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Abstract: We consider the question as to whether a quantum system is uniquely determined by all
values of all its observables. For this, we consider linearly nuclear GB*-algebras over W*-algebras
as models of quantum systems.
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1. INTRODUCTION

The main objective of this paper is to determine whether all values of
all observables in a quantum system are sufficent to determine the quantum
system uniquely. To answer this question, we first have to find a suitable
mathematical framework in which to reformulate the question.

In the well known formalism of Haag and Kastler, a quantum system takes
on the following form: The observables of the system are self-adjoint elements
of a x-algebra A with identity element 1, and the states of the system are pos-
itive linear functionals ¢ of A for which ¢(1) = 1. This is well in agreement
with the Hilbert space formalism, where the observables are linear operators
on a Hilbert space H, and all states are unit vectors in H. Since observables
are generally unbounded linear operators on a Hilbert space (such as posi-
tion and momentum operators, which are unbounded linear operators on the
Hilbert space L?(R)), one requires the *-algebra A above to at least partly
consist of unbounded linear operators on some Hilbert space. The question
is then what =x-algebra of unbounded linear operators one must take to house
the observables of the quantum system under consideration. A candidate can
be found among the elements in the class of GB*-algebras, which are locally
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convex k-algebras serving as generalizations of C*-algebras, and were first
studied by G.R. Allan in [2], and later by P.G. Dixon in [6] to include non
locally convex x-algebras (see Section [2] for the definition of a GB*-algebra).
Every GB*-algebra A[7] contains a C*-algebra A[By| which is dense in A (see
Section .

In [13], the author motivated why one can model a quantum system as a
GB*-algebra A[r] which is nuclear as a locally convex space (referred to as
a linearly nuclear GB*-algebra for here on). In addition to this, it would be
useful to have that A[By] is a W*-algebra (i.e., a von Neumann algebra): Since
A[r] is also assumed to be locally convex, A can be faithfully represented as a
x-algebra B of closed densely defined linear operators on a Hilbert space (see
[0, Theorem 7.11] or [10, Theorem 6.3.5]). If we denote this x-isomorphism
by m: A — B, then w(A[By]) = By, where By is the x-algebra of all bounded
linear operators in B, and is a von Neumann algebra (this follows from [0,
Theorem 7.11], or [I0, Theorem 6.3.5]). Let € A be self-adjoint. Then 7(x)
is a self-adjoint element of B and 7 (z) = fa(w(x)) Ad Py.

Now (1 +y*y)~! € By for all y € B. By [7, Proposition 2.4], it follows
that all y € B are affiliated with By. Therefore, Py € By, for all A € o(w(z)).
The spectral projections, Py, A € o(n(z)), are important for determining the
probability of a particle in a certain set (see [8, Postulate 4, p. 13]).

So far, the observables of a quantum mechanical system are self-adjoint
elements of a locally convex x-algebra A[r] (more specifically, in our case,
a linearly nuclear GB*-algebra with A[By] a W*-algebra). In fact, one can
sharpen this by noting that if z,y € A are self-adjoint (i.e., observables), then
Toy = %(wy + yz) is again self-adjoint, i.e., an observable. In 1932, J. von
Neumann and collaborators proposed that a Jordan algebra be used to house
the observables of a quantum system (see [5, Introduction]). A linear mapping
¢ A— A with ¢(x oy) = ¢(x) o ¢(y) for all z,y € As, where As denotes
the set of self-adjoint elements of A, is called a Jordan homomorphism. We
note here that A, is a Jordan algebra with respect to the operation o above.
If, in addition, ¢ is a bijection, then ¢ is called a Jordan isomorphism, i.e.,
an isomorphism of Jordan algebras. A Jordan isomorphism is therefore an
isomorphism of quantum systems (see [5, Introduction]). Observe that a linear
map ¢ is a Jordan homomorphism if and only if ¢(2?) = ¢(x)? for all z € A.

We already know that all possible values of an observable, when considered
as a self-adjoint unbounded linear operator on a Hilbert space, are in the
spectrum of the observable. An interesting question is therefore if a quantum
system is uniquely determined by the values/measurements of its observables.
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To answer this question in our setting of a linearly nuclear GB*-algebra A[7]
with A[By] a W*-algebra (an abstract algebra of unbounded linear operators),
one requires a notion of spectrum of an element which is an analogue of the
notion of spectrum of a self-adjoint unbounded linear operator on a Hilbert
space. The required notion is the Allan spectrum of an element of a locally
convex algebra. The values/measurements of a self-adjoint element x € A (i.e.,
an observable) are therefore in o4(z), the Allan spectrum of z, as defined in
Definition [2.3| below in Section [2] If no confusion arises, we write o(z) instead
of oa(x).

