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Abstract: Motivated by the classifications of extreme and exposed 2-homogeneous polynomials on
the plane with the hexagonal norm ||(z,y)|| = max{|y|, |z| + %|y\} (see [15] [16]), we classify all
smooth 2-homogeneous polynomials on R? with the hexagonal norm.
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1. INTRODUCTION

One of the main results about smooth points is known as “the Mazur
density theorem”. Recall that the Mazur density theorem ([9, p. 71]) says that
the set of all the smooth points of a solid closed convex subset of a separable
Banach space is a residual subset of its boundary. We denote by By the closed
unit ball of a real Banach space F and also by E* the dual space of E. We
recall that a point x € B is said to be an extreme point of By if the equation
T = %(y + z) for some y, z € Bp implies that x = y = z. A point x € Bg is
called an exposed point of B if there is an f € E* so that f(z) =1 = || f||
and f(y) < 1 for every y € Bg \ {z}. It is easy to see that every exposed
point of Bg is an extreme point. A point x € Bpg is called a smooth point
of B if there is a unique f € E* so that f(z) = 1 = ||f||. We denote by
ext Bg, exp Bg and sm Bg the set of extreme points, the set of exposed points
and the set of smooth points of Bg, respectively. For n € N, we denote by
L(™E) the Banach space of all continuous n-linear forms on E endowed with
the norm || T[] = supyjz, =1 |T(21, -+ ,@5)|. A n-linear form 7' is symmetric if
T(x1,..,70) = T(T(1),- -+ To(n)) for every permutation o on {1,2,...,n}.
We denote by L(™FE) the Banach space of all continuous symmetric n-linear
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forms on F. A mapping P : E — R is a continuous n-homogeneous polynomial
if there exists a unique T' € L ("E) such that P(z) = T(x,--- ,z) for every
x € E. In this case it is convenient to write T = P. We denote by P("E)
the Banach space of all continuous n-homogeneous polynomials from F into
R endowed with the norm [|P|| = supj,=1 |P(z)|. For more details about
the theory of multilinear mappings and polynomials on a Banach space, we
refer to [7].

Choi et al. [2, B, 4, 5] initiated and characterized the smooth points,
extreme points and exposed points of the unit balls of P(%1?), P(%l3) and
P(%co). Kim [10] and Choi and Kim [6] classified the exposed 2-homogeneous
polynomials on P(Qlf)) (1 <p<o0). Kim et al. [I7] characterized the exposed
2-homogeneous polynomials on Hilbert spaces. Kim [I1], 12} [14] classified
the smooth points, extreme points and exposed points of the unit ball of
P(%d,(1,w)?), where d.(1,w)? = R? with the octagonal norm of weight w.
For some applications of the classification of the extreme points of the unit
ball of P(?d,(1,w)?), Kim [I3] investigated polarization and unconditional
constants of P(?d.(1,w)?). Thus we fully described the geometry of the unit
ball of P(?d.(1,w)?). We refer to [I], 8| (18, [19] and references therein for some
recent work about extremal properties of homogeneous polynomials on some
classical Banach spaces.

We will denote by P(z,y) = ax? + by? + cry a 2-homogeneous polynomial
on a real Banach space of dimension 2 for some a,b,c € R. Let 0 < w < 1 be
fixed. We denote Ri(w) = R? with the hexagonal norm of weight w by

1, )l = max {Jy[, |2 + (1 —w)lyl}.

Throughout the paper we will denote Ri( 1 by H. Kim [I5] 16] classified the
2

extreme and exposed points of the unit ball of P(?H) as follows:

1 3
(a) ext Brp(QH) = { + y2, :|:($2 + 192 + xy) ) i(.’x2 + 1y2) )
02
+ [ac2—|— (Z—l)yQ:I:cxy] (0<ec<1),

+ [am2 + <7a T 421/m — 1)y2
+(a+2VT—a)my| 0<a<n)

(b) exp Bp(zq_[) = ext Bp(zg_[).
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In this paper we classify sm Bp(2q;) using the classifications of ext Bp(2q)
and exp Bp (2.

