2.13], and Ci(fz)(Ci(p,B)) C Ci(p,B) \ Ci({p, ¢}, B). Thus,
Ci({p,q},B) is a Z-set in Ci(p, B). Hence, Ci(p, B) U Ci(q, B) is a Hilbert
cube [9, Theorem 1].

Now, we prove that C;(p, B) UCi(q, B)UCi(r, B) is a Hilbert cube. By the
previous paragraph, Ci(p, B) UCi(q, B) is a Hilbert cube. Also, Cyi(r, B) is a
Hilbert cube [6l Theorem 5.2]. Observe that

[C1(p, B) UC1(q, B)] N Ci(r, B) = [C1(p, B) N Ci(r, B)| U [C1(q, B) N Ci(r, B)]
= Cl({pa T}a B) U Cl({Qar}’ B)

A similar argument to the one given in the previous paragraph shows that both
Ci({p,r},B) and C1({g, 7}, B) are Z-sets in Cy(r, B). Hence, C1(p, B)UC1(q, B)
is a Z-set in Cy(r, B) [3, Theorem 3.1 (3)]. Thus, C;(p, B)UCi(q, B) UCi(r, B)
is a Hilbert cube [9, Theorem 1].

To see that Cyi(p, B) UCi({q,7}, B) is a Hilbert cube, note that C;(p, B)
and C1({q,r}, B) are Hilbert cubes ([6, Theorem 5.2] and [5, Theorem 5.2],
resp.). Also, observe that Ci(p, B) NCi({q,7}, B) = Ci({p,q,r}, B), and this
set is a Hilbert cube [B, Theorem 5.2]. A similar argument to the one given
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in the first paragraph shows that C;({p,q,7}, B) is a Z-set in C;(p, B). Thus,
Ci(p,B)UCi({q,r}, B) is a Hilbert cube [9, Theorem 1]. 1§

LEMMA 3.7. Let B be a nondegenerate Peano continuum without free arcs
and let A be an arc such that BN A = {p, q}, where p and q are the endpoints
of A, and {p,q} is a Z*-set in B. Let F' be a fan with top q such that F is
a cone and (BUA)NF = {q}. If X1 = BUA and Xo = BUAUF, then
D; = C1(B) UCi(p, X;) UCi(q, X;) is a Hilbert cube, j € {1,2}.

Proof. We show that D, is a Hilbert cube; the proof for D; is similar.
Note that D is a contractible compact space. We show that Do is a Hilbert
cube manifold.

Let A, and A, be two subarcs of A such that p € A,, ¢ € A; and A,NA, =
(). First, let us consither the following sets:

Co(A)f ={EURE€Cy(A) : p€ E and q € R},
G ={KUFE : Ke€C(p,B)and E € Ci1(p,A)},
Gip={KUE : K e€Ci(p,B) and E € Ci(p, 4p)},
Go={HURUG : HeC(C(q,B), ReCi(q,A) and G € C1(q, F)},
Gog ={HURUG : H€C(q,B), ReCi(q,Ay) and G € C1(q, F)},
G3={KU(EUR)UG : K €Ci({p,q},B),EUR € C2(A)}

and G € C(q, F)},

Gs={LUG : LeCi(A,BUA) and G € Ci(q, F)}.

R. Schori has shown that Co(A)} is a two-cell (for a proof, see [I7, Theorem
6.9.12]). Now, we show that

Gi, Gip, G2, Gog, G3 and Gy are Hilbert cubes. (%)

By Lemma Gi (Gip, resp.) is homeomorphic to Ci(p, B) x Ci(p, A
(Ci(p, B) xCi(p, Ap), resp.) and Gy (Gog, resp.) is homeomorphic to Ci(q, B) x
Ci(q,A) x Ci(q, F) (Ci(g,B) x Ci(q,Aq) x Ci(q, F), resp.). Since Ci(p, B)
(C1(¢,B), resp.) is a Hilbert cube [0, Theorem 5.2], C1(p,A) (C1(p,Ap),Ci1(g,A),
Ci(q, Aq), resp.) is an arc [7, Example 1, p. 267 (and Ci(g, F) is an either a
Hilbert cube or an n-cell, for some positive integer n [8, Theorem 3.1 (3)]),
we have that G (glp, Ga, Gaq, resp.) is a Hilbert cube.

