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1. Introduction

In [19, Theorem 4.3] we determine exactly which fans have hyperspaces
that are cones; namely, it is proven that for a fan F , the hyperspace of sub-
continua of F is a cone if and only if F itself is a cone. In [15], it is shown
that if a fan is a cone, then then each of its hyperspaces is homeomorphic to
the cone over a compactum. We continue our study of classes of continua X
such that the hyperspace of subcontinua of X is a cone. Our main results
are Theorem 3.4, Theorem 3.8 and Theorem 3.10. We obtain many Peano
continua with such a property which, in general, are different from the ones
considered in [12].

Observe that the case when the n-fold hyperspaces (n ≥ 1) of a continuum
X is of finite dimension has essentially been done in [11, 12, 13, 14, 15, 16,
17, 18, 19]. Hence, we consider continua X whose hyperspace of subcontinua
has infinite dimension.

This reseach started in the first half of 2001, while the first named author
spent a sabbatical year at West Virginia University (2000-2001) with Profes-
sor Sam B. Nadler, Jr. After I left West Virginia, we worked on the paper
via e-mail. After some time my computer broke and I lost the LATEX file of
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the manuscript and I only had a pdf file. While trying, for a very long time,
to recover the source file, Professor Nadler’s health deteriorated and, unfortu-
nately, he passed away on 4 February, 2016. Once I recovered the LATEX file,
I decided to update it and to publish it as dedication to his memory and in
gratitude to all the things he taught me over the years that I had the pleasure
to work with him.

2. Notation and terminology

We denote the unit interval [0, 1] by I. We denote the Hilbert cube by I∞.
A Hilbert cube manifold is a separable metric space M such that each

point of M has a closed neighborhood homeomorphic to I∞.
A continuum is a nonempty compact connected metric space. A Peano

continuum is a continuum which is locally connected.
The term map means a continuous function. We use the double headed

arrow in f : X � Y to signify that the map f is surjective; i.e., f(X) = Y .
A closed subset A of a continuum X is a Z-set provided that for every

ε > 0, there exists a map fε : X → X \ A such that d(x, f(x)) < ε for all
points x of X.

The hyperspace of closed subsets of a continuum X is the space 2X of all
nonempty closed subsets of X with the Hausdorff metric [22, Theorem (0.2)];
H always denotes the Hausdorff metric.

Notation 2.1. Let X be a continuum and let k ≥ 2 be an integer. Then
there exists a union map

uk : 2X × · · · × 2X︸ ︷︷ ︸
k times

� 2X

given by uk((A1, . . . , Ak)) = A1∪· · ·∪Ak. It is easy to see that uk is continuous
for each k ≥ 2 [22, Lemma (1.48)].

Given a positive integer n, the n-fold hyperspace of a continuum X is the
space:

Cn(X) = {A ∈ 2X : A has at most n components},

a lot of information of this hyperspace may be found in [17]. Note that C1(X)
is the hyperspace of subcontinua of X.

Given a continuum X and a closed subset A of X, let

C1(A,X) = {K ∈ C1(X) : A ⊂ K}.
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If A = {p}, we write C1(p,X) instead of C1({p}, X).

Given a map f : X → Y between continua and a positive integer n, we
define the induced map Cn(f) : Cn(X) → Cn(Y ) by Cn(f)(A) = f(A). It is
known that Cn(f) is continuous [17, Corollary 8.2.3].

Lemma 2.2. Let X be a continuum and let A be a nonempty closed subset
of X. If A is a Z-set in X, then C1(A,X) is a Z-set in C1(X).

Proof. Let ε > 0. Since A is a Z-set inX, there exists a map fε : X → X\A
such that d(x, fε(x)) < ε. Hence, C1(fε) : C1(X) → C1(X) is a map. Also,
since fε(X) ∩ A = ∅, we have that C1(fε)(C1(X)) ∩ C1(A,X) = ∅. Now, by
[17, Lemma 8.2.13], we have that H(B, C1(fε)(B)) < ε, for all B in C1(X).
Therefore, C1(A,X) is a Z-set in C1(X).

Remark 2.3. It is well known that the manifold boundary, D, of an n-
cell In is a Z-set of In. Hence, C1(D, In) is a Z-set in C1(In) (Lemma 2.2).
Also, for each point x ∈ D, we have that C1(x, In) is a Z-set of C1(In).
Another example is Sierpiński universal plane curve [17, pp. 230 – 231] S. By
[4, Example 3.10], one may prove that the boundary of the unit square, D
(biggest square), is a Z-set of S. Thus, C1(D,S) is a Z-set of C1(S). For
this continuum, we also have that if x ∈ D, then C1(x, S) is a Z-set of C1(S).
Observe that these two continua provide examples of continua B that satisfy
the hypothesis of Theorem 3.4.