2. RESULTS
THEOREM 2.1. ([I5]) Let P(x,y) = az?®+by? + cxy € P(*H) with a > 0,
¢ >0 and a® + b* + c® # 0. Then:
Case 1: ¢ < a.
If a < 4b, then

1 1 4ab—c  4ab— 2 Aab —
HPHZmaX{a,b,‘Zla—kb‘—i- ab —c ab —c ab — ¢ }

297 4a 2cta+4b 2c—a— 4b|

1 1
= max{a,b, ‘Za—l—b‘ + 20}.

If a > 4b, then ||P|| = max {a’ 1b], H“ n b) 1 |C2Z;1ab| }
Case 2: ¢ > a.
If a < 4b, then ||P|| = max {a,b,

1 1 |2 —4ab|
70+ b‘ + 3¢ 3cratan (-

If a > 4b, then |P| = max {a7 1b], H“ n b’ 4l 222_}4_“21,}
Note that if | P|| = 1, then |a| < 1,[b] <1, c| < 2.

THEOREM 2.2. ([15, [16])

ext B'p(Q'H) = exp BP(QH)

1 3
:{:tyQ,i<x2+4y2iwy>,i<x2+4y2>,
2
+ [:1:2+< —1)y2:|:cmy} (0<c<1),

44/1 —
+ [M2+ <a+ va_l)yz

i(a+2ﬂ)xy] (0<a< 1)}.

By the Krein-Milman theorem, a convex function (like a functional norm,
for instance) defined on a convex set (like the unit ball of a finite dimen-
sional polynomial space) attains its maximum at one extreme point of the
convex set.
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THEOREM 2.3. ([I6]) Let f € P(H)* with a = f(2?), 8 = f(y?),
v = f(zy). Then

a+2ﬁ‘,

2
1711 = maox {13, o+ 15 + a+(G-1)8+enl 0 e <)

‘aoH— (‘Hllim - 1)5‘ +(@+2vV1-a)h| (0<a< 1)}.

)

Proof. Tt follows from Theorem and the fact that ||f]| = sup ‘ f(P)
PeextB
where B := Bp 2. |

. _ 1
Note that if || f|| =1, then |of <1, |8] <1, |y] < 5.

Remark. Let P(x,y) = ax?+ by? + cxy € P(*H) with |P|| = 1. Then the
following are equivalent:
(1) P is smooth;
(2) —P(z,y) = —ax?® — by? — cwy is smooth;
(3) P(x,—y) = ax® + by? — cxy is smooth.
As a consequence of the previous remark, our attention can be restricted

to polynomials Q(z,y) = az? + by? + cxy € P(*H) with a > 0, ¢ > 0.
We are in position to prove the main result of this paper.

THEOREM 2.4. Let P(z,y) = ax® +by? + cxy € P(*H) witha >0, ¢ > 0,
|P|| = 1. Then P is a smooth point of the unit ball of P(*H) if and only if
one of the following mutually exclusive conditions holds:

1
2

(1) a=0,0<|b<1;

(2) azl,b:—%,%,c<1;
3) a=1, -1<b<—-3 b-t>-53 < _p<1;
(4) a=1, -3 <b<i;

(5) azl,%gb,b+%<%;

(6) 0<a<l1l,b=0;

(7) 0<a<l,c<a,0#4b<a;

(8)

8) O<a<l,0<c<a<4b;
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(9) 0<a<l1l,4b=a<c;
(10) 0<a<1l,0#4b<a<c,c#a+2y/1—a;
(11) 0<a<1l,a<4b, a<c.

Proof. Let Q(z,y) = ax?® + by? + cxy € P(*H) with a > 0, ¢ > 0
and ||Q| = 1.

Case 1: a=0.
Note that if b = 0 or 41, then @ is not smooth. In fact, if b = 0, then
Q = 2zy. For j = 1,2, let f; € P(*H)* be such that

1
3 f2(z?) = 0= fo(y?), folzy) = 5
By Theorem 2.3 f;(Q) = 1 = || f;|| for j = 1,2. Thus Q is not smooth. If
b= +1, then P = +y%. For j = 1,2, let f; € P(*H)* be such that

M) =5 A6 =1, filew) =

A =%y, AW =4 il =%

f2(2) = 0 = fo(zy), f2(y?) = 1.
By Theorem fi(Q) =1=|f;|l for j =1,2. Thus Q is not smooth.
Claim: if a =0, 0 < |b| < 1, then @ is smooth.