The above question can be reformulated as follows: Let A[r] be a linearly
nuclear GB*-algebra with A[By] a W*-algebra. Let ¢ : A — A be a bijective
self-adjoint linear map such that o(¢(z)) = o(z) for all x € As, where A is
the set of all self-adjoint elements of A. Is ¢ a Jordan isomorphism?

Below, in Corollary we answer this question affirmatively for the case
where A[7] has the additional property of being a Fréchet algebra, i.e., a
complete and metrizable algebra. We do not require the GB*-algebra to be
linearly nuclear in this result.

The above result is similar to results which are partial answers to a special
case of an unanswered question of I. Kaplansky: If A and B are Banach
algebras with identity, and ¢ : A — B is a bijective linear map such that
Spp(é(z)) = Spy(x) for all z € A, is it true that ¢ is a Jordan isomorphism?
Here, Sp4(x) refers to the spectrum of x, which is the set {A € C : A\l —
x is not invertible in A}. The answer to this question remains unresolved for
C*-algebras, but it has been shown, by B. Aupetit, to have an affirmative
answer if A and B are von Neumann algebras (see [3, Theorem 1.3]). For the
physical problem under consideration, we have to replace the spectrum of x in
Kaplansky’s question with the Allan spectrum of x, as explained above. We
refer the reader to [4] for an excellent introduction to Kaplansky’s problem.

Section [2] of this paper contains all the background material required to
understand the discussion in Section [3] where the main result is presented.

2. PRELIMINARIES

In this section, we give all background material on generalized GB*-
algebras (GB*-algebras, for short) which is required to understand the main
results of this paper. GB*-algebras were introduced in the late sixties by
G.R. Allan in [2], and taken further, in the early seventies, by P.G. Dixon in
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[6, [7]. Recently, the author, along with M. Fragoulopoulou, A. Inoue and I.
Zarakas, published a monograph on GB*-algebras [10] containing much of the
developed theory on this topic. Almost all concepts and results in this section
are due Allan and Dixon, and can be found in [I} 2 [6]. We will, however, use
[10] as a reference.

A topological algebra is an algebra which is a topological vector space and
in which multiplication is separately continuous. If a topological algebra is
equipped with a continuous involution, then it is called a topological *-algebra.
A locally convex x-algebra is a topological x-algebra which is locally convex
as a topological vector space. We say that a topological algebra is a Fréchet
algebra if it is complete and metrizable.

DEFINITION 2.1. ([10, DEFINITION 3.3.1]) Let A[7] be a unital topologi-
cal x-algebra and let B* denote a collection of subsets B of A with the following
properties:

(i) B is absolutely convex, closed and bounded;
(ii) 1€ B, B> C B and B* = B.

For every B € B*, denote by A[B] the linear span of B, which is a normed
algebra under the gauge function || - || of B. If A[B] is complete for every
B € B*, then A[r] is called pseudo-complete.

An element x € A is called bounded, if for some nonzero complex number
A, the set {(Ax)" : n=1,2,3,...} is bounded in A. We denote by A, the set
of all bounded elements in A.

A unital topological x-algebra A[r] is called symmetric if, for every x € A,
the element (1 + z*x)~! exists and belongs to Ay.

DEFINITION 2.2. ([10, DEFINITION 3.3.2]) A symmetric pseudo-com-
plete locally convex s-algebra A[r], such that the collection B* has a greatest
member, denoted by By, is called a GB*-algebra over By.

Every C*-algebra is a GB*-algebra. An example of a GB*-algebra, which
generally need not be a C*-algebra, is a pro-C*-algebra. By a pro-C*-algebra,
we mean a complete topological x-algebra A[r]| for which the topology 7 is
defined by a directed family of C*-seminorms.

Another example of a GB*-algebra which is not a pro-C*-algebra is the
locally convex s-algebra L“([0,1]) = N,>1LP([0,1]) defined by the family
of seminorms {|| - ||, : p > 1}, where || - ||, is the LP-norm on LP([0,1])
for all p > 1.
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If A is commutative, then Ay = A[By| [10, Lemma 3.3.7(ii)]. In general,
Ay is not a x-subalgebra of A, and A[By] contains all normal elements of Ay,
i.e., all z € A such that zz* = 2*z [10, Lemma 3.3.7(i)].