A fan is an arcwise connected hereditarily unicoherent continuum with
only one ramification point; i.e., a point that is the only endpoint in common
of at least three otherwise disjoint arcs. The unique ramification point of a
fan F is called the top of F. The set of endpoints, in the classical sense, of a
fan F is denoted by E(F ). Given two points x and y of a fan F , xy denotes
the unique arc in F whose endpoints are x and y. For a fan F with top τ ,

N [C1(F )] = {τx : x ∈ F};

N [C1(F )] is called the natural part of C1(F ). Also,

T [C1(F )] =
⋃

e∈E(F )

C1(τe);

we call T [C1(F )] the two-dimensional part of C1(F ) (which is justified by [19,
Lemma 3.1]).
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A fan F is said to be smooth provided that whenever {xn}∞n=1 is a sequence
in F converging to a point x of F , then {τxn}∞n=1 converges to τx, with respect
to the Hausdorff metric. Thus, a fan is smooth if and only if the natural
map ϕ : F � N [C1(F )], given by ϕ(x) = τx, is continuous and, in fact, a
homeomorphism.

The cone over a continuum Y, denoted by Cone(Y ), is the quotient space
(Y × I)/(Y × {1}) obtained from the cartesian product Y × I by shrinking
Y × {1} to a point v called the vertex of the cone [23, 3.15]. The base of
Cone(Y ) is {(y, 0) : y ∈ Y }, which we denote by B(Y ). A coning arc is the
image under the quotient map of an arc in Y × I of the form {y} × I.

Notation 2.4. Recall that if X is a Peano continuum with a convex
metric ρ, then the function Kρ : [0,∞)× C1(X)→ C1(X) given by

Kρ(t, A) = {x ∈ X : ρ(x, a) ≤ t for some a ∈ A}

is continuous [21, Corollary (3.4)]. We assume that if X is a Peano continuum,
then the metric ρ on X is convex ([1] and [20]).

3. Continua whose one-fold hyperspace is a cone

Our first main result is Theorem 3.4. We begin with the following lemmas.

Lemma 3.1. Let X,Y and Z be nondegenerate continua such that X ∩
Y ∩ Z 6= ∅. Assume X ∩ Y consists of at most two points and that X ∩ Z =
Y ∩ Z = {p}. Let G1 = {H ∪ E : H ∈ C1(p,X) and E ∈ C1(p, Y )} and
let G2 = {H ∪ E ∪ G : H ∈ C1(p,X), E ∈ C1(p, Y ) and G ∈ C1(p, Z)}.
Then G1 is homeomorphic to C1(p,X)× C1(p, Y ) and G2 is homeomorphic to
C1(p,X)× C1(p, Y )× C1(p, Z).

Proof. We show that G2 is homeomorphic to C1(p,X)×C1(p, Y )×C1(p, Z).
The proof of the fact that G1 is homeomorphic to C1(p,X)× C1(p, Y ) is done
in a similar way. Let ϕ : C1(p,X) × C1(p, Y ) × C1(p, Z) � G2 be given by
ϕ((H,E,G)) = H ∪ E ∪G (Notation 2.1). Then ϕ is a homeomorphism.

Lemma 3.2. Let X be a nondegenerate Peano continuum, and let Y be
any continuum. If X∩Y = {q}, then C1(q, Y ) is a Z-set in C1(X)∪C1(q,X∪Y ).

Proof. Let ρ be a convex metric for X ([1] and [20]). Let ε > 0 be given.
Define fε : C1(X) ∪ C1(q,X ∪ Y ) → C1(X) ∪ C1(q,X ∪ Y ) as follows: For all
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A ∈ C1(X) ∪ C1(q,X ∪ Y ), let

fε(A) = Kρ

(ε
2
, A ∩X

)
∪ (A ∩ Y )

(Notation 2.4). Then fε is continuous, fε(C1(q, Y )) ∩ C1(q, Y ) = ∅ and

H(A, fε(A)) < ε,

for each A ∈ C1(X) ∪ C1(q,X ∪ Y ). Therfore, since C1(q, Y ) is a closed
subset of C1(X) ∪ C1(q,X ∪ Y ), we have that C1(q, Y ) is a Z-set in
C1(X) ∪ C1(q,X ∪ Y ).

Corollary 3.3. Let X be a nondegenerate Peano continuum, and let F
be a smooth fan with top τ . If X ∩ F = {τ}, then N [C1(F )] is a Z-set in
C1(X) ∪ C1(τ,X ∪ F ).