Without loss of generality, we may assume that 0 < b < 1. By Theorem
1=|Q| =b+3c. Thusc=2(1-1b),s00 < c <2 LetfePCH)"
be such that f(Q) = 1 = ||f||. Notice that 1 = b8 + ¢y. We will show that
a:%,ﬂzl,’y:%. Since 0 < b < 1, 0 < ¢ < 2, we can choose § > 0 such
that

1
0<2(1=b)+t=c+t<2, 0<b—§t<1,

for all t € (—9,9). Let Qu(x,y) = (b - %1&)3/2 + (c+ t)zy for all t € (=4,9).
By Theorem 2.1] |Q¢|| = 1 for all ¢t € (—4,6). For all t € (—4,6),

1=b3+er> Q) = (b= gt) 8+ (e,

which shows that t< — %5) <0, for all t € (—0,0). Thus v = %B. Since
1 =f(Q) =bf+cy =2y, wehave § =1, v = % By Theorem 1>
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’a—i—%ﬁ‘%—h\z‘a—i—%‘—i—%, S0

By Theorem for 0 <é<1,

e () f (o (S 1)) o

which implies that

1>

4a> sup (26— =1. (2)
0<é<1

By and (2), a = i. Therefore, () is smooth.
CASE 2: a=1.
If b= —1, then Q = 22 — y2. For j = 1,2, let f; € P(*H)* be such that
[ =1, AW =0=fi(zy),
f(2*) =0 = falzy),  fa(y?)=-1.
By Theorem fi(Q) = 1= f;|l for j = 1,2. Hence, @ is not smooth.

Claim: if(azl,b:—%, %,C<1>,(CL:1, —1<b<i,b7é—%> or

(
(

<a: 1, % <bb+5< %), then @ is smooth.

Note that ifa =1,b = —%, then ¢ < 1. Note also that ifa =1,b = —%, c=
1, then @ is not smooth.

Suppose that a = 1, b = —2, ¢ < 1. Let f € P(*4)* be such that
f(Q =1=|f]. Then1 = a— 33+ cy. We will show that a = 1,
B =~ =0. Since 0 < ¢ < 1 and by Theorem [2.I we can choose § > 0
such that |R,|| = ||Sy|| =1 for all u,v € (=9, ), where

3
Ry(z,y) =2* — 11/2 + (c+ u)zy,

4
It follows that, for all u,v € (=4, 4),

Sy(z,y) = 2% — <3 + v> y? 4 cxy € P(*H).

1:a—%BJrchf(Ru):a—%BJF(CJF“)’V’

1=a—i6+w>f$w:a—<i+06+m,
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which shows that « = 1, § = v = 0. Therefore, @) is smooth. By a similar
argument, ifa =1, b = i, c < 1, then @ is smooth.

Suppose that a =1, —1 < b < i,b#—%. Leta=1, -1 <b< —%. We
will show that ¢ < 1. If not, then 1 < ¢ < 2. By Theorem b—5 > —%,

c2—4b
2c¢—1—4b <

by Theorem 2.1 b— £ > —3, € — b < 1. We claim that if

1, which shows that c=1,0 > —%. This is a contradiction. Hence,

3 c 5 c?
=1 -1 —= — > = - 1
a , <b< 1’ b 2> 1’ 1 b<1,

then @ is smooth. Let f € P(*H)* be such that f(Q) = 1 = ||f||. Then,
1=a+ b8+ cy. We will show that a =1, § =y = 0. By Theorem we
can choose § > 0 such that |[|R,|| = ||Sy|| =1 for all u,v € (=6,0), where
Ru(z,y) = 2% + by? + (c + v)zy,
Sy(z,y) = 2>+ (b +v)y* + cay € P(*H).