Using the union map (Notation , we see that Gz is homeomorphic
to C1({p,q}, B) x C2(A)} x Ci(q,F); also, Ci({p,q}, B) is a Hilbert cube
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[5, Theorem 5.2], Co(A)3 is a two-cell [I7, Theorem 6.9.12], and Ci(q, F) is
either a Hilbert cube or an n-cell, for some positive integer n [§, Theorem 3.1
(3)]. Thus, G3 is a Hilbert cube.

Using the union map, we see that G4 is homeomorphic to C;(A, BU A) x
Ci(q, F); also, since B\ A contains no free arc, C;(A, BU A) is a Hilbert cube
[6, Theorem 5.2] and C;(q, F) is either a Hilbert cube or an n-cell, for some
positive integer n [8, Theorem 3.1 (3)]. Thus, G4 is a Hilbert cube.

This finishes the proof of (ED

Let D € Dy. We show that D has closed neighborhood U in Dy such that
U is a Hilbert cube. We divide the proof of this fact into five main cases.

Case (1): D c B\ {p,q}.
In this case, U = C1(B) is a neighborhood of D in Dy such that U is a
Hilbert cube [6, Theorem 4.1].

CASE (2): D € Ci(p,X2) and ¢ ¢ D.

Observe that D N B € Ci(p, B). Also, note that Ci(B) NGy = Ci(p, B).
Since {p} is a Z-set in B, by Lemmal[2.2] C1(p, B) is a Z-set in C;(B). Observe
that C1(B) is a Hilbert cube [6, Theorem 4.1], Go is a Hilbert cube (by (&),
Ci(B)NGi = Ci(p, B) is a Hilbert cube [6, Theorem 5.2], and C;(B) N Gy is
a Z-set in C1(B). Hence, U = C1(B) U Gy is a neighborhood of D € Dy such
that U is a Hilbert cube [9, Theorem 1].

Case (3): D e€Ci(q, X2) and p ¢ D.

Note that D N B € Ci1(q, B). Also, observe that C1(B) N Gs = C1(q, B).
Since {q} is a Z-set in B, by Lemma [2.2] C1(g, B) is a Z-set in C;(B). Note
that C1(B) is a Hilbert cube [6, Theorem 4.1], Gy is a Hilbert cube (by (),
Ci1(B) NGz = Ci(q, B) is a Hilbert cube [0, Theorem 5.2], and C;(B) N Gy is
a Z-set in C1(B). Hence, U = C1(B) U Gy is a neighborhood of D in Dy such
that U is a Hilbert cube [9, Theorem 1].

CaAsE (4): D € Ci({p,q}, X2) and D N B is connected.
Observe that DN B € C1({p, q}, B). We consider four subcases.

SUBCASE (4.1): {p} is not a component of D N A and {q} is not a com-
ponent of DN F.

Note that GsNGy = {KUAUG : K € Ci({p,q},B) and G € C1(q, F)}.
Using the union map (Notation[2.1)) G3NGy is homeomorphic to Ci ({p, ¢}, B) X
Ci(q,F); moreover, C1({p, ¢}, B) is a Hilbert cube [5, Theorem 5.2] and C;(q, F)
is either an n-cell (for some positive integer n) or a Hilbert cube [8, Theorem
3.1 (3)]. Thus, Gz NGy is a Hilbert cube. It is easy to see that G3 N Gy is a
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Z-set in G3. Hence, U = G3 U G, is a neighborhood of D in Dy such that U is
a Hilbert cube [9, Theorem 1].