Proof. Since F is a smooth fan, N [C1(F )] is homeomorphic to F
[8, p. 282]. Hence, N [C1(F )] is a closed subset of C1(X)∪C1(τ,X ∪F ). Thus,
since N [C1(F )] ⊂ C1(τ, F ) and C1(τ, F ) is a Z-set in C1(X) ∪ C1(τ,X ∪ F )
(Lemma 3.2), we obtain that N [C1(F )] is a Z-set in C1(X) ∪ C1(τ,X ∪ F ).

Theorem 3.4. Let B be a nondegenerate Peano continuum without free
arcs, and let F be a fan with top τ such that F is a cone. Let X = B ∪ F .
Suppose B ∩F = {τ} and C1(τ,B) is a Z-set in C1(B). Then C1(X) is a cone.

Proof. Since F is a cone, F is a smooth fan. Hence, C1(F ) = C1(τ, F ) ∪
T [C1(F )] and C1(τ, F )∩T [C1(F )] = N [C1(F )] [8, Theorem 3.1]. Observe that

C1(X) = C1(B) ∪ C1(τ,X) ∪ C1(F )

= C1(B) ∪ C1(τ,X) ∪ C1(τ, F ) ∪ T [C1(F )]

= C1(B) ∪ C1(τ,X) ∪ T [C1(F )]

and

[C1(B) ∪ C1(τ,X)] ∩ T [C1(F )] = N [C1(F )].

Since B is a Peano continuum without free arcs, C1(B) is a Hilbert cube
[6, Theorem 4.1]. Also, C1(τ,B) is a Hilbert cube [6, Theorem 5.2].

Since F is a smooth fan, C1(τ, F ) is either an n-cell, for some positive
integer n, or a Hilbert cube [8, Theorem 3.1 (3)].
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Note that, by Lemma 3.1, C1(τ,X) is homeomorphic to C1(τ,B)×C1(τ, F ).
Since C1(τ,B) is a Hilbert cube and C1(τ, F ) is either an n-cell or a
Hilbert cube, C1(τ,B) × C1(τ, F ) is a Hilbert cube. Therefore, C1(τ,X) is
a Hilbert cube.

Since C1(B), C1(τ,X) and C1(τ,B) = C1(B) ∩ C1(τ,X) are Hilbert cubes
and since C1(τ,B) is a Z-set in C1(B), by assumption, we have that C1(B) ∪
C1(τ,X) is a Hilbert cube [9, Theorem 1].

Since F is fan that is a cone, F is the cone over E(F ) [19, Lemma 4.2].
Hence, E(F ) is a compact totally disconnected space. Therefore, E(F ) can
be embedded in I, [10, Theorem V2, p. 56]

Let g : E(F )→ I be an embedding of E(F ) in I. For each e ∈ E(F ), let Le
be the convex arc in I∞ whose endpoints are (0, 0, 0, . . .) and (1, g(e), 0, 0, . . .).
Let L =

⋃
e∈E Le. Then L is a Z-set in I∞. Also, N [C1(F )] is a Z-set in

C1(B) ∪ C1(τ,X) (Lemma 3.2), and N [C1(F )] is homeomorphic to L (since F
is a smooth fan). Hence, there exists a homeomorphism ψ : C1(B)∪C1(τ,X) �
I∞ such that ψ(N [C1(F )]) = L [3, Theorem 11.1].

For each e ∈ E(F ), let Ge be the convex arc in I∞ whose endpoints are
(1, g(e), 0, 0, 0, . . .) and (1, g(e), 1, 0, 0, 0, . . .).

For each e ∈ E(F ), let De be the convex hull in I∞ of Le ∪ Ge. Let
D =

⋃
e∈E(F )De. It is easy to see that there exists a homeomorphism

ξ : T [C1(F )] � D such that ξ(A) = ψ(A), for each A ∈ N [C1(F )].

Therefore, the map ζ : C1(X) � I∞ ∪D given by

ζ(A) =

{
ψ(A), if A ∈ C1(B) ∪ C1(τ,X),

ξ(A), if A ∈ T [C1(F )],

is a homeomorphism. Moreover, as is easy to see, I∞ ∪ D is homeomorphic

to the cone over
(⋃

e∈E(F )Ge

)
∪ {(xn)∞n=1 ∈ I∞ : x1 = 1}, with vertex

(0, 0, 0, . . .). Therefore, C1(X) is a cone.

Lemma 3.5. Let Y and Z be continua and let A be an arc such that
Y ∩A = {p, q}, where p and q are the endpoints of A, and (Y ∪A)∩Z = {q}.
If G1 = {K ∪ R : K ∈ C1(q, Y ) and R ∈ C1(q, A)}, G2 = {K ∪ R ∪ G : K ∈
C1(q, Y ), R ∈ C1(q, A) and G ∈ C1(q, Z)} and E = {K ∪ A : K ∈ C1(q, Y )},
then E is a Z-set in G1 and in G2.