Thus oo = 1, 8 = v = 0. Therefore, ) is smooth.
Note that if

3 c ) c?
a b < < 47 2 p 47 4 b
then @ is not smooth letting f; € P(*H)* be such that
h*) =1, AW =0= filzy),
c? c
fa(2?) = 7 fy®)=—-1,  falzy) = 7
Thus 22 + (% —1)y? + cry (0 < ¢ < 1) is not smooth.
Note also that if
3 c 5 c?
=1 —l<b< = b——=-2 C _p<1
a ) < < 4 ) 2 4 ) 4 —_ 7
then @ is not smooth letting f; € P(*H)* be such that
fiE*) =1, AW =0= filay),
1 1
fa(2?) = 1 fy®)=—-1,  falzy) = 3
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Let a =1, —% <b< %. We will show that @ is smooth. First, suppose
that —3 < b < 0. Since ||Q|| = 1, by Theorem we have 0 < ¢ < 1. Let
f € P(®H)* be such that f(Q) =1 = | f||. Then 1 = o+ b3 + c¢y. We will
show that « = 1, § = 0 = . Since —% < b < 0, By Theorem we can
choose ¢ > 0 such that ||Ry|| = ||Sy|| = 1 for all u,v € (=0, ), where

Ry(z,y) = 2% + (b+ w)y® + cay,
Sy(z,y) = 22 4+ by? + (c+v)ay € 73(27{) .

Thus o =1, f = 0 = . Hence, @ is smooth.
Suppose that ¢ =1. Then 1 = a+~, a > 0, v > 0. By Theorem [2.3]

1> sup ac+ (a+2vV1—a)y

0<a<l1
= sup 2V1—-a(l—a)+a =1+ (1-a)?,
0<a<l1

which implies that o = 1. Therefore, « = 1, 8 = 0 = 7. We have shown that
if 0 < ¢ <1, then @ is smooth. Suppose that ¢ = 0. Since 1 = a+ b3, 5 =0,
we have a = 1. By Theorem 1> ‘a—&— %ﬁ‘ + |v| = 14+, which shows that
~ = 0. Hence, @ is smooth.

Suppose that 0 < b < 1. Since ||Q[| = 1, by Theorem 0<c<LlL

Let f € P(*H)* be such that f(Q) =1 = | f||. We will show that o = 1,
B =0=r. Since 1 = f(Q) = a+ bS + ¢, we have a > 0. Indeed, if o <0,

then 1 1 3
1<b <b <S4 -==
B+ ey Bl +ehl< 45 =7
which is a contradiction. We also claim that o + iﬁ > 0. If not, then
a < $|B| < 1, which implies that

3 3
S<l-a=bh+ey<bif+ehl< ],

which is a contradiction. Note that

a+bf=1—-cy>1—cly|>1-=>

N o
N

By Theorem

1 1
a+ B+l =la+ 18+ <1=a+bi+er<atbBtl,
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which shows that )
(3-1)8 <~ vhi<o.

Hence, 8 < 0. By Theorem for all 0 < ¢ < 1, it follows that

& &
at (1= 5 )t ant =+ (T -1)8] + el
<l=a+b8+cy

<a+bB+clyl = a—0blp[+clyl,

which implies that

=2
(1—C4+b)y/3\§(c—e)w 0<e<1).

Thus

c? &

<1— —l—b>|ﬂ| = lim (1 - — —|—b>|ﬁ] < lim (e —2@)|y| =0,

4 E—e— 4 E—e—
so B =0. Since 1 = f(Q) = a + ¢y, we have v > 0. By Theorem [2.3

aa+ (a+2vV1—a)y<l=a+cy 0<a<l),

which implies that

(G—c+2v/1—ayy<(1—-a)a (0<a<l). (3)

IsH

If ¢ < 1, then

(I—c)y=lim (a—c+2V1—-a)y < lim (1 -a)a=0,

a—1— a—1—

so 7 = 0. Therefore, « = 1, 8 = 0. Suppose that ¢ =1. By ,
(@—14+2v1—a)y<(l—-a) (0<a<1l1),
which implies that

2y= lim (2-VIi—a)y < (lim VIi-a)a=0,

a—1— a—1—

so 7 = 0. Therefore, « = 1, 8 = 0 = . Hence, @ is smooth.
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Suppose that @ = 1, 1 <b. Since ||Q|| = 1, we have b+ £ < 3. Ifb+5 = 32,
then @ is not smooth lettlng f; € P(*H)* be such that

A =1, filzy) = 5
y?) =0 = fo(zy).

