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Abstract: Let M be a smooth manifold of dimension m > 1 and P be a G-structure on M, where G
is a Lie subgroup of linear group GL(m). In [§], it has been defined the prolongations of G-structures
related to tangent functor of higher order and some properties have been established. The aim of
this paper is to generalize these prolongations to a Weil bundles. More precisely, we study the
prolongations of G-structures on a manifold M, to its Weil bundle T4M (A is a Weil algebra) and
we establish some properties. In particular, we characterize the canonical tensor fields induced by
the A-prolongation of some classical G-structures.
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INTRODUCTION

We recall that, a Weil algebra A is a real commutative algebra with unit
which is of the form A =R -14 & N4, where N4 is a finite dimensional ideal
of nilpotent elements of A (see [4] or [§]). It exists several examples of Weil
algebra, for instance the algebra generated by 1 and e with €2 = 0 denoted by
D (sometimes it is called the algebra of dual numbers, it is also the truncated
polynomial algebra of degree 1). Another Weil algebra is given by the spaces of
all r-jets of R* into R with source 0 € R* and denoted by J§(R¥,R). The ideal
of nilpotent elements is the finite vector space Jj (R* R)g. Let A=R-14BNy4
be a Weil algebra, we adopt the covariant approach of Weil functor described
by 1. Kolar in [6]. We denote by N% the ideal generated by the product of k
elements of N4, there is one and only one natural number h such that N Z #0
and NZ'H = 0. The integer h is called the order of A and the dimension k of
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the vector space Va/N? is said to the width of A. In this case, the Weil algebra
A is called (k, h)-algebra. If g, 01 : JE(RF R) — A are two surjective algebra
homomomorphisms, then there is an isomorphism o : ng (R¥,R) — JI(RF, R)
such that: o1 0 0 = o. We say that, two maps ¢, 1) : R¥ — M determine the
same A-velocity if for every smooth map f: M — R

o(itFop) =o(ib(fov)).

The equivalence class of the map ¢ : R¥ — M is denoted by j4¢ and will
called A-velocity at 0 (see [6], [7] or [8]). We denote by T4 M the space of all
A-velocities on M. More precisely,

TAM:{j%, cp:Rk—>M}.

TAM is a smooth manifold of dimension m x dim A. For a local chart
(U, ul, ... ,um) of M, the local chart of TAM is (TAU, ub, ..., uZK) such that:

{ué (1) = u'(¢(0))

) . 1<a< K
ul, (549) = af, (i (ul o p))

where (ao,...,ax) is basis of A and (ag,...,a)) is a dual basis. We denote
by 74, : TAM — M the natural projection such that 71,(j4¢) = ¢(0), so
(TAM, M, 7'(']‘3[) is a fibered manifold. For every smooth map f : M — M,
induces a smooth map T4f : TAM — TAM such that: for any j4p € TAM,

TAf(j%e) = j4(fo o).

In particular we have that ( f,TAf ) is a fibered morphism from (TAM , M, ﬂﬁ)
to (TAM, M, 7'('%). This defines a bundle functor 74 : Mf — FM called

Weil functor induced by A. The bundle functor T A preserves product in the
sense, that for any manifolds M and M, the map

(T4 (prpg), T4 (pryg)) : THM x M) — TAM x T4M

where pry; : M x M — M and pry; i M X M — M are the projections, is an
F M—isomorphism. Hence we can identify T4(M x M) with TAM x TAM.

Let B be another (s,r) Weil algebra and u : A — B be an algebra homo-
morphism, ¢’ : JJ(R*,R) — B the surjective algebra homomorphism. Then
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there is an algebra homomorphism 7 : J#(R* R) — JJ(R*,R) such that the
following diagram

JH(RF,R) —E— J5(R®,R)

| L¢

A —_— B
n

commutes. In particular, there is map f, : R® — R* such that, fi(jtg) =
j5(g o fu), where g € C°°(R¥). For any manifold M of dimension m > 1, it is
proved in [7] that there is smooth map gy : TAM — TBM defined by:

A

(i) = 8 (@ o fu).

More precisely, pps : TAM — TBM is a natural transformations and denoted
by i : T4 — TB. The fundamental result, which reads that every product
preserving bundle functor on Mf is a Weil functor. More precisely, if F
is a product preserving bundle functor on Mf, a : R xR — R and A :
R x R — R is the addition and the multiplication of reals, then Fa : FR x
FR — FR and FA: FR x FR — FR is the vector addition and the algebra
multiplication in the Weil algebra FR and F' coincides with the Weil functor
TFR . Every natural transformation p : T4 — T8 are in bijection with the
algebra homomorphism pug : A — B (see [§]). Since o : JHRF R) — A is
determined up to an isomorphism JJ(R* R) — J(R¥, R) it follows that this
construction is independent of the choice of p. The Weil functor generalizes
the tangent functor, more precisely, when A is the space of all r-jets of R¥
into R with source 0 € R¥ denoted by J§(R* ,R), the corresponding Weil
functor is the functor of k-dimensional velocities of order r and denoted by
Tj. For k =1, it is called tangent functor of order r and denoted by 1™, this
functor plays an essential role in the reduction of some hamiltonian systems of
higher order. It has been clarified that, the theory of Weil functor represents
a unified technique for studying a large class of geometric problems related
with product preserving functor.

Let A=R-14 & Ny be a Weil algebra. For any multiindex 0 < |a| < h,
we put e, = j4(2%) is an element of N4. For any ¢ € C°(R* R) , we have:

e =00)-1a+ Y ZDap(0)es.
1<[al<h

In particular the family {e,} generates the ideal Ny. We denote by By

the set of all multiindex such that (eq),. B, 1s a basis of Ny and By4 her
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complementary with respect to the set of all multiindex v € N” such that
1 <7 |< h. For B € By, we have eg = Agea. In particular,

€a+s 1f0(+ﬁ€BA,
EH € = o
© T e, if a+BeBa.

