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Abstract : Let A and Ã be bounded operators in a Hilbert space. We consider the following problem:

let the spectrum of A lie in some angular sector. In what sector the spectrum of Ã lies if A and Ã

are “close”? Applications of the obtained results to integral operators are also discussed.
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1. Introduction and preliminaries

Let H be a complex separable Hilbert space with a scalar product (. , .),
the norm ‖.‖ =

√
(. , .) and unit operator I. By B(H) we denote the set of

bounded operators in H. For an A ∈ B(H), A∗ is the adjoint operator, ‖A‖
is the operator norm and σ(A) is the spectrum.

We consider the following problem: let A and Ã be “close” operators and
σ(A) lie in some angular sector. In what sector σ(Ã) lies?

Not too much works are devoted to the angular localizations of spectra.
The papers [5, 6, 7, 8] should be mentioned. In particular, in the papers by
E.I. Jury, N.K. Bose and B.D.O. Anderson [5, 6] it is shown that the test to de-
termine whether all eigenvalues of a complex matrix of order n lie in a certain
sector can be replaced by an equivalent test to find whether all eigenvalues of
a real matrix of order 4n lie in the left half plane. The results from [5] have
been applied by G.H. Hostetter [4] to obtain an improved test for the zeros
of a polynomial in a sector. In [7] M.G. Krein announces two theorems con-
cerning the angular localization of the spectrum of a multiplicative operator
integral. In the paper [8] G.V. Rozenblyum studies the asymptotic behavior of
the distribution functions of eigenvalues that appear in a fixed angular region
of the complex plane for operators that are close to normal. As applications,
he calculates the asymptotic behavior of the spectrum of two classes of oper-
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ators: elliptic pseudo-differential operators acting on the sections of a vector
bundle over a manifold with a boundary, and operators of elliptic boundary
value problems for pseudo-differential operators. It should be noted that in
the just pointed papers the perturbations of an operator whose spectrum lie
in a given sector are not considered. Below we give bounds for the spectral
sector of a perturbed operator.

Without loss of the generality it is assumed that

β(A) := inf Reσ(A) > 0. (1.1)

If this condition does not hold, instead of A we can consider perturbations of
the operator A1 = A+ Ic with a constant c > |β(A)|.

For a Y ∈ B(H) we write Y > 0 if Y is positive definite, i.e., infx∈H,‖x‖=1

(Y x, x) > 0. Let Y > 0. Define the angular Y -characteristic τ(A, Y ) of A by

cos τ(A, Y ) := inf
x∈H,‖x‖=1

Re(Y Ax, x)

|(Y Ax, x)|
.

The set

S(A, Y ) := {z ∈ C : | arg z| ≤ τ(A, Y )}

will be called the Y -spectral sector of A.

Lemma 1.1. For an A ∈ B(H), let condition (1.1) hold and Y be a positive
definite operator, such that (Y A)∗+Y A > 0. Then σ(A) lies in the Y -spectral
sector of A.

Proof. Take a ray z = reit (0 < r < ∞) intersecting σ(A), and take the
point z0 = r0e

it on it with the maximum modulus. By the theorem on the
boundary point of the spectrum [1, Section I.4.3, p. 28] there exists a normed
sequence {xn}, such that Axn − z0xn → 0 , (n→∞). Hence,

Re(Y Axn, xn)

|(Y Axn, xn)|
=

Re r0e
it(Y xn, xn)

r0|(Y xn, xn)|
+ εn = cos t+ εn

with εn → 0 as n→∞ . So z0 is in S(A, Y ). This proves the lemma.

Example 1.2. Let A = A∗ > 0. Then condition (1.1) holds. For any
Y > 0 commuting with A (for example Y = I) we have (Y A)∗ + Y A = 2Y A
and Re(Y Ax, x) = |(Y Ax, x)|. Thus cos τ(A, Y ) = 1 and S(A, Y ) = {z ∈ C :
arg z = 0}.
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So Lemma 1.1 is sharp.