Let b+ § < %. Note that if b = %, then @ :xz—l—%yQ—l—cmy for0<ec<1.
Let f € P(*H)* be such that f(Q) =1=||f||. Then a =1, 3 =0 =+. Thus
Q is smooth.

Suppose that a = 1, 1 < b. Let f € P(*H)* be such that f(Q) =1 = | f]|.
Then a =1, =0 =+. Thus @ is smooth.

CASE 3: O0<a<1.

Suppose that b = 0. We will show that ¢ > a. If not, then ||Q| < 1,
which is a contradiction. Hence, ¢ > a. We claim that () is smooth. Let
f e 77(27-[) be such that f(Q) = 1 = |f|. We will show that o = -,
8= =t a) , Y = @ Note that %a—i—%c< 1, 0 < ¢ < 2. We may choose
>0 such that |Ru|| = ||Su|| = 1 for all u,v € (—4,9), where

1
=1
1

Ry(z,y) = (a+u(2—2c—u))z® + (c+u)zy,

Sy(z,y) = <a + 4a—1v

2 2 2
T )x +oy“ +cry € P(“H).

Then v =2(c — 1)a, f =4(1 — a)a. It follows that

l=aa+cy=c?2—c)a+c2c—2)a=ca,
proving that a = &, f = 4(1 dl-a) @ Thus @ is smooth.
Suppose that b # 0. Let ¢ < a. Suppose that ¢ < a < 4b. Notice that if
a = 4b, then ||Q|| < 1. Hence, @ is not smooth.
Suppose that a < 4b. Then, 0 < b < 1. If b = 1, then [|Q]|| > 1, which
is impossible. We claim that if ¢ = a, 0 < b < 1, then @ is smooth. Let
0<b< 1 By Theorem 1=Q| = 3a+ b. Therefore,

Q = ax’® + <1 — ia)yQ + azxy
for 0 < a < 1. Let f € P(®*H)* be such that f(Q) = ||f|| Then

1:aa+<1—fa)6+a’y Wewﬂlshowthata—% 8= .Wecan
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choose 0 > 0 such that [|R,|| = ||Sy]| =1 for all u,v € (=6,6), where

3
Ru(z,y) = az® + <1 - Za +u>y2 + (a — 2u)xy,

S(a.y) = (a— 20)2° + (1 - i)y T (a+ )y € PCH).

Then 8 = 2v, v = 2a.. Therefore, a = i, B=1~v= % Thus @ is smooth.
Notice that if 0 = ¢ < a < 4b, then @ is not smooth letting f; € P(*H)*
be such that

Claim: if 0 < ¢ < a < 4b, then @ is smooth.

By Theorema 1=|Q| =%a+b+3c. Thus0<b< 1. Let f € P(*H)*
be such that f(Q) =1 = ||f]. We will show that a = %,B =1,v= % We
choose ¢ > 0 such that ||R,|| =1 for all u,v € (—6,0), where

1
Ruv(z,y) = (a +u)z® + (b+v)y* + <c - U 2v> ry € PCCH).

Thus o = %, B=1~v= % Therefore, ) is smooth.
Claim: if ¢ < a,4b < a, then @ is smooth.

Suppose that ¢ = a, 4b < a. By Theorem 1=Q| = ’ia + b’ + La.
Notice that %a +b < 0. Thus

1
Q = ax® + <a— 1>y2 + axy

4
for 0 < a < 1. We will show that @ is smooth. Let f € P(*H)* be such
that f(Q) = 1 = ||f||. We will show that « = —3, 8 = —1, v = 3. Choose
0 < 6 < 1 such that
a+v)?—4da(ta—1
O<a+2v<a+v<l, ( ) (4 ) <1

2(a+v)—a—4(3a—1)
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for all v € (—0,0). Let

R, = (a+2v)z* + (ia - 1> y* + (a4 v)zy

for v € (=0,0). By Theorem 2.1, 1 = ||Ry||. Thus v > —2«a. Choose
0 < 61 < 1 such that

a? —4(a+v)(fa—1— 3v)
2a — (a+v) —4(fa—1— 1v)