It follows that, for any ¢ € C*(R¥,R) , we have:

e =p0)-1a+ Y (;DM(OH > X’:DW(O)>%-

a€EB 4y 5637/1

Let (U, x’) be a local coordinate system of M, a coordinate system induced
by (U , :1:1) over the open TAU of TAM denoted by (wi, wg) is given by

i i A i
{x = atom = zf,

T R

To = To + 2p5cB, \5%5

where f/‘é(jAg) = % - Dg(z% 0 g)(0) and j*g € TAU. In the particular case
where A = D, the local coordinate system of T'M induced by (U , :z") is denoted
by (7, 8.

Let M be a smooth manifold of dimension m > 1, with (T'M, M, myr)
we denote its tangent bundle, and with (F'(M), M, pys) we denote the frame
bundles of M. Let G be a Lie subgroup of GL(m), a G-structure on a man-
ifold M is a G-subbundle (P, M,7) of the frame bundle F'(M) of M. For
the general theory of G-structures see, for instance [I]. The prolongations of
G-structures from a manifold M to its tangent bundles of higher order T" M
has been studied by A. Morimoto in [12]. In particular, it proves that if a
manifold M has an integrable structure (resp. almost complex structure, sym-
plectic structure, pseudo-Riemannian structure), then 7" M has canonically
the same kind of structure. Since the tangent functor of higher order 7" on
the manifolds, considers all derivatives of higher order (up to order r), all the
proofs are obtained by calculation in local coordinate. The situation should be
much complicated for the Weil functor 7. Thus, the aim of this paper is to
define the prolongations of G-structures from a manifold M to its Weil bundle
TAM. In particular, we construct a canonical embedding j4 g of T4(FE) into
F(TAE), where F(E) denote the frame bundle of the vector bundle (E — M).
Using the natural isomorphism s s : T4(TM) — T(TAM) (see [5]) and the
embedding ja 7, we define this A-prolongation TAP of a G-structure P of
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a manifold M, to its Weil bundle T4 M. In particular, we prove that TAP is
integrable if and only if P is integrable. In the last section, we use the theory
of lifting of tensor fields defined in [3] and [6], to characterized the canonical
tensor fields induced by the A-prolongation of some classical G-structures.

In this paper, all manifolds and mappings are assumed to be differentiable
of class C*°. In the sequel A will be a Weil algebra of order h > 2 and of
width £ > 1.

1. PRELIMINARIES

1.1. LIFTS OF FUNCTIONS AND VECTOR FIELDS. Let £: A — R be a
smooth function, for any smooth function f : M — R, we define the ¢-lift of
f to TAM by:

O =toTA(f);

f® is a smooth function on TAM.

Remark 1. Let (eg)gep, a basis of N, we denote by (eo,eﬁ)ﬁeBA the
dual basis of A. For £ = ¢“, the smooth function f) is denoted by f(®. In

particular, for any j4¢p € TAM,

FO40) = LDalfo9)(2)|.g + 3. 2Ds(fo9)(2)

—_ 2=0
BeBA
and f(©) = fomi,. For a coordinate system (U, vl J:m) in M, the induced
coordinate system {z}, 2%} on T4M is such that, ¥, = (g;i)(a).

Remark 2. For any smooth map ¢: A — R, the map

C®(M) — C>®(TAM)
fo—

is R-linear.

For all multiindex o such that |a| < h, we denote by x(® : T4 — T4
the natural transformation defined for any vector bundle (E — M) and ¢ €
C>®(R¥, E) by:

W (4e) = 4 (=)

where 2% is a smooth map defined for any z € R¥ by (2%¢)(2) = 2%p(2).
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PRrROPOSITION 1. Let A be a Weil algebra. There exists one and only one
family ka0 : TA(TM) — T(TAM) of vector bundle isomorphisms such that
TpAp © KAM = T4 (mar) and the following conditions hold:

1. For every smooth mapping f : M — N the following diagram

A
TATM) T AN

HA,MJ{ J/RA,N

T(TAM) ———— T(TAN)
T(T4f)

commutes.
2. For two manifolds M, N we have KA MxN = KAM X KAN-
Proof. See [B]. 1
Let X : M — TM be a vector field on a manifold M, then we put
X@ =g p 004 0 TAX).

It is a vector bundle field on T4 (M) called o-lift of X to T4M. In the
particular case where a = 0, the vector field X(© is denoted by X (©) and it is
called complete lift of X to T4M. We put X =0, for |a| > h or o ¢ N,

Remark 3. For any |a| < h, the map

X(M) — X(TAM)
X — X©

is R-linear and for any smooth map ¢ : M — N and any @-related vector fields
X € X(M), Y € X(N), the vector fields X(® e X(TAM), Y(® e X(TAN)
are T4 () related.
PROPOSITION 2. For XY € X(M), we have:
[ x (@, Y(m} — [X, Y]+
for all 0 < |a, | < h.

Proof. See [0]. 1
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Remark 4. The family of a-lift of vector fields is very important, because,
if S and S’ are two tensor fields of type (1,p) or (0,p) on T4 (M) such that,
for all Xy,...,X, € X (M), and multiindex o, ..., ap, the equality

s(xL X = s (XL x )
holds, then S = S’ (see [2]).

1.2. LIFTS OF TENSOR FIELDS OF TYPE (1,q). Let S be a tensor field
of type (1, q), we interpret the tensor S as a g-linear mapping

S:TMxpy - xXpyTM —TM

of the bundle product over M of ¢ copies of the tangent bundle T'M. For all
0 < || < h, we put:

S T(TAM) xpayy -+ Xpayy T(TAM) — T(TAM)

with S(®) = ks 0 XFE/?[]\)/[ oTA(S) o (”Z}M X e X KZ}M). It is a tensor field

of type (1,q) on TA(M) called a-prolongation of the tensor field S from M
to TA(M ). In the particular case where o = 0, it is denoted by S(©) and is
called complete lift of S from M to T4 (M).

PROPOSITION 3. The tensor S(®) is the only tensor field of type (1,q) on
TA(M) satisfying

5@ (Xfo‘l), L ,Xéa”) = (S(Xy,..., X))ot ren)

for all Xi,...,X, € X(M) and multiindex o, ..., ay.