DEFINITION 2.3. ([I0, DEFINITION 2.3.1]) Let A[7] be topological alge-
bra with identity element 1 and = € A. The set 04 (z) is the subset of C*, the
one-point compactification of C, defined as follows:

(i) if X # oo, then A € o4(x) if A1 — z has no bounded inverse in A;

(ii) oo € oa(x) if and only if z ¢ Ay.
We define pa(x) to be C*\ oa(z).

If there is no risk of confusion, then we write o(z) to denote o4(x).

PROPOSITION 2.4. ([10, THEOREM 3.3.9, THEOREM 4.2.11]) If A[r] is
a GB*-algebra, then the Banach x-algebra A[By| is a C*-algebra, which is
sequentially dense in A. Moreover, (1 + x*z)~! € A[By) for every x € A and
By is the unit ball of A[By].

The next proposition has to do with extensions of characters of the com-
mutative C*-algebra A[By] to the GB*-algebra A, which could be infinite
valued.

PROPOSITION 2.5. ([10, PROPOSITION 2.5.4]) Let A[r] be a commuta-
tive pseudocomplete locally convex x-algebra with identity. Then, for any
character ¢ on Ay, there exists a C*-valued function ¢’ on A having the fol-
lowing properties:

(i) ¢ is an extension of ¢;

(ii) ¢'(Ax) = A¢/(z) for all X € C (with the convention that 0.00 = 0);

(i) ¢'(x +y) = ¢'(z) + ¢'(y) for all z,y € A for which ¢'(x) and ¢'(y) are
not both oo;

(iv) ¢'(zy) = ¢'(z)¢'(y) for all x,y € A for which ¢'(x) and ¢'(y) are not
both 0, 00 in some order;

(v) ¢'(z*) = ¢/(x) for all z € A (with the convention that 30 = 00).
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3. THE MAIN RESULT

The following example is an example of a linearly nuclear GB*-algebra
over a W*-algebra, which is not a C*-algebra.

ExAMPLE 3.1. Consider a family {H, : « € A} of finite dimensional
Hilbert spaces. Then, for every a € A, we have that B(H,) is a finite di-
mensional C*-algebra, and hence a linearly nuclear space, with respect to the
operator norm || - ||o. Let A =11,B(H,). Then A is a pro-C*-algebra in the
product topology 7, when all B(H,) are equipped with their operators norms
| ||a [9 Chapter 2]. Furthermore, A[7] is linearly nuclear since it is a product
of linearly nuclear spaces. Observe that 2€ = (24(&a))q for all § = (§0)a € H,
where H is the direct sum of the Hilbert spaces H,. Note that H is itself a
Hilbert space. Now

AlBy| = {:B = (Ta)a € A : sup, ||zalla < oo}
= ®aB(Ha)a

and this is a von Neumann algebra with respect to the norm sup,, ||Za||a-

LEMMA 3.2. If x is a self-adjoint element of a GB*-algebra A[r], then x
is a projection if and only if o(x) C {0, 1}.

Proof. Let x € A be a projection and let B be a maximal commutative
x-subalgebra of A containing x. Then op(z) = o4(x) (see [10, Proposition
2.3.2]) and B is a GB*-algebra over the C*-algebra By, = A[By]| N B (see [0]).
Let My denote the character space of the commutative C*-algebra By. Then,
by Proposition and [10, Corollary 3.4.10], it follows that

op(x) = {T(¢) = ¢'(x) : ¢ € My}
= {é(x) : ¢ € My}
- {0,1}.

The second equality above follows from the fact that © € A[Bp], due to the
fact that x is a projection, and therefore x € By. Therefore o4(x) C {0,1}.

Now assume that o4(z) C {0,1}. Let B be a maximal commutative -
subalgebra of A containing z. Then op(z) = o4(x). Like above, we have
that

{Z(¢) =¢(z) : p € My} = op(z) =0a(x) C {0,1}
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for all characters ¢ on A[By]. Therefore Z is an idempotent function.
Since x +— T is an algebra #-isomorphism [I0, Theorem 3.4.9], we get that
x is an idempotent element of A. Therefore x is a projection because x is
self-adjoint. 1

If A and B are *-algebras and ¢ : A — B a linear map such that ¢(2?) =
#(x)? for all self-adjoint elements z in A, then ¢ is a Jordan homomorphism
[3, page 922]. We require this in the proof of Proposition below.