SUBCASE (4.ii): {p} is a component of DN A and {q} is not a component
of DNF.
Observe that

GoNGs={KURUG : K eCi({p,q},B), ReCi(q,A), GeCiqF)}.

Using the union map (Notation 2.1)), Ci({p,q}, B) x Ci(g,A) x Ci(g, F) is
homeomorphic to GoNGs; moreover, C1 ({p, ¢}, B) is a Hilbert cube [5, Theorem
5.2], C1(q, A) is an arc [7, Example 1, p. 267] and Ci(q, F') is either a Hilbert
cube or an n-cell, for some positive integer n [8, Theorem 3.1 (3)]. Thus,
Go N G3 is a Hilbert cube. It is easy to see that Go N Gs is a Z-set in Gs.
Hence, U = G5 U G is a neighborhood of D in D5 such that I/ is a Hilbert
cube [9, Theorem 1].

SUBCASE (4.iii): {p} is a component of D N A, {q} is a component of
DN F and {q} is not a component of D N A.

In this case, U = Go U G3 is a neighborhood of D in Ds such that U is a
Hilbert cube (see Subcase (4.ii):

SUBCASE (4.iv): DN(AUF) = {p,q}.

Observe that Gag U G3 is a Hilbert cube (by a similar argument to the one
given in Subcase (4.ii) for Ga U G3). Also note that

Gip N [G2g U Gs] = [Gip N Gagl U [G1p N G3]
={K: KeC({p¢,B)}U{KUE : K c€Ci({p,qa},B), E € Ci(p, Ap)}
={KUE : K €C({p,q},B), E € Ci(p,A4p)}.
Thus, by the union map (Notation , we have that Gi,N[G2gUG3] is homeo-
morphic to Ci({p, ¢}, B) x C1(p, A,); also, since C1({p, ¢}, B) is a Hilbert cube
[5, Theorem 5.2] and Cy (p, 4,) is an arc [7, Example 1, p. 267], C1({p, ¢}, B) x
Ci(p,Ap) is a Hilbert cube. Since {p,q} is a Z*-set in B, we have that
Gip N [Goq U G3] is a Z-set in Gi,. Hence, Gip U Goy U G3 is a Hilbert cube
[9, Theorem 1].
Now, note that
C1(B) N [G1p U G2q U Gs] = [C1(B) N Gip] U [C1(B) N G2q) U [C1(B) N Gs]
= Cl(p7 B) UCI(QvB) UCl({p, Q},B)
- Cl(p7 B) UCl(q, B)
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By Lemma [3.6] C1(p, B) UCi(g, B) is a Hilbert cube. Since {p, ¢} is a Z*-set
in B, we have that C1(B) N [G1p U Goq U Gs] is a Z-set in C1(B) (Lemma [2.2)).
Therefore, U = C1(B) U Gi, UGoq UGs is a neighborhood of D in Dj such that
U is a Hilbert cube [0, Theorem 1].

Case (5): D e Ci({p,q}, X2) and D N B is not connected.
Observe that in this case A C D. We consider five subcases.

SUBCASE (5.1): D N B has two nondegenerate components.

Here, 4 = G4 is a neighborhood of D in Dy such that U is a Hilbert
cube (by ().

SUBCASE (5.ii): {p} is the only degenerate component of D N B.

Note that GoNGs ={AUHUG : H € C1(q,B) and G € C1(q, F)}. Using
the union map (Notation , we obtain that Go N G4 is homeomorphic to
Ci(q, B) x C1(q, F'); moreover, C1(g, B) is a Hilbert cube [6l, Theorem 5.2] and
Ci(q, F) is either a Hilbert cube or an n-cell, for some positive integer n [8,
Theorem 3.1 (3)]. Thus, GoN G, is a Hilbert cube. It is easy to see that GoNGy
is a Z-set in Go. Hence U = G U Gy is a neighborhood of D in Dy such that
U is a Hilbert cube [0, Theorem 1].