Proof. See [2]. 1

For some properties of these lifts, see [2] and [3].

1.3. LIFTS OF TENSOR FIELDS OF TYPE (0,s). We fix the linear map
p: A — R, for any vector bundle (E, M, ), we consider the natural vector
bundle morphism 7Y 1 : TAE* — (TAE)" (see [10]) defined for any j4¢p €
TAE* and j4¢ € TAE by:

™ 510 %) = p(IH (¥, 0)p))
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where (), 0)p : RF 5 R, 2+ (¥ (2),¢(2))p and (-, -) ; the canonical pairing.
For any manifold M of dimension m, we consider the vector bundle mor-
phism
ehoar = [Fa] o Thrr s TAT*M — T'TAM,

It is clear that the family of maps (5’;‘ M) defines a natural transformation be-

tween the functors T4oT* and T*oT* on the category M f,, of m-dimensional
manifolds and local diffeomorphisms, denoted by

e, ThoT* — T 0T

When (A, p) is a Weil-Frobenius algebra (see [4]), the mapping &%, ,, is an
isomorphism of vector bundles over idyaj,;. Being {1‘1, e ,:Em} a local coor-
dinate System of M, we introduce the coordinates (m Tt ) in TM, (arl, m) in

T*M, (2, i xﬁ,T) in TATM, (2%, 71'3,5657 j) in TAT*M, (mz,fb,xz,fﬂ) in
TTAM and (z° ,xﬁ,gj,gj) in T*TAM. We have

, £ =mjpo + ZB TPy
p i =i =0 () p : reBba
EAM (.%',ﬂ'j,flfﬁ,ﬂ'->:<1' Tg, f',§-> with 3 o
! 7 5]' = > W? Bpua
HEBA

and p, = p(eq).

Let G be a tensor fields of type (0, s) on a manifold M. It induces the
vector bundle morphism G . TM xp - Xy TM — T*M of the bundle
product over M of s — 1 copies of T'M. We define,

GP) T(TAM) Xpays - Xpags T(TAM) — T*(TAM)
as G = &, o TA(GY) o </121M X e X mle) It is a T M-morphism

of vector bundles, so G is tensor field of type (0,s) on TAM called p-
prolongation of G from M to TAM.

ExXAMPLE 1. In a particular case, where s = 2 and locally G = Gijdxi ®
dz? then

G(p) :Gijpodiﬂi@dfﬂj + Z pa( Z G )dZE ®d$

aEBy BEBA

> (Zpa )dw ® da;.

w,BEBA \a€B4y
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In the particular case where A = J§(R*, R) and p(j§¢) = 2 Da (0(2))],—,
then G coincides with the a-prolongation of G from M to T{ M defined
in [13].

ExaMPLE 2. If Qs is a Liouville 2-form on T*M defined in local coordi-
nate system (xi,fj) by:
Qur = dat A dE;,
then we have:
OF) = poda’ Ade; + Y pada’ NdE; + Y padzy AdET
a€By a,B€EBA

PROPOSITION 4. The tensor field G is the only tensor field of type (0, s)
on TA(M) satisfying, for all X1, ..., X, € X(M) and multiindex as, . .., o

G(P) (X£Oé1)’ o ’Xs(ozs)) _ (G(Xl, o XS))(pOlD‘1+”'+°‘S)
where l, : A — A is given by l,(x) = ax.

Proof. See [0]. 1

2. THE NATURAL TRANSFORMATIONS ja g : T4(FE) — F(TAE)

Let V be a real vector space of dimension n, we denote by GL(V') the Lie
group of automorphisms of V.

2.1. THE EMBEDDING jay : THGL(V)) — GL(TAV). Let G be a
Lie group and M be a m—dimensional manifold, m > 1. We consider the
differential action p : G x M — M, then the Lie group T4G acts to T4M by
the differential action T4p : TAG x TAM — TAM.

LEMMA 1. If the Lie group G operates on M effectively, then TAG oper-
ates on TAM effectively by the differential action T4 (p).

Proof. See [0].

1
Let py : GL(V) x V. — V be the canonical action of GL(V'), then the
Lie group TA(GL(V)) operates effectively on the vector space T4V by the
induced action

TA(py) : TAGL(V)) x TAV  — TAV
(4 5%) — e u)
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where ¢ % u : RF — V is defined for any z € R* by:
pxu(z) = @(z)(u(z)).
We deduce an injective map ja v : TA(GL(V)) — GL(TAV) such that,
jav(ide) : TAV — TAV
j g x€).

PROPOSITION 5. The map jay : TA(GL(V)) — GL(TAV) is an embed-
ding of Lie groups.

Proof. By calculation, it is clear that j4y is a homomorphism of Lie
groups. I
Remark 5. Let {e1,...,e,} be a basis of V (dim V' = n), we consider the
global coordinate system of V, (el, . ,e”), we denote by (y;) the global
coordinate of GL(V'), for any f € GL(V),
yi(f) = (€', f(e)))
where (-, -) is the duality bracket V*xV — R. We deduce that, the coordinate

system of T4(GL(V)) is denoted by (y;-, yj- a) B On the other hand, the
’ acBy

global coordinate system of T4V is (ei, eg), such that:

¢'(j4u) = €'(u(0)),

. . AQ . :A A
ei, (i) = & Dol ou)(2)|,_o + X 3 Daleiou)(2)],_,, 7 4TV
BeEBA

the global coordinate of GL(TAV) denoted (z;, zﬁﬁ) sen is such that:
’ a,BeEB A

25(8) = (", mav(€)(e))) ,

; , ¢ e GL(TV),
Z]:/Z(f) = <€/ZB,§(€?)> ;
we deduce that the local coordinate of the map ja,1 is given by:
y; 0 - - 0

jA,V (y;7 yj’,oz) =

[an}

Y50 Y
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In fact,

28 (jav (79)) = (e dav (7%9) ()
1
=3 Dg(t*

+ 2
REBA

(e5)))li=o

(¢,
,u
‘i (t {e', g(t) (e)))) ],

for any j4g € TA(GL(V)).