Proof. We prove that E is a Z-set in G2. The proof that E is a Z-set in G1

is similar.
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Let ε > 0. Let h : A→ A\{p} be a map such that h(q) = q and d(z, h(z)) <
ε. Let fε : G2 → G2 be given by fε(K ∪ R ∪ G) = K ∪ h(R) ∪ G. Then fε is
continuous, fε(E) ∩ E = ∅ and H(K ∪R ∪G, fε(K ∪R ∪G)) < ε. Therefore,
E is a Z-set in G2.

Let X be a continuum and let C be a finite subset of X. We say that C is
a Z∗-set in X provided that for each element c0 of C and every ε > 0, there
exists a map fε : X → X \ {c0} such that fε(c) = c, for each c ∈ C \ {c0}, and
d(x, fε(x)) < ε, for all points x in X. Note that, by [3, Theorem 3.1 (3)], each
Z∗-set in X is a Z-set in X. Also, observe that if F is a fan that is a cone
and R is a finite subset of B(F ), then R is a Z∗-set in F .

Lemma 3.6. Let B be a nondegenerate Peano continuum without free
arcs. If {p, q, r} is a Z∗-set in B, then C1(p,B)∪C1(q,B), C1(p,B)∪C1(q,B)∪
C1(r,B), and C1(p,B) ∪ C1({q, r}, B) are Hilbert cubes.

Proof. To show that C1(p,B)∪C1(q,B) is a Hilbert cube, note that C1(p,B)
and C1(q,B) are Hilbert cubes [6, Theorem 5.2]. Also, observe that C1(p,B)∩
C1(q,B) = C1({p, q}, B), and C1({p, q}, B) is a Hilbert cube [5, Theorem 5.2].
Since {p, q} is a Z∗-set in B, for each ε > 0 there exists a map fε : B →
B \ {q} such that fε(p) = p and d(x, fε(x)) < ε. Hence, the induced map
C1(fε) : C1(B) → C1(B) satisfies H(A, C1(fε)(A)) < ε, for each A ∈ C1(B)
[17, Lemma 8.2.13], and C1(fε)(C1(p,B)) ⊂ C1(p,B) \ C1({p, q}, B). Thus,
C1({p, q}, B) is a Z-set in C1(p,B). Hence, C1(p,B) ∪ C1(q,B) is a Hilbert
cube [9, Theorem 1].

Now, we prove that C1(p,B)∪C1(q,B)∪C1(r,B) is a Hilbert cube. By the
previous paragraph, C1(p,B) ∪ C1(q,B) is a Hilbert cube. Also, C1(r,B) is a
Hilbert cube [6, Theorem 5.2]. Observe that

[C1(p,B) ∪ C1(q,B)] ∩ C1(r,B) = [C1(p,B) ∩ C1(r,B)] ∪ [C1(q,B) ∩ C1(r,B)]

= C1({p, r}, B) ∪ C1({q, r}, B).

A similar argument to the one given in the previous paragraph shows that both
C1({p, r}, B) and C1({q, r}, B) are Z-sets in C1(r,B). Hence, C1(p,B)∪C1(q,B)
is a Z-set in C1(r,B) [3, Theorem 3.1 (3)]. Thus, C1(p,B)∪C1(q,B)∪C1(r,B)
is a Hilbert cube [9, Theorem 1].

To see that C1(p,B) ∪ C1({q, r}, B) is a Hilbert cube, note that C1(p,B)
and C1({q, r}, B) are Hilbert cubes ([6, Theorem 5.2] and [5, Theorem 5.2],
resp.). Also, observe that C1(p,B) ∩ C1({q, r}, B) = C1({p, q, r}, B), and this
set is a Hilbert cube [5, Theorem 5.2]. A similar argument to the one given
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in the first paragraph shows that C1({p, q, r}, B) is a Z-set in C1(p,B). Thus,
C1(p,B) ∪ C1({q, r}, B) is a Hilbert cube [9, Theorem 1].

Lemma 3.7. Let B be a nondegenerate Peano continuum without free arcs
and let A be an arc such that B∩A = {p, q}, where p and q are the endpoints
of A, and {p, q} is a Z∗-set in B. Let F be a fan with top q such that F is
a cone and (B ∪ A) ∩ F = {q}. If X1 = B ∪ A and X2 = B ∪ A ∪ F , then
Dj = C1(B) ∪ C1(p,Xj) ∪ C1(q,Xj) is a Hilbert cube, j ∈ {1, 2}.

Proof. We show that D2 is a Hilbert cube; the proof for D1 is similar.
Note that D2 is a contractible compact space. We show that D2 is a Hilbert
cube manifold.