Remark 1.3. Suppose A has a bounded inverse. Recall that the quantity
dev(A) defined by

cos dev(A) := inf
x∈H,x 6=0

Re(Ax, x)

‖Ax‖‖x‖

is called the angular deviation of A, cf. [1, Chapter 1, Exercise 32]. For
example, for a positive definite operator A one has

cos dev(A) =
2
√
λMλm

λM + λm
,

where λm and λM are the minimum and maximum of the spectrum of A,
respectively (see [1, Chapter 1, Exercise 33]). Besides, in Exercise 32 it is
pointed that the spectrum of A lies in the sector | arg z| ≤ dev(A). Since
|(Ax, x)| ≤ ‖Ax‖‖x‖, Lemma 1.1 refines the just pointed assertion.

2. The main result

Let A be a bounded linear operator in H, whose spectrum lies in the open
right half-plane. Then by the Lyapunov theorem, cf. [1, Theorem I.5.1], there
exists a positive definite operator X ∈ B(H) solving the Lyapunov equation

2 Re(AX) = XA+A∗X = 2I. (2.1)

So Re(XAx, x) = ((XA+A∗X)x, x)/2 = (x, x) (x ∈ H) and

cos τ(A,X) = inf
x∈H,‖x‖=1

(x, x)

|(XAx, x)|
=

1

supx∈H,‖x‖=1 |(XAx, x)|
≥ 1

‖AX‖
.

Put

J(A) = 2

∫ ∞
0
‖e−At‖2dt.

Now we are in a position to formulate our main result.

Theorem 2.1. Let A, Ã ∈ B(H), condition (1.1) hold and X be a solution
of (2.1). Then with the notation q = ‖A− Ã‖ one has

cos τ(Ã,X) ≥ cos τ(A,X)
(1− qJ(A))

(1 + qJ(A))
,

provided
qJ(A) < 1.
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The proof of this theorem is based on the following lemma.

Lemma 2.2. Let A, Ã ∈ B(H), condition (1.1) hold and X be a solution
of (2.1). If, in addition,

q‖X‖ < 1, (2.2)

then

cos τ(Ã,X) ≥ cos τ(A,X)
(1− ‖X‖q)
(1 + ‖X‖q)

.

Proof. Put E = Ã − A. Then q = ‖E‖ and due to (2.1), with x ∈ H,
‖x‖ = 1, we obtain

Re(X(A+ E)x, x) ≥ Re(XAx, x)− |(XEx, x)|
= (x, x)− |(XEx, x)|
≥ (x, x)− ‖X‖‖E‖‖x‖2 = 1− ‖X‖q.

(2.3)

In addition,

|(X(A+ E)x, x)| ≤ |(XAx, x)|+ ‖X‖‖E‖‖x‖2

= |(XAx, x)|
(

1 +
‖X‖q

|(XAx, x)|

)
(‖x‖ = 1).

But
|(XAx, x)| ≥ |Re(XAx, x)| = Re(XAx, x) = (x, x) = 1.

Hence

|(X(A+ E)x, x)| ≤ |(XAx, x)|
(

1 +
‖X‖q

Re(XAx, x)

)
≤ |(XAx, x)|(1 + ‖X‖q).

Now (2.3) yields.

Re(XÃx, x)

|(XÃx, x)|
≥ (1− ‖X‖q)
|(XAx, x)|(1 + ‖X‖q)

(‖x‖ = 1),

provided (2.2) holds. Since

cos τ(Ã,X) = inf
x∈B,‖x‖=1

Re(XÃx, x)

|(XÃx, x)|
,

we arrive at the required result.
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Proof of Theorem 2.1 Note that X is representable as

X = 2

∫ ∞
0

e−A
∗te−Atdt

[1, Section 1.5]. Hence, we easily have ‖X‖ ≤ J(A). Now the latter lemma
proves the theorem.