2.2. FRAME GAUGE FUNCTOR ON THE VECTOR BUNDLES. We denote by
VB,, the category of vector bundles with m-dimensional base together with
local isomorphism. Let Byg,, : VB, — Mf and Brayp : FM — Mf be the
respective base functors.

DEFINITION 1. (See [I1]) A gauge bundle functor on V1, is a covariant
functor F : VB, — FM satisfying:

1. (Base preservation) Brag o F = Byp,,;

2. (Locality) for any inclusion of an open vector bundle g, : Ely — E,
F(E|y) is the restriction pp'(U) of pg : E — VB, (E) over U and
F (vp),,) is the inclusion p;' (U) — FE.

DEFINITION 2. Let G be a Lie group. A principal fiber bundle is a fiber
bundle (P, M, ) of standard fiber G such that: there is a fiber bundle atlas
(Ua,gpa c N (Uy) — Uy X G)aeA’ the family of smooth maps 6,5 : Uy N
Us — G which satisfies the cocycle condition (6n5(x) - 05(2) = Oy (x) for
z €U, NUgNUy and Oy (z) =€) and

for each x € U, NUg, for each g € G, Vg © ¢E1(x,g) = (z, Oap(x) - 9) -

EXAMPLE 3. Let (E,M,n) be a vector bundle of standard fiber the real
vector space V of dimension n > 1. For any x € M, we denote by F,FE the
set of all linear isomorphisms of V' on E, and we set FE = |J, ¢, FE, it is
clear that F'E is an open set of the manifold hom(M x V, E). We denote by
pg : FE — M the canonical projection. Let (Uy, ¥a)aca the fiber bundle atlas
of (E,M,p), so forall zx € UyNUg and v € V, @baowgl(z,v) = (,005(x)(v)),
where 6,5 : Uy NUg — GL(V) satisfies the cocycle condition. We consider
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the smooth map ¢, : pp' (Ua) — Ua x GL(V) such that, for any = € U, and
fz € p]\_/jl(Ua)a

Palfa) = (2, %alE, © f2) -
It is clear that, (Ua,@a),cp is the fiber bundle atlas of (FE,M,pg). As
0p ot (x, f) = (z,04p(x) o f), it follows that (FE,M,pg) is a principal
bundle of standard fiber, the linear Lie group GL(V'). It is called the frame
bundle of the vector bundle (E, M, ).

Remark 6. Let (U, l’Z) be a local coordinate system of M, we denote by
<mi, xé) the local coordinate of F'M induced by (U , xi), it is such that:

{ 2’ (&) = 2 (pe(€)),
2t (&) = (dat, (£(e5)))

for £ € FM and (eq,...,ey) is a basis of V.

DEFINITION 3. @ : (P, M,p,G) — (P',M',p',G") is a homomorphism of
principal bundles over the homomorphism of Lie groups ¢ : G — G’ if ® :
P — P’ is smooth and satisfies

for each u € P, for each g € G, D(u-g)=2(u)-o(g).

The collection of principal bundles and their homomorphisms form a cat-
egory, it is called the category of principal bundles and denoted by PB. In
particular, it is subcategory of the category F.M.

EXAMPLE 4.7Let f: E1 — Es an isomorphism of vector bundles over the
diffeomorphism f : M} — Ms. The smooth map F(f) : FE; — FE, defined
for any ¢, € F,E; by:

F(f)(pz) = foops € Fj(x)El

is such that (f,F(f)) : (FE1, Mi,pg,) — (FE2, My, pg,) is an isomorphism
of principal bundles. We obtain in particular a functor F' : VB, — PB, it is
a covariant functor.

ProrosiTION 6. The functor F : VB, — FM is a gauge bundle functor
on VB, which do not preserves the fiber product. It is called the frame gauge
functor on VB,,.
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Proof. The properties of gauge functor F': VBB, — FM are easily verified
by calculation. Since do not exists an isomorphism between the Lie groups
GL(V1) x GL(V2) and GL(V; @ V3), it follows that the gauge functor F' do
not preserves the fiber product. [

Remark 7. Let (P, M, ) be a principal fiber bundle with total space P,
base space M, projection 7 and structure group G. If {Us},cp is an open
covering of M, for each a € A, P giving a trivial bundle over U,, and if
9gop : UoNUg — G are the transition functions of P, we express this fiber
bundle by P = {U,, gag}. When G is a Lie subgroup of a Lie group G’ and
J : G — G’ is the injection map, then there is a fiber bundle P’ = {Uq, j © gag}
and an injection j : P — P’ which is a bundle homomorphism i.e. j(p-a) =
j(p) - a, for any p € P and a € G.

2.3. THE NATURAL EMBEDDING ja g : TA(FE) — F(TAE). We de-
note with (E, M, n) a vector bundle of standard fiber the real vector space
V' of dimension n > 1. Then, (TAE,T AM, TAﬂ’) is a real vector bundle of
standard fiber T4V, in particular the frame bundle of this vector bundle is a
GL(TAV)-principal (F(TAE), TAM, prap). On the other hand, (FE, M,pg)
is a GL(V)-principal bundle, so (T4(FE), TAM,T4(pg)) is a TA(GL(V))-
principal bundle. Let (Ua,%a),cp @ fiber bundle atlas of (E, M, ), so that
(TAUa,TA¢a)a€A is a fiber bundle atlas of (TAE,TAM, TAT('). The bundle
atlas of the principal bundle (FE, M, pg) is denoted by (Ua, 9a)aep Where

a5 (Ua) — Ua x GL(V)
g — (pB(9): (Ve () ©9)

we deduce that (TAUQ,TA(goa))a cp is the following fiber bundle atlas of
(TX(FE), T*M, T (pr)),

TA(pa) : (TApp) ! (TAUL) — TAU, x TAGL(V))
ity — (Tpe("9), " (Wa - 9)) ,

where (Yo - 9)(2) = (Ya)pu(g()) © 9(2) : V = V is a linear isomorphism, for
all z € R,