Let Ap and Aq be two subarcs of A such that p ∈ Ap, q ∈ Aq and Ap∩Aq =
∅. First, let us consither the following sets:

C2(A)qp = {E ∪R ∈ C2(A) : p ∈ E and q ∈ R},

G1 = {K ∪ E : K ∈ C1(p,B) and E ∈ C1(p,A)},
G1p = {K ∪ E : K ∈ C1(p,B) and E ∈ C1(p,Ap)},
G2 = {H ∪R ∪G : H ∈ C1(q,B), R ∈ C1(q,A) and G ∈ C1(q, F )},
G2q = {H ∪R ∪G : H ∈ C1(q,B), R ∈ C1(q,Aq) and G ∈ C1(q, F )},
G3 = {K ∪ (E ∪R) ∪G : K ∈ C1({p, q}, B) , E ∪R ∈ C2(A)qp

and G ∈ C1(q, F )},
G4 = {L ∪G : L ∈ C1(A,B ∪A) and G ∈ C1(q, F )}.

R. Schori has shown that C2(A)qp is a two-cell (for a proof, see [17, Theorem
6.9.12]). Now, we show that

G1, G1p, G2, G2q, G3 and G4 are Hilbert cubes. (?)

By Lemma 3.1, G1 (G1p, resp.) is homeomorphic to C1(p,B) × C1(p,A)
(C1(p,B)×C1(p,Ap), resp.) and G2 (G2q, resp.) is homeomorphic to C1(q,B)×
C1(q, A) × C1(q, F ) (C1(q,B) × C1(q, Aq) × C1(q, F ), resp.). Since C1(p,B)
(C1(q,B), resp.) is a Hilbert cube [6,Theorem 5.2], C1(p,A) (C1(p,Ap), C1(q,A),
C1(q, Aq), resp.) is an arc [7, Example 1, p. 267] (and C1(q, F ) is an either a
Hilbert cube or an n-cell, for some positive integer n [8, Theorem 3.1 (3)]),
we have that G1 (G1p, G2, G2q, resp.) is a Hilbert cube.

Using the union map (Notation 2.1), we see that G3 is homeomorphic
to C1({p, q}, B) × C2(A)qp × C1(q, F ); also, C1({p, q}, B) is a Hilbert cube
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[5, Theorem 5.2], C2(A)qp is a two-cell [17, Theorem 6.9.12], and C1(q, F ) is
either a Hilbert cube or an n-cell, for some positive integer n [8, Theorem 3.1
(3)]. Thus, G3 is a Hilbert cube.

Using the union map, we see that G4 is homeomorphic to C1(A,B ∪ A)×
C1(q, F ); also, since B \A contains no free arc, C1(A,B ∪A) is a Hilbert cube
[6, Theorem 5.2] and C1(q, F ) is either a Hilbert cube or an n-cell, for some
positive integer n [8, Theorem 3.1 (3)]. Thus, G4 is a Hilbert cube.

This finishes the proof of (?).

Let D ∈ D2. We show that D has closed neighborhood U in D2 such that
U is a Hilbert cube. We divide the proof of this fact into five main cases.

Case (1): D ⊂ B \ {p, q}.
In this case, U = C1(B) is a neighborhood of D in D2 such that U is a

Hilbert cube [6, Theorem 4.1].

Case (2): D ∈ C1(p,X2) and q 6∈ D.

Observe that D ∩ B ∈ C1(p,B). Also, note that C1(B) ∩ G1 = C1(p,B).
Since {p} is a Z-set in B, by Lemma 2.2, C1(p,B) is a Z-set in C1(B). Observe
that C1(B) is a Hilbert cube [6, Theorem 4.1], G2 is a Hilbert cube (by (?)),
C1(B) ∩ G1 = C1(p,B) is a Hilbert cube [6, Theorem 5.2], and C1(B) ∩ G1 is
a Z-set in C1(B). Hence, U = C1(B) ∪ G1 is a neighborhood of D ∈ D2 such
that U is a Hilbert cube [9, Theorem 1].

Case (3): D ∈ C1(q,X2) and p 6∈ D.

Note that D ∩ B ∈ C1(q,B). Also, observe that C1(B) ∩ G2 = C1(q,B).
Since {q} is a Z-set in B, by Lemma 2.2, C1(q,B) is a Z-set in C1(B). Note
that C1(B) is a Hilbert cube [6, Theorem 4.1], G1 is a Hilbert cube (by (?)),
C1(B) ∩ G2 = C1(q,B) is a Hilbert cube [6, Theorem 5.2], and C1(B) ∩ G2 is
a Z-set in C1(B). Hence, U = C1(B) ∪ G2 is a neighborhood of D in D2 such
that U is a Hilbert cube [9, Theorem 1].

Case (4): D ∈ C1({p, q}, X2) and D ∩B is connected.

Observe that D ∩B ∈ C1({p, q}, B). We consider four subcases.