PROPOSITION 3.3. Let A[r] be a GB*-algebra with A[By] a W*-algebra,
and let B be a topological x-algebra. Suppose further that the multiplica-
tions on A and B are jointly continuous. If ¢ : A — B is a continuous linear
mapping which maps projections to projections, then ¢ is a Jordan homomor-
phism.

Proof. Let s be a self-adjoint element in A[By]. By the spectral theorem,
and the fact that A[Bp] is a W*-algebra, there is a sequence (s,) of finite
linear combinations of orthogonal projections in A[By] such that s, — s in
norm [II, Theorem 5.2.2], and hence also with respect to the topology 7 on
A, since the restriction of the topology 7 to A[By] is weaker than the norm
topology of A[By]. Therefore ¢(s2) = ¢(sy)? for every n. Hence, since ¢ is
continuous, and since the multiplications on A and B are jointly continuous,
it follows that

(%) = o( Jim 52) = o Jim )" = 905"

This holds for any self-adjoint element s € A[By|. By the paragraph following
Lemma @l a[B,] is a Jordan homomorphism.

Let x € A. Then there is a sequence (z,) in A[By| such that =, — =.
Since ¢ is continuous, A[By| is dense in A, and the multiplications on A and
B are jointly continuous, it follows that ¢(2?) = ¢(x)2. This holds for every
x € A, and therefore ¢ is a Jordan homomorphism. |

We say that an element = in a GB*-algebra A[7] is positive if there exists
y € A such that x = y*y. The following proposition is required to prove
Theorem [3.5] below.

PRrROPOSITION 3.4. ([12, PROPOSITION 7]) Let A[m] and Bim] be
Fréchet GB*-algebras. If ¢ : A — B is a linear mapping which maps positive
elements of A to positive elements of B, then ¢ is continuous.
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THEOREM 3.5. Let A[r] be a Fréchet GB*-algebra with A[By] a W*-
algebra, and let ¢ : A — A be a self-adjoint linear map such that o(¢(x)) C
o(z) for all x € As, where Ay is the set of all self-adjoint elements of A. Then
¢ is a Jordan isomorphism.

Proof. By hypothesis and [10, Proposition 6.2.1], it follows that if z € A
is a positive element, then o(¢(z)) C o(z) C [0,00], and therefore ¢(z) is a
positive element in A. Therefore ¢ maps positive elements of A to positive
elements of A. By Proposition and the fact that A is a Fréchet GB*-
algebra, it follows that ¢ is continuous.

We now show that if p € A is a projection, then ¢(p) is also a projection
in A. If p € A is a projection, then p and ¢(p) are self-adjoint elements in A.
Therefore, by Lemma o(p) C {0,1}. Since o(é(p)) € o(p), we get that
a(¢(p)) €{0,1}. By Lemma [3.2 again, ¢(p) is a projection.

Since A[By] is a W*-algebra and the multiplication on A is jointly contin-
uous (because A is a Fréchet algebra), it follows from Proposition that ¢
is a Jordan homomorphism. N

The following corollary is the desired result of this section, and affirms that
all quantum mechanical isomorphisms, in the context of Fréchet GB*-algebras,
are Jordan isomorphisms.

COROLLARY 3.6. Let A[r] be a Fréchet GB*-algebra with A[By] a W*-
algebra, and let ¢ : A — A be a bijective self-adjoint linear map such that
o(¢(z)) = o(x) for all x € As, where Ay is the set of all self-adjoint elements
of A. Then ¢ is a Jordan isomorphism.

In [3], B. Aupetit proved that any bijective linear map ¢ : A — B be-
tween von Neumann algebras A and B, satisfying Spg(¢(z)) = Spy(x) for all
x € A, is a Jordan homomorphism. Observe that ¢ need not be self-adjoint.
The proof of Aupetit’s result in [3] is complicated and relies on a deep spec-
tral characterization of idempotents in a semi-simple Banach algebra (see [3,
Theorem 1.1]). If we additionally assume that ¢ is self-adjoint, then one has
a much simpler proof of his result, namely, the proof of Corollary for the
case where A[7] is a von Neumann algebra.
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