O<a+v<l, <1

for all v € (—01,0). Let

1 1
S, = (a+v)z? + <4a— 1- 4U>y2—|—a1‘y

for v € (—01,0). By Theorem 1 =|Sy|. Thus a > 3. Choose 0 < § < 1

such that
(a+20)? —4da(3a — 1+ )

2(a+2v) —a—4(3a—1+4v)
for all v € (0,62). Let

<1

1
Wy = ax® + <4a— 1+u>y2+(a+2u)xy

for u € (0,82). By Theorem 2.1 1 = ||[W,]||. Thus 8 < —27. Let 8= —1+¢
for some 0 < € < 1. By Theorem it follows that

2
1> sup a+<c—1>(—1—|—e) + ¢y
0<e<1 4
1 5 1 5 ¢
= sup ——(c—27) 2+ —y+ > +e —+>
0<c<1 4 4 4

Y

5
max{72—7—|—+e E—Z—{— 1

a
4 >
1 ) 1
——(1=29)2 4~ -7+ = -1
A1 =20)7+y 7+4+6<a )}
1\? 1 5 1
=maxq|y—z) +1l4+el-——=-4+7"),14+€¢l -1
2 a 4 a
1
1+6<—1>>1,
a

<1 5 (29)?

v
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which shows that e =0 = (y — %)2 Thus a = —i, B=-1,v= % Hence, Q
is smooth.
Suppose that ¢ < a, 4b < a. Note that —1 < b < 0. If b = —1, then
Q = ax® — y?>. We will show that it is smooth. Let f € P(*H)* be such that
f(Q) =1=f]]- Notice that « =0, § = —1, v = 0. Hence, @ is smooth.
Let —1 < b < 0. Then ¢ > 0.

. _|®—4ab| _ 2—4ab
Claim: 1= o = I

First, suppose that ia > |b]. Then Ha—i—b‘ —i—%c = ia—i—b—l—%c <a<1. By

2
Theorem! 1=|Q| = le Z;lab‘. Let *a < |b]. Notice that |3a + b| + 4c <
c2+4alb| 1= |c2—4dab] _ 2—4ab S h il sh h
—1, S0 1="—— =" Suppose that 0 < ¢ < 1. We will show that

Q is smooth. Let f € P(*H)* be such that f(Q) =1 = | f||. We will show
that a = —%, = —1,7=5-. Wechoose § > 0 such that ||R,|| = [[Su| =1
for all v,w € (—46,0), where

@
1+b+w

Suw(,y) = az® + <b+ w(QZ;Fw)

Ry(z,y) = <a >x2 + (b +v)y* + cay,

>y2 + (c+w)zy € P(*H).

Notice that 8 = o, v = —3,8. Therefore, a = —%, B=-1v=4.
Hence, @ is smooth.
Suppose that ¢ = 0. Then Q = az? — y? for 0 < a < 1, which is smooth.
Suppose that ¢ > a.

Claim: if ¢ > a = 4b, then @ is smooth.

Notice that Q@ = az? + %y* + (2 — a)zy. Let f € P(*H)* be such
that f(Q) = 1 = ||f||. By the previous arguments, a =
Thus @ is smooth.

Claim: if ¢ > a > 4b, ¢ # a + 2+/1 — a, then @Q is smooth.
By Theorem 2.1, —1 < b < 1, 0 < ¢ < 2. Notice that

1 1 2 —4ab

- b — 1 d ———=1

‘40,—1- ‘+20< an e —a—_1b ,
or

2 — 4ab

2c—a — 4b

1 1
<1 and ‘4a+b‘+2621.
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First, suppose that Ea + b’ + %c <1, 2062_;4_“21) = 1. Let f € P(*H)* be such

c—4b)2 c—a)?
that f(Q) = 1 = ||f]]. We will show that a = (2£_a4_b31b)2, B = (2i£a_ib)2,
_ 2(c—a)(c—4b)

V= (2c—a—4b)?