Subcase (4.i): {p} is not a component of D ∩ A and {q} is not a com-
ponent of D ∩ F .

Note that G3 ∩ G4 = {K ∪ A ∪ G : K ∈ C1({p, q}, B) and G ∈ C1(q, F )}.
Using the union map (Notation 2.1) G3∩G4 is homeomorphic to C1({p, q}, B)×
C1(q,F ); moreover, C1({p, q},B) is a Hilbert cube [5, Theorem 5.2] and C1(q,F )
is either an n-cell (for some positive integer n) or a Hilbert cube [8, Theorem
3.1 (3)]. Thus, G3 ∩ G4 is a Hilbert cube. It is easy to see that G3 ∩ G4 is a
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Z-set in G3. Hence, U = G3 ∪ G4 is a neighborhood of D in D2 such that U is
a Hilbert cube [9, Theorem 1].

Subcase (4.ii): {p} is a component of D∩A and {q} is not a component
of D ∩ F .

Observe that

G2 ∩ G3 =
{
K ∪R ∪G : K ∈ C1({p, q}, B), R ∈ C1(q,A), G ∈ C1(q, F )

}
.

Using the union map (Notation 2.1), C1({p, q}, B) × C1(q, A) × C1(q, F ) is
homeomorphic to G2∩G3; moreover, C1({p, q}, B) is a Hilbert cube [5, Theorem
5.2], C1(q, A) is an arc [7, Example 1, p. 267] and C1(q, F ) is either a Hilbert
cube or an n-cell, for some positive integer n [8, Theorem 3.1 (3)]. Thus,
G2 ∩ G3 is a Hilbert cube. It is easy to see that G2 ∩ G3 is a Z-set in G3.
Hence, U = G2 ∪ G3 is a neighborhood of D in D2 such that U is a Hilbert
cube [9, Theorem 1].

Subcase (4.iii): {p} is a component of D ∩ A, {q} is a component of
D ∩ F and {q} is not a component of D ∩A.

In this case, U = G2 ∪ G3 is a neighborhood of D in D2 such that U is a
Hilbert cube (see Subcase (4.ii):

Subcase (4.iv): D ∩ (A ∪ F ) = {p, q}.
Observe that G2q ∪ G3 is a Hilbert cube (by a similar argument to the one

given in Subcase (4.ii) for G2 ∪ G3). Also note that

G1p ∩ [G2q ∪ G3] = [G1p ∩ G2q] ∪ [G1p ∩ G3]

= {K : K ∈ C1({p, q}, B)} ∪ {K ∪ E : K ∈ C1({p, q}, B), E ∈ C1(p,Ap)}
= {K ∪ E : K ∈ C1({p, q}, B), E ∈ C1(p,Ap)}.

Thus, by the union map (Notation 2.1), we have that G1p∩ [G2q∪G3] is homeo-
morphic to C1({p, q}, B)×C1(p,Ap); also, since C1({p, q}, B) is a Hilbert cube
[5, Theorem 5.2] and C1(p,Ap) is an arc [7, Example 1, p. 267], C1({p, q}, B)×
C1(p,Ap) is a Hilbert cube. Since {p, q} is a Z∗-set in B, we have that
G1p ∩ [G2q ∪ G3] is a Z-set in G1p. Hence, G1p ∪ G2q ∪ G3 is a Hilbert cube
[9, Theorem 1].

Now, note that

C1(B) ∩ [G1p ∪ G2q ∪ G3] = [C1(B) ∩ G1p] ∪ [C1(B) ∩ G2q] ∪ [C1(B) ∩ G3]

= C1(p,B) ∪ C1(q,B) ∪ C1({p, q}, B)

= C1(p,B) ∪ C1(q,B).
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By Lemma 3.6, C1(p,B) ∪ C1(q,B) is a Hilbert cube. Since {p, q} is a Z∗-set
in B, we have that C1(B) ∩ [G1p ∪ G2q ∪ G3] is a Z-set in C1(B) (Lemma 2.2).
Therefore, U = C1(B)∪G1p ∪G2q ∪G3 is a neighborhood of D in D2 such that
U is a Hilbert cube [9, Theorem 1].

Case (5): D ∈ C1({p, q}, X2) and D ∩B is not connected.

Observe that in this case A ⊂ D. We consider five subcases.

Subcase (5.i): D ∩B has two nondegenerate components.

Here, U = G4 is a neighborhood of D in D2 such that U is a Hilbert
cube (by (?)).

Subcase (5.ii): {p} is the only degenerate component of D ∩B.