SUBCASE (5.iii): {q} is the only degenerate component of D N B.

Observe that G1 NGy ={KUA : K € Ci(p, B)}. Thus, G; N G4 is homeo-
morphic to Ci(p, B). Hence, G; N Gy is a Hilbert cube [6, Theorem 5.2]. By
Lemma G1 NGy is a Z-set in G1. Thus, since G; and G4 are Hilbert cubes
(by (ED), G1 N G4 is a Hilbert cube and Gy N G4 is a Z-set in Gi, we have
that 4 = G; U G4 is a neighborhood of D in Dy such that U/ is a Hilbert
cube [9] Theorem 1].

SUBCASE (5.iv): D = AUG, where G € C1(q, F) \ {{q}}.
In this case, U = Go U Gy is a neighborhood of D in Dy such that U is a
Hilbert cube (see Subcase (5.ii)).

SUBCASE (5.v): D = A.
We show that G; U G4 U G5 is a Hilbert cube. Observe that Gy U G4 is a
Hilbert cube (see Subcase (5.iii)).

Now, observe that

[G1UGa] NGy = [G1 N Ga] U [Ga N Go]
={KUA:KeC({p,q},B)JU{AUHUG : H € C(q,B), GeC(qgF)}
={AUHUG : H€C(Ci(q,B), GeCi(q, F)}.
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Thus, [G1 UG4] NGz is homeomorphic to Ci(g, B) x C1(g, F'), by the union map
(Notation [2.1). Hence, [G1 U G4] NGy is a Hilbert cube (see [6, Theorem 5.2]
and [8, Theorem 3.1 (3)], resp.). By Lemma [G1 U G4l NGa is a Z-set
in Go. Thus, since G1 U Gy is a Hilbert cube, G, is a Hilbert cube (by (¥)),
[G1 UG4] NGy is a Hilbert cube, and [G1 U Gy4] N Gy is a Z-set in Gy, we have
that G; U G4 U Go is a Hilbert cube [9, Theorem 1].

Therefore, U = G U G4 U Gs is a neighborhood of D in Ds such that U is
a Hilbert cube. Hence, Dy is a compact contractible Hilbert cube manifold.
Therefore, Dy is a Hilbert cube [2, Corollary 5]. 1

THEOREM 3.8. Let B be a nondegenerate Peano continuum without free
arcs. Let A be an arc such that BNA = {p, q}, where p and q are the endpoints
of A, and {p,q} is a Z*-set in B. Let F' be a fan with top q such that F is a
cone. Suppose that (BUA)NF ={q}. f X1, =BUA and Xo=BUAUF,
then C1(Xj) is a cone, j € {1,2}.

Proof. We show that Ci(X3) is a cone; the proof for C;(X1) is similar.
Observe that

Cl(Xg) = Cl(B) @] Cl(p, XQ) @] Cl(q,XQ) @] Cl(A) U Cl(F)
= Cl(B> U Cl(p, XQ) U Cl(q,X2> U Cl(A) U Cl(q, F) U T[Cl(F)]
= Cl(B) U Cl(p, XQ) U Cl(q,Xz) U Cl(A) U T[C1(F)],

and

[C1(B) UCi(p, X2) UCi(q, X2)] N [C1(A) UTIC1(F)]]
= Cl(p7 A) Ucl(qa A) UN[Cl(F)]

Let Dy = C1(B) UC1(p, X2) UC1(q, X2). By Lemma D, is a Hilbert cube.
We show that

Ci(p, A)UC1(q, A) UNIC1(F)] is a Z-set in Ds. (%)

Let € > 0 and let f.: Dy — D be given by f.(D) = K,(5,DN(BUA))U
(DN F) (Notation [2.4). Then f. is continuous,

fe(Cr(p, A) U Ci(gq, A) UNTCL(F)]) N [Cr(p, A) U Ci(g, A) UNTCL(F)]] = 0,

and H(D, f-(D)) < e, for each D € Dsy. Therefore, Ci(p, A) U C1(q, A) U
NICi(F)] is a Z-set in Dy. This proves ().
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Since F' is a fan that is a cone, F' is the cone over E(F') [19, Lemma
4.2]. Hence, E(F) is a compact totally disconnected space. Let E' = E(F) U
{p}. Then E’ is a compact totally disconnected space. Therefore, E' can be
embedded in I [I0, Theorem V2, p. 56].