. We may choose § > 0 such that

4(a — 1)v 1
1—4b—4 — <1 —-1<? —
0< v, 0<a+1_4b_4v< , < +v<4,
4(b+v)<a+u<c E a—l—M +b+v +lc<1
1—4b—4v ’ 4 1—4b—4v 2
for all v € (—=9,6). Let
4(a —1
Ry(z,y) = <a + 1£a4b—)40v>x2 + (b+v)y* + cay
for all v € (-4, ). By Theorem [2.1
B 62—4<a+f£i;i)41;)(b+v)
R,|| = =1
2¢— (a+ 558 ) — 40+ v)
for all v € (—4,0). Notice that
41 —a)
-9, 4
b==—mn° (4)

We may choose € > (0 such that

w(2c—-2+w) 1 w(2c — 2+ w)
“1<bt ——F-—-< -~ 440+ ————= 2
<o+ 4(a—1) <47 < Ha—1) <a<ct+w<2,
1 w(2c—-24+w)| 1
Sabpy LT ETY, 1
oot (o= 1) ‘+2(c+w)<

for all w € (—¢,€). Let

w(2¢ — 24 w)

Sw(x,y) = ax® + <b+ a=1)

>y2 + (c+w)xy
for all w € (—¢,€). By Theorem [2.1
(c+w)? —4a (b + 7“’(26;_21*)“’))

2(c+w)—a—4(b+w(i€;73$w))

15wl =
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for all w € (—e¢,€). Notice that v = 2((‘31:1(1)) Band by (@), v = 21(6:4?04. It follows
that

1:aa+bﬁ+0'y:a(a+4b(1_a) 26(0—1)>:a<20—a—4b>7

1—4b * 1—4b

1—4b
which implies that o = 261:;87% and 2617;41’% = (2£C_;4_b3;)2. Therefore,
(c — 4b)? 4(c —a)? 2(c —a)(c— 4b)
az(20—a—4b)2’ B:(Qc—a—4b)2’ 7= (2¢ —a —4b)%
Thus @ is smooth.
Suppose that 2062_:14_“213 <1, %a+ b‘ + %c = 1. Note that %a + b #£ 0. First,

suppose that ya +b > 0. Let f € P(*H)* be such that f(Q) =1 =[/f|. We
will show that « = %, B=1,~v= % We choose § > 0 such that

1
Ry(z,y) = (a+u)x? + (b — 4u> y? +cxy,

v
2
for all u,v € (—6,0). Notice that v = %ﬁ, v =2a. Thus a = %, B=1~v= %
Hence, @ is smooth.

Next, suppose that %a +b<0. Let f € P(®H)* be such that f(Q)=1=
|| f||. By the previous argument, o = —i, B=-1,~v= % Thus @ is smooth.

Suppose that ¢ > a > 4b, ¢ = a + 24/1 — a. We will show that @ is not
(a+2\/m>2—4ab
(a—&-QM) —a—4b

Sy(z,y) = ax® + (b >y2 + (c+v)zy € P(*H)

smooth. By Theorem EI, 1 =1Q| > ; Thus —1 < b <

atdvl=e 7 <0, 50 ta+b<0. Since
flem(Layn) 4l
2~ T\ 2¢
which implies that b > % Vi—a g Sob:% Vi—a 1 and
44/1 —
Q:am2_|_<a+4a—1)y2+(a+2\/1—a)a:y (0<a<l).

For j = 1,2, let f; € P(*H)* be such that

1
1> |- b
> 4a+

R =3 A0D) =1 A=, he) =

) =1-a,  fa(zy)=
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Clearly f;(Q) =1 = ||fi|| for j = 1,2. We claim that || f2]| = 1. Indeed, for
P =d'z? +by? + dry € P(*H), we have

5(@#@)(” :P(m,m)

2
2—vV1—a)? 2—1—
BV i (2
= fQ(P) )
which implies that fo = (2_ = \/ﬂ) Thus

=1.
h(3)

=)

Since fo(Q) =1, || f2]] = 1. Therefore, @ is not smooth.

[ =

Claim: if ¢ > a, a < 4b, then @ is smooth.

By Theorem 2.1f 0 < b < 1, 0 < ¢ < 2. Let f
that f(Q) =1 = | f||. By the previous arguments, a = 1,
() is smooth.

Therefore, we complete the proof. I

P(?*H)* be such
=17

S
I} = % Thus
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