Note that G2 ∩G4 = {A∪H ∪G : H ∈ C1(q,B) and G ∈ C1(q, F )}. Using
the union map (Notation 2.1), we obtain that G2 ∩ G4 is homeomorphic to
C1(q,B)×C1(q, F ); moreover, C1(q,B) is a Hilbert cube [6, Theorem 5.2] and
C1(q, F ) is either a Hilbert cube or an n-cell, for some positive integer n [8,
Theorem 3.1 (3)]. Thus, G2∩G4 is a Hilbert cube. It is easy to see that G2∩G4

is a Z-set in G2. Hence U = G2 ∪ G4 is a neighborhood of D in D2 such that
U is a Hilbert cube [9, Theorem 1].

Subcase (5.iii): {q} is the only degenerate component of D ∩B.

Observe that G1 ∩ G4 = {K ∪A : K ∈ C1(p,B)}. Thus, G1 ∩ G4 is homeo-
morphic to C1(p,B). Hence, G1 ∩ G4 is a Hilbert cube [6, Theorem 5.2]. By
Lemma 3.5, G1 ∩ G4 is a Z-set in G1. Thus, since G1 and G4 are Hilbert cubes
(by (?)), G1 ∩ G4 is a Hilbert cube and G1 ∩ G4 is a Z-set in G1, we have
that U = G1 ∪ G4 is a neighborhood of D in D2 such that U is a Hilbert
cube [9, Theorem 1].

Subcase (5.iv): D = A ∪G, where G ∈ C1(q, F ) \ {{q}}.
In this case, U = G2 ∪ G4 is a neighborhood of D in D2 such that U is a

Hilbert cube (see Subcase (5.ii)).

Subcase (5.v): D = A.

We show that G1 ∪ G4 ∪ G2 is a Hilbert cube. Observe that G1 ∪ G4 is a
Hilbert cube (see Subcase (5.iii)).

Now, observe that

[G1∪ G4] ∩ G2 = [G1 ∩ G2] ∪ [G4 ∩ G2]

={K ∪A : K ∈ C1({p, q}, B)} ∪ {A ∪H ∪G : H ∈ C1(q,B), G ∈ C1(q, F )}
={A ∪H ∪G : H ∈ C1(q,B), G ∈ C1(q, F )}.
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Thus, [G1∪G4]∩G2 is homeomorphic to C1(q,B)×C1(q, F ), by the union map
(Notation 2.1). Hence, [G1 ∪ G4] ∩ G2 is a Hilbert cube (see [6, Theorem 5.2]
and [8, Theorem 3.1 (3)], resp.). By Lemma 3.5, [G1 ∪ G4] ∩ G2 is a Z-set
in G2. Thus, since G1 ∪ G4 is a Hilbert cube, G2 is a Hilbert cube (by (?)),
[G1 ∪ G4] ∩ G2 is a Hilbert cube, and [G1 ∪ G4] ∩ G2 is a Z-set in G2, we have
that G1 ∪ G4 ∪ G2 is a Hilbert cube [9, Theorem 1].

Therefore, U = G1 ∪ G4 ∪ G2 is a neighborhood of D in D2 such that U is
a Hilbert cube. Hence, D2 is a compact contractible Hilbert cube manifold.
Therefore, D2 is a Hilbert cube [2, Corollary 5].

Theorem 3.8. Let B be a nondegenerate Peano continuum without free
arcs. Let A be an arc such that B∩A = {p, q}, where p and q are the endpoints
of A, and {p, q} is a Z∗-set in B. Let F be a fan with top q such that F is a
cone. Suppose that (B ∪A) ∩ F = {q}. If X1 = B ∪A and X2 = B ∪A ∪ F ,
then C1(Xj) is a cone, j ∈ {1, 2}.

Proof. We show that C1(X2) is a cone; the proof for C1(X1) is similar.
Observe that

C1(X2) = C1(B) ∪ C1(p,X2) ∪ C1(q,X2) ∪ C1(A) ∪ C1(F )

= C1(B) ∪ C1(p,X2) ∪ C1(q,X2) ∪ C1(A) ∪ C1(q, F ) ∪ T [C1(F )]

= C1(B) ∪ C1(p,X2) ∪ C1(q,X2) ∪ C1(A) ∪ T [C1(F )],

and

[C1(B) ∪ C1(p,X2) ∪ C1(q,X2)] ∩ [C1(A) ∪ T [C1(F )]]

= C1(p,A) ∪ C1(q, A) ∪N [C1(F )].

Let D2 = C1(B)∪ C1(p,X2)∪ C1(q,X2). By Lemma 3.7, D2 is a Hilbert cube.
We show that

C1(p,A) ∪ C1(q, A) ∪N [C1(F )] is a Z-set in D2. (??)