Let g: E' — I be an embedding of E’ in I. For each e € F’, let L. be
the convex arc in I°° whose end points are (0,0,0,...) and (1, g(e),0,0,0,...).
Let L = U,cpr Le- Then L is a Z-set in 1°°. Recall that Dy is a Hilbert cube
(Lemma [3.7). Also, Ci(p, A) UCi(q, A) UN[C1(F)] is a Z-set in Dy (by (x4)),
Ci(p, A) UCi(g, A) is homeomorphic to L,, and N[C;(F')] is homeomorphic to
(L\ Lp)U{(0,0,0,...)} (since F' is a smooth fan). Hence, since [C;(p, A) U
Ci(q, A)INN[C1(F)] = {{q}}, there exists a homeomorphism ¢): Dy — I* such
that B({g}) = (0.0,0,...), $(Ca(p, A) U Cx(g, A)) = Ly and $(NCi(F)]) =
(L\ Lp)U{(0,0,0,...)} [, Theorem 11.1].

For each ¢ € E’, let G, be the convex arc in I whose end points are
(1,9(e),0,0,0,...) and (1,g(e), 1,0,0,0,...).

For every e € E’, let D, be the convex hull in I of L. U G.. Let ® =
Uecrr De- It is easy to see that there exists a homeomorphism &: C1(A4) U
T[C1(F)] = @ such that £(K) = (K), for each K € Cy(p, A) UC1(q, A) U
NI (F)]

Therefore, the map (: C1(X) — I°° UD given by

{w(K), if K €Dy,
¢(K), if KeCi(A)UTICi(F)],

is a homeomorphism. Also, as is easy to see, I°° U D is homeomorphic to the
cone over (U ep Ge) U {(zn)22, € I : 21 = 1}, with vertex (0,0,0,...).
Therefore, C1(X2) is a cone. I

((K) =

The proof of the following lemma is similar to the one given for Lemma[3.7]
we omit it because it involves many more sets and cases.

LEMMA 3.9. Let B be a nondegenerate Peano continuum without free
arcs. Let Ay and Ay be two arcs such that BN Ay = {p,q}, BN A = {q,7},
A1 N Ay = {q}, where p and q are the endpoints of Ay and q and r are
the endpoints of Ay. Suppose that {p,q,r} is a Z*-set in B. Let F be a
fan with top {q} such that F is a cone and (BU Ay U As) N F = {q}. If
X =BUAUAyUF, then D = C1(B)UCi(p, X)UCi(q, X)UCi(r, X) is a
Hilbert cube.

A similar proof to the one given for Theorem shows the following
theorem. Note that we need to use Lemma [3.9 instead of Lemma B.7]
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THEOREM 3.10. Let B be a nondegenerate Peano continuum without free
arcs. Let Ay and Ag be two arcs such that BN Ay = {p,q}, BN A = {q,7},
Ay N As = {q}, where p and q are the endpoints of Ay and q and r are
the endpoints of Ay. Suppose that {p,q,r} is a Z*-set in B. Let F be a
fan with top {q} such that F' is a cone and (B U A; UAy)NF = {q}. If
X =BUA;UAyUF, then C1(X) is a cone.

QUESTION 3.11. Can the hypothesis “Z*-set” be changed to “Z-set” in
Lemma [3.7, Theorem Lemma and Theorem [3.10]
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