As (TAUQ, TAdJa)aeA is a fiber bundle atlas of (TAE, TAM, TAﬂ'), it fol-
lows that the fiber bundle atlas of the principal bundle (F (TAE), TAM, ppa E)
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is denoted by (TAUa, g0a7A)a€A where

PaaDpap(TAU) — TAUy x GL(TAV)
¢ (prap(@) (TAWa)),, , 6 °¢)

and (p;i‘x (:E, E) = (TA¢Q)_1 (Z,-) o £, for any (E, E) € TAU, x GL(TAV).
For any a € A, we put

. _ . . -1 _
Jau.= Py 0 (dpag,,jav) o T (pa) : (Tpr)  (TUL) — ppi p(T4UL)
and for any j4g € (TApE)_1 (TAU,), we have:

Jau.(Gt9) = 0.4 (1 (e 0 9),jav (7 (e - 9)))
= (T%a) " (A (0E 0 9),) 0 jay (7 (Wa - 9) -

For 8 € A such that U, NUg # 0, we have jAan}(TApE)‘l(TAUamTAUB) —
JAU, ‘(TApE)—l (TAULNTAU)’ it follows that, it exists one and only one principal
fiber bundle homomorphism j4 g : TA(FE) — F(TAE) such that, for any
a€ A, jA»E|(TApE)’1(TAUa) = jau,. In particular, for any Ee TA(FE) and
e TAHGL(V)),

jap(E-@) = jas (€) jav @

THEOREM 1. The map ja g : TA(FE) — F(TAE) is a principal fiber bun-
dle homomorphism over the homomorphism of Lie groups jay : TAGL(V))
— GL(TAV). In particular, ja g is an embedding.

Proof. Tt is clear that, ja g : TA(FE) — F(TAE) is a principal fiber
bundle homomorphism over jay, because for any ¢ € T4(FE) and u €
THGL(V)),

JAE <§~ 17) =JjAE <§> “Jayv ().

On the other hand, for any a € A, jA7E’(TApE) = jau,, it follows

“YTAU,)
that j4 g is an embedding. 1

Remark 8. Let (m=1(U),z",y’) be a fiber chart of F, then the local coor-
dinate of FE and TAF are (p;Jl(Ui),a:i,yi) and ((TAﬂ')_l (TAU),xg,yg).
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We deduce that, the local coordinate of T4(FE) and F(TAE) are given by
<TA(P51(Uz‘))a xfw yiv yi,a) and <p;,£E (TAU) ,xg, yi”%), so the local expres-
sion of j4 g is given by:

yi 0 --- 0
jA’E|(TApE)71(TAU) (z@,yi,yi@) = xfxv 0
yi’a .« .. y‘i;

PROPOSITION 7. Let f : E — FE’ is an isomorphism of vector bundles over
the diffeomorphism f : M — M’. The following diagram

A
TAFE) I pAp R

jA,EJ/ J/jA,E’

F(TAE) ———— F(TAE')
F(TAf)

commutes.

Proof. Let (Ua; ¥a)qep and (Ul, ¢7,) ecp the bundle atlas of (E, M, 7) and
(E', M’ ") such thaif(Ua) =Ul,a€A. As f: E — E'is an isomorphism of

vector bundles over f, it follows that it exists a smooth map fo : Us XV =V
such that v,o f|, ;05 (20) = (F(@), fale,0)), for any (z,v) € Unx V
and fu(z,-) is a linear isomorphism. It follows that, the diagram

Ff| _

pg' (Ua)

5 (Ua) Py (UL)

oo |#

Ua x GL(V) —— U, x GL(V)
fa

commutes, and fa(z,g) = (f(@), falz,-)og), for each (z,g) € Uy x GL(V).
It is clear that the following diagram

TAED| ()1 (r 20

(Tpe) " (TUa) > (Tpe) T (TAU])

T4 Pa J/ lTA A

TAU, x TA(GL(V)) TAU! x TA(GL(V))

(7)
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commutes. On the other hand, as the diagram following commutes

(7)

TAU, x TA(GL(V)) ———— TAU! x TA(GL(V))

(idUa :jA,V)l l(ZdU{1 :jA,V>

TAUq x GL (TAV) ——— TAU, x GL (T*V)

fa,A

with fa A (x E) (TA f(Z), faa@ ~> where

TA(TZJ:)) ° TAf‘(TAﬂ.)—l(TAUa) o (TA¢a)_1 (ZE, U) = (TA? (%) ) fa,A(%v )) )
it follows that

(idys, jay) o T4

/N

o) (5. 5)
_ (idU&,jA,V) <TA7 (]Au) ,jA <f(u’ Jo f))

= (776", jav (74 (F )0 €))).-
As jav (jA (f(u, Yo 5)) (j4v) = j4 ((f(u, Yo g) -v) and
()0 €) -v(2) = Flu(a). €20

for any z € R¥, thus,

F(TAf) o jau. (iu, 52€) = F(TAf) (574, jay (54€))
= (747 (7). TF (7%u,0) 0 iy (7€) ) -

For any j4v € TAV, as jay (jAg) (jAv) = jA(Exv) with € xv(z) =
£(2)(v(2)), for all z € R* we deduce that

TAf (54, 0) 0 jay (7€) (j4) = TAF (5u, 4 (€ * v))
=" (Fugxv)).
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so TAf (§4u,0) o jav (54€) (%) = jav (jA <f (u,) O§>> (j4v) for any

jAv € TAV. More precisely, ja,ur o T4 (};) = J/‘;;‘ 0 JAU.

Ja e pay, )t @avy o THES) = ea i ojau, o T (¢h) o THES)
= o hodau, 0T (pho Ffopy) o T
= ghodau o T4 (J) o T3
= ok 0 fanoiav, o TA(03h)

— (eh o Faa o pan) o 0rh 0 av, o T
= F(T2) 0 sl rape) 1 rav,)

thus, japr o TA(F[f) = F(T4f) o jap. I

Let (E, M, ) be a vector bundle of standard fiber V, for any t € R, we
consider the linear automorphism of FE, g, : E — E defined by: ¢/(u) =
exp(t)u, for any u € E. We consider the principal bundle isomorphism over
idas, o1 = F(g¢) : FE — FE such that, for any x € M,

F,E — FI,E
hy — hzog.