Let ε > 0 and let fε : D2 → D2 be given by fε(D) = Kρ(
ε
2 , D ∩ (B ∪A))∪

(D ∩ F ) (Notation 2.4). Then fε is continuous,

fε(C1(p,A) ∪ C1(q, A) ∪N [C1(F )]) ∩ [C1(p,A) ∪ C1(q, A) ∪N [C1(F )]] = ∅,

and H(D, fε(D)) < ε, for each D ∈ D2. Therefore, C1(p,A) ∪ C1(q,A) ∪
N [C1(F )] is a Z-set in D2. This proves (??).
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Since F is a fan that is a cone, F is the cone over E(F ) [19, Lemma
4.2]. Hence, E(F ) is a compact totally disconnected space. Let E′ = E(F ) ∪
{p}. Then E′ is a compact totally disconnected space. Therefore, E′ can be
embedded in I [10, Theorem V2, p. 56].

Let g : E′ → I be an embedding of E′ in I. For each e ∈ E′, let Le be
the convex arc in I∞ whose end points are (0, 0, 0, . . .) and (1, g(e), 0, 0, 0, . . .).
Let L =

⋃
e∈E′ Le. Then L is a Z-set in I∞. Recall that D2 is a Hilbert cube

(Lemma 3.7). Also, C1(p,A) ∪ C1(q, A) ∪N [C1(F )] is a Z-set in D2 (by (??)),
C1(p,A)∪ C1(q, A) is homeomorphic to Lp, and N [C1(F )] is homeomorphic to
(L \ Lp) ∪ {(0, 0, 0, . . . )} (since F is a smooth fan). Hence, since [C1(p,A) ∪
C1(q, A)]∩N [C1(F )] = {{q}}, there exists a homeomorphism ψ : D2 � I∞ such
that ψ({q}) = (0, 0, 0, . . .), ψ(C1(p,A) ∪ C1(q, A)) = Lp and ψ(N [C1(F )]) =
(L \ Lp) ∪ {(0, 0, 0, . . .)} [3, Theorem 11.1].

For each e ∈ E′, let Ge be the convex arc in I∞ whose end points are
(1, g(e), 0, 0, 0, . . .) and (1, g(e), 1, 0, 0, 0, . . .).

For every e ∈ E′, let De be the convex hull in I∞ of Le ∪ Ge. Let D =⋃
e∈E′ De. It is easy to see that there exists a homeomorphism ξ : C1(A) ∪
T [C1(F )] � D such that ξ(K) = ψ(K), for each K ∈ C1(p,A) ∪ C1(q,A) ∪
N [C1(F )].

Therefore, the map ζ : C1(X) � I∞ ∪D given by

ζ(K) =

{
ψ(K), if K ∈ D2,

ξ(K), if K ∈ C1(A) ∪ T [C1(F )],

is a homeomorphism. Also, as is easy to see, I∞ ∪D is homeomorphic to the
cone over

(⋃
e∈E′ Ge

)
∪ {(xn)∞n=1 ∈ I∞ : x1 = 1}, with vertex (0, 0, 0, . . .).

Therefore, C1(X2) is a cone.

The proof of the following lemma is similar to the one given for Lemma 3.7,
we omit it because it involves many more sets and cases.

Lemma 3.9. Let B be a nondegenerate Peano continuum without free
arcs. Let A1 and A2 be two arcs such that B ∩ A1 = {p, q}, B ∩A2 = {q, r},
A1 ∩ A2 = {q}, where p and q are the endpoints of A1 and q and r are
the endpoints of A2. Suppose that {p, q, r} is a Z∗-set in B. Let F be a
fan with top {q} such that F is a cone and (B ∪ A1 ∪ A2) ∩ F = {q}. If
X = B ∪ A1 ∪ A2 ∪ F , then D = C1(B) ∪ C1(p,X) ∪ C1(q,X) ∪ C1(r,X) is a
Hilbert cube.

A similar proof to the one given for Theorem 3.8 shows the following
theorem. Note that we need to use Lemma 3.9 instead of Lemma 3.7.
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Theorem 3.10. Let B be a nondegenerate Peano continuum without free
arcs. Let A1 and A2 be two arcs such that B ∩ A1 = {p, q}, B ∩A2 = {q, r},
A1 ∩ A2 = {q}, where p and q are the endpoints of A1 and q and r are
the endpoints of A2. Suppose that {p, q, r} is a Z∗-set in B. Let F be a
fan with top {q} such that F is a cone and (B ∪ A1 ∪ A2) ∩ F = {q}. If
X = B ∪A1 ∪A2 ∪ F , then C1(X) is a cone.

Question 3.11. Can the hypothesis “Z∗-set ” be changed to “Z-set ” in
Lemma 3.7, Theorem 3.8, Lemma 3.9 and Theorem 3.10?
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[14] M. de J. López, Hyperspaces homeomorphic to cones, Topology Appl.
126 (3) (2002), 361 – 375.
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