Pt F.E

In particular, we deduce a smooth map ¢ : R x FE — FE, (t,£) — ¢(§).
For any multi index «a, we consider the smooth map
Yap:THFE) — TAFE)
¢ — THp(eq ).

Then T4(pg) © o = T (pg). In particular, it is a homomorphism of prin-
cipal bundle of T4(FE) in to TA(FE).

PROPOSITION 8. Let f : E — E’' be an isomorphism of vector bundles
over the diffeomorphism f : M — M. Then the following diagram

A
TAFE) ——D . pApR)

SDa,EJ/ l@a,El

T4FE) ——— TA(FE)
TA(Ff)

commutes.
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Proof. Let j4¢ € TA(FE), we have:

3. PROLONGATIONS OF (G-STRUCTURES TO WEIL BUNDLES

3.1. THE NATURAL EMBEDDING ja : TA(FM) — F(TAM). Let M
be a smooth manifold of dimension n > 1, we denote by GL(n) the Lie group
GL(R™) and (F(M),M,pyr) the frame bundle of the tangent vector bundle
(TM, M,7pr), so that (TA(FM),TAM, TA(pM)) is a principal fiber bundle
over the Lie group T4(GL(n)). By the same way (F(TAM), TAM,ppay) is
a frame bundle of the vector bundle (T(TAM), TAM, wpay). If f: M — N
is a local diffeomorphism, we denote with F'(f) the principal bundle homo-
morphism F(Tf): FM — FN.

Let M be a smooth n-dimensional manifold,

F(kan) : F(TATM) — F(TAM)

is an isomorphism of principal bundles over idpay; and pray, o F(kanm) =
prapa, where ka2 TA(TM) — T(TAM) is the canonical isomorphism
defined in [7]. We put

jam = F(kanm)ojarm : THFM) — F(TAM)

such that ppay0jam = T4(par) and Jam(Z-9) =jam(Z) jare(g). In par-
ticular ja as is @ homomorphism of principal bundles over j4 rn. We identify
TAR™ with the euclidian vector space R™*4m4 it follows that T4(GL(n)) is
a Lie subgroup of GL(n x dim A).

ProproSITION 9. Let M and N be two manifolds and f : M — N be a
diffeomorphism between them. Then the following diagram
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A
TAFM) ——ED . papN)

jA,Ml le,N

commutes.
Proof. Let f: M — N a diffeomorphism,

jan o TA(Ff) = F(rkan) o jarn o T*(Ff)
= F(kan) o F(TATf) o jaru
=F (kan o THTf)) o jarm
= F(T(Tf) o kan) o jarum
= F(T(T"f)) o F(kan) o jaram
= F(T"f) o Fkaum) © jazu.
We deduce that jan o TA(Ff) =F (TAf) o jam. I
Remark 9. Let (U, x’) be a local coordinate on a manifold M, the local
coordinate of F'M is denoted by (p}j(U), xt, 1‘;), (TAU, at, :L'f)) the local co-
ordinate of TAM |, ((TApM)_1 (TAU) ,wi,xj», zt, x;a) the local coordinate

of TA(FM) and (p}};M (TAU) , 2%, 28, 2t $ZB> local coordinate of F(TAM).

’ a’ J ’ J,x
The formula

i
xt 0 0
j
jam (', 2y, 5 ,) = | 2, 2,
0
% )
Tja Ty

is a local expression of the natural embedding ja as.

3.2. PROLONGATIONS OF G-STRUCTURES. Let G be a Lie subgroup of
GL(n), we denote by G4, the image of TAG by the homomorphism j g,
ie. Gan = jarn (TAG). Clearly G4, is a Lie subgroup of GL(n x dim A).
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Let (P, M, ) be a G-structure on M, we denote by 74 the restriction of the
projection ppay, @ F(TAM) — TAM to the subbundle TAP = ja p (TAP).
Then we obtain a G 4 ,-structure (TAP, TAM, 7TA) on the Weil bundle T4M
of M related to A. It is called the A-prolongation of the G-structure P to the
Weil bundle TAM to M.

PROPOSITION 10. Let P (resp. P') be a G-structure on M (resp. M') and
f M — M’ be a diffeomorphism. Then f is an isomorphism of P on P’ if
and only if TAf : TAM — TAM’ is an isomorphism of TAP on TAP'.

Proof. The diffeomorphism f : M — M’ is an isomorphism of P on P’, if
and only if F(f)(P) = P'. By the equality ja yy o TA(Ff) = F (T4f) o jam
it follows that, if f is an isomorphism of P on P’, then

TAP' = jany (THP) = jar o TA(Ff) (TAP)
= F(Tf) ojanm (TAP) = F (TAf) (TAP).
Inversely, if TAf : TAM — TAM’ is an isomorphism of 74P on TAP’, then

ja (TAP') = F(T4f)(T4P)
= F(T"f) 0 jau(T*P) = janr o TH(Ff)(TAP).

Therefore, TAP' = TA(F f)(TAP). In particular, P’ = w4 p/(TAP') = 74 pro
TAFf)(TAP) = F(f)omap(TAP) = F(f)(P). So f is an isomorphism of P
on P'. 1

COROLLARY 1. Let f be a diffeomorphism of M into itself, and P be a
G-structure on M. Then f is an automorphism of P if and only if TAf is an
automorphism of the A-prolongation TAP.

Let ¢ : M — FM be a smooth section, the we define €Z~5A = jan o TA(9),
where ja s : TA(FM) — F(TAM) is the natural embedding from Subsection
It is a smooth section of the frame bundle F(T4M) called complete lift
of ¢ to F(TAM).

Remark 10. Let (U,xl, e ,3:”) be a local coordinate of M, we introduce
the coordinate (74U, %) of TAM. Let ¢ : M — FM be a smooth section
such that

3|, =95 (5m) ® €,
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then

= _ (4iy@=h) (5 ]

balgay = (45) (axg) © e,
where {ei}izl ~, and {ei, efl}(i 0)e{l,.n}x B, AT€ the dual basis of the canon-
ical basis of R™ and T4(R™).

DEFINITION 4. Let (P, M,n) be a G-structure on M. The G-structure
P is called integrable (or flat) if for each point z € M, there is a coordinate
neighborhood U with local coordinate system (xl, e ,x”) such that the frame

(), - (2),) € P,
for any y € U.

PRrorosITION 11. Let P be a G-structure on a manifold M. Then, P is
integrable if and only if the A-prolongation TAP of P is integrable.

Proof. We suppose that P is integrable, then there is a cross section ¢ :
U — P of Pover U C M of FM such that

¢= Z (%) @
=1

Then 5,4 = jan o TA(¢) is a cross section of TAP over TAU and,

da= 3 (k) @ e

aEBy

so, the A-prolongation 74P of P is integrable.

Inversely, taking (ai,...,ax) be a basis of N4 over R. We consider the
basis B = (14,4a1,...,ax) as a linear isomorphism A — RE*! and let 7§
A — R be the composition of B with the projection RX*! — R on a-factor,
a=1,..., K+1. For a coordinate system (U, xl) in M we define the induced
coordinate system {336,9531} on TAM by:

Using these arguments, the proof is similar as for the case of tangent bundle
of higher order establish in [12]. 1
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4. PROLONGATIONS OF SOME CLASSICAL (G-STRUCTURES

4.1. COMPLEX STRUCTURES. We take Jy : R?® — R2" a linear auto-
morphism such that Jy o Jy = —idge and denote by G(n,Jy) the group of
all a € GL(2n) such that a o Jy = Jyoa. We consider {14,e,, o € By}
be a basis of A over R. We consider this basis as a linear isomorphism
TAR?™) — R2dmA The map T4(Jp) is a linear automorphism of 74 (R?")
such that T4(Jy) o TA(Jy) = —idpagny. We put,

G = jagen (TG0, o)) -

ProprosITION 12. The Lie group G is a Lie subgroup of G(n x dim A,
T4(Jo)).

Proof. Let @ € G, then there is an element X € T4(G(n, Jy)), such that
@ = jarn(X). We put X = j4p, with ¢ : R¥ — G(n, Jy) smooth map. For
any j4¢ € TAR", we have:
TA(Jo) 0@ (5€) = T (o) (7 (0 €) = 3" (Jo o (¢ €)).

As, for any z € R¥,

Jo o (px&)(2) = Joop(2)(&(2))
= p(2) 0 Jo(§(2)) = ¢ (Jo o &)(2),

we deduce that

T4(Jo) 0@ (j4¢) = i (e * (Jo0 &) = jagr (%¢) (7*(Jo0©))
= jarn(X) o T4(Jo) (j4€).
So, TA4(Jo) o @ (j4€) = a o TA(Jo) (j4¢), for all j4¢ € TAR™. I

Remark 11. Let M be a smooth manifold of dimension 2n, M has an
almost complex structure if and only if M has a G (n, Jy)-structure P. Ap-
plying Subsection we see that T4 M has canonically a G-structure TAP.
By Proposition |§|, TAP induces canonically a G(ndim A, T4(Jy))-structure

PA. Which means that TAM has a canonical almost complex structure.

THEOREM 2. The canonical almost complex structure JA on TAM in-
duced by a G(ndim A, T4 (Jy))-structure P4 is just the complete lift J(©) of
the associated almost complex structure J with P.
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Proof. Let ¢ : M — P be a smooth section, then J(z) = ¢(x)oJyod(x) ™1,
for any x € M. Consider the vector e;, = jA(zaei), with « € B4 and
i € {1,...,2n}. The family (e; o) is a basis of the real vector space T4 (R™).

10l = o ) & ¢ then Bl = (&) () © . T ptiuls

Bzg
~ ‘ _ ] (O‘—ﬁ)<d>: (@)
Salesa) = (91) (%) = (0le)
so JAo gA(em) = JA <(¢(ei))(o‘)>. For any jA¢ € TAM, we have

b4 0 TA(Jo)(es.0) (JAE) = wanr 0 jarar (TA() 0 TA(Jo) (4 (2%e:))) (7€)
=ramojaru (720 08)) (742" Jo(er)))
= kanm (52 (#0 &) * (2%Jo(es)))) -

For any z € R”,

(@0 &) * (2%Jo(ei))(2) = ¢(£(2)) (2" Jo(ei))
= 27¢(£(2)) © Jo(e:)
= 2%J(&(2)) 0 9(£(2))(ei)
= J(£(2)) 0 9(2"€:)(&(2)),

|
w

we deduce that
G40 TA(I)(eia) (74) = Ran o TAT (W3 0 TA(6(e1)) ) ()
- (MM o TA(J) o k;}M) ° (M,M ox\ o TA(qS(eZ-))) (54¢)
= T ((6(e)) (7).

As ¢4 o TA(Jo)(ein) = J4 o gA(ei7a), we deduce that, J4 ((p(e))@) =
J© ((¢(€;))(@), for any o € Ba. So JA is the complete lift of .J. I

4.2. ALMOST SYMPLECTIC STRUCTURE. Let f : R?” x R? — R be a
skew-symmetric non degenerate bilinear form on R?”. We denote by G(f) the
group of all @ € GL(2n) such that f(a(x),a(y)) = f(z,y), for all z,y € R*".
We consider the basis of A over R, {14,¢e,, o € B4} as a linear isomorphism
TAR?™) — R?ImA - We suppose that, A is a Weil-Frobenius algebra, so
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there is a linear form p : A — R such that the bilinear form ¢ : A x A — R,
(a,b) — p(ab) is non degenerate. The map poT4(f) : TA(R?")xT4(R?") — R
is a skew-symmetric non degenerate bilinear form on T (RQ"). We put,
A =po TA(f) and B

G = jagen (THG(F))) -

PROPOSITION 13. The Lie group G is a Lie subgroup of G(f).

Proof. Let u = j4¢ € TA(G(f)), then j4 gz (u) = 4 is the linear automor-
phism of T4(R?") defined for any j4¢ € T4(R?*") by:

(i) =4 (¢ xp)

where (€ * ©)(2) = £(2)(p(2)), for any z € R*.
For any j4¢p, j4 € TA(R?*™), we have:

N (@ (1) ,a (779)) = Y (GAE* ), A (Ex )
=poTA(f) (A& ), i (€ ))
=p (A (E* @, Ex 1)) .

On the other hand, for any z € R*,

F€x @, Ex9)(2) = [(E(2)(9(2)), £(2)(¥(2))) = f(p(2), 9 (2))-

Therefore,

Y (@ (1) ,a (7)) = po TAF) (57, ) = fY (5. i) . :

THEOREM 3. The almost symplectic form on TAM associated with the
A-prolongation of a G(f) structure P on a manifold M is the p-prolongation
of the almost symplectic form associated with the G-structure P.

Proof. Let ¢ : M — P be a smooth section, consider the vector e; , =
§4(2%;), with o € Ba and i € {1,...,2n}. The family (e;,e;q) is a basis

of the real vector space TA(R”). If ¢|U = ¢g (%) ® €' then aA}TAU =
j (a—p) 9 . .
<¢i> (7) ®ep. In particular,

ol
atein) = (1) (3 ) = (ot
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We denote by w the almost symplectic form induced by P and w4 the almost
symplectic form induced by TAP. For all 4,j € {1,...,2n} and o, € Ba,
we have:

wa(((e) ), (6(e)?)

=7 ((30) " (01 ®). (30) " ((0e)®))

= poTA(f)(eiar eis) = poTAS) (4 (2ei), 4 (Pey)
= p (31 o)) = p (34 ferne))

= (@(@ler), dle)) @) = w®) ((B(e) ), (Ble))?) .

It follows that, wa = w®, where w® is the complete p-lift of w described
in [9] and [10]. N

Remark 12. When f : R® x R® — R is a bilinear symmetric non de-
generate form and G the Lie subgroup generated by all elements of linear
group invariant with respect to f, then, the pseudo riemannian metric on
TAM associated with the A-prolongation of a G-structure P on a manifold
M is the p-prolongation of the pseudo riemannian metric associated with the
structure P.

4.3. REGULAR FOLIATIONS INDUCED BY A-PROLONGATIONS OF G(V)-
STRUCTURES. Let V' be a vector subspace of R” (dimV = p). We denote
by G(V') the group of all a € GL(n) such that a(V) = V. We consider
the basis {14,€4, @ € B4} of A over R and the linear isomorphism induced
TA(R") — R*4m A Therefore GL(TA(R?")) is identified to GL(n dim A).

PROPOSITION 14. The Lie group G = jarn(TA(G(V))) is a Lie subgroup
of G(TA(V)).

Proof. Let X = jarn (jAgo) where ¢ : R¥ — G(V) is a smooth map. So
that, X : TAR") — TAR") is a linear isomorphism and for any
jAE e TAR™),

X (54€) = i (9 +©).
For any j4¢ € T4(V), we have X (jAé) = jAp x &), as for any z € RF,
(¢ x &)(2) = ¢(2)(&(2)) € V, it follows that X (j4¢) € T4(V). Thus,
X (TAV)) cTA(V). 1
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Let D be a smooth regular distribution on M of rank p, we denote by Xp
the set of all local vector fields X such that: for all x € M, X (z) € D,. Let us
notice that for a completely integrable distribution D, the family Xp is a Lie
subalgebra of the Lie algebra of vector fields on M. We denote by D) the
distribution generated by the family {X(O‘),O <a< h}. As [X(O‘),X(ﬁ)] =
[(X,Y] (@+5) and by the Frobenius theorem, it follows that D(4) is a smooth reg-
ular and completely integrable distribution on T4M. It is called A-complete
lift of D from M to TAM. In particular D = k4 5 (TA(D)) C T (TAM).

ProprosITION 15. If S C M is a leaf of regular completely integrable
distribution D, then TAS is a leaf of the regular distribution D4).

Proof. As S is connected, then T4S is also connected. In fact, let &;,& €
TAS, we put Wé(&) =s;, 4 =1,2. We consider Xo: M — TAM the smooth
section defined by for any z € M by:

Xo(x) = (= = ).

In particular 77? o Xo(s;) = s;, for i = 1,2. There is a continuous curve
a1 1 [0,1] = TAM such that a1(0) = & and aq(1) = Xo(s1). By the same
way, there is a continuous curve ay : [0,1] — T2 M such that a(0) = Xo(s2)
and ag(1) = &. Let ag : [0, 1] — S be a continuous curve such that ag(0) = s;
and ag(1) = sy. Consider the following curve a : [0,1] — TS defined by:

a1(3t) ifo<t<i
at)=14 Xooao(3t—1) if $<t<2,
(3t — 2) if 2<t<1.

The curve « is continuous and a(0) = &1, a(1) = &. So, TS is connected.
For any & € T4S, we have,

Te(TAS) = Ty ((wj\})‘l (S))

Thus, T4S is a leaf of DA). g
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THEOREM 4. The regular foliation on TAM associated with the A-
prolongation of a G(V)-structure P on a manifold M is the A-complete
lift of the regular foliation associated with the structure P.

Proof. Let ¢ : M — P be a smooth section. If locally gb‘U = qﬁg (%) ® €'
~ A (@=8) 4
then ¢A|TAU = (dﬂ) <i> ® ej. In particular,

d,
aten) = (1) (3 ) = ot

Let D the regular smooth distribution induced by the G(V)-structure P and
D the smooth distribution induced by TAP, for any ¢ € TAM,

De = 64(€) (T'V) = ($4(©)(er), i € {1,-...p}, 0 < |a] < 1)

= ((6(e)(©).i € {L....p}, 0 < || <.

It follows that, 55 = DéA). |
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