3. Operators with Hilbert-Schmidt Hermitian components

In this section we obtain an estimate for J(A) (A ∈ B(H)) assuming that
A ∈ B(H) and

AI := (A−A∗)/i is a Hilbert-Schmidt operator, (3.1)

i.e., N2(AI) := (trace(A2
I))

1/2 < ∞. Numerous integral operators satisfy this
condition. Introduce the quantity (the departure from normality)

gI(A) :=

[
2N2

2 (AI)− 2

∞∑
k=1

| Imλk(A)|2
]1/2

≤
√

2N2(AI),

where λk(A) (k = 1, 2, . . .) are the eigenvalues of A taken with their mul-
tiplicities and ordered as | Imλk+1(A)| ≤ | Imλk(A)|. If A is normal, then
gI(A) = 0, cf. [2, Lemma 9.3].

Lemma 3.1. Let conditions (1.1) and (3.1) hold. Then J(A) ≤ Ĵ(A),
where

Ĵ(A) :=

∞∑
j,k=0

gj+kI (A)(k + j)!

2j+kβj+k+1(A)(j! k!)3/2
.

Proof. By [2, Theorem 10.1] we have

‖e−At‖ ≤ exp
[
− β(A)t

] ∞∑
k=0

gkI (A)tk

(k!)3/2
(t ≥ 0).
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Then

J(A) ≤ 2

∫ ∞
0

exp[−2β(A)t]

( ∞∑
k=0

gkI (A)tk

(k!)3/2

)2

dt

= 2

∫ ∞
0

exp[−2β(A)t]

 ∞∑
j,k=0

gk+j
I (A)tk+j

(j!k!)3/2

 dt

=

∞∑
j,k=0

2(k + j)!gj+kI (A)

(2β(A))j+k+1(j! k!)3/2
,

as claimed.

If A is normal, then gI(A) = 0 and with 00 = 1 we have Ĵ(A) = 1
β(A) .

The latter lemma and Theorem 2.1 imply

Corollary 3.2. Let A, Ã ∈ B(H) and let the conditions (1.1), (3.1) and
qĴ(A) < 1 hold. Then

cos τ(Ã,X) ≥ (1− qĴ(A))

(1 + qĴ(A))
cos τ(A,X).

4. Integral operators

As usually L2 = L2(0, 1) is the space of scalar-valued functions h defined
on [0, 1] and equipped with the norm

‖h‖ =

[∫ 1

0
|h(x)|2dx

]1/2

.

Consider in L2(0, 1) the operator Ã defined by

(Ãh)(x) = a(x)h(x) +

∫ 1

0
k(x, s)h(s)ds (h ∈ L2, x ∈ [0, 1]), (4.1)

where a(x) is a real bounded measurable function with

a0 := inf a(x) > 0, (4.2)

and k(x, s) is a scalar kernel defined on 0 ≤ x, s ≤ 1, and∫ 1

0

∫ 1

0
|k(x, s)|2ds dx <∞. (4.3)
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So the Volterra operator V defined by

(V h)(x) =

∫ 1

x
k(x, s)h(s)ds (h ∈ L2, x ∈ [0, 1]),

is a Hilbert-Schmidt one. Define operator A by

(Ah)(x) = a(x)h(x) +

∫ 1

x
k(x, s)h(s)ds (h ∈ L2, x ∈ [0, 1]).

Then A = D+ V, where D is defined by (Dh)(x) = a(x)h(x). Due to Lemma
7.1 and Corollary 3.5 from [3] we have σ(A) = σ(D). So σ(A) is real and
β(A) = a0. Moreover,

N2(AI) = N2(VI) ≤ N2(V ) =

[∫ 1

0

∫ 1

x
|k(x, s)|2ds dx

]1/2

.

Here VI = (V − V ∗)/2i. Thus,

gI(A) ≤ gV :=
√

2N2(V )

and

‖A− Ã‖ ≤ q0 :=

[∫ 1

0

∫ x

0
|k(x, s)|2ds dx

]1/2

.

Simple calculations show that under consideration

Ĵ(A) ≤ Ĵ0 :=
∞∑

j,k=0

gj+kV (k + j)!

2j+kaj+k+1
0 (j! k!)3/2

.

Making use of Corollary 3.2 and taking into account that in the considered
case cos τ(A,X) = 1, we arrive at the following result.

Corollary 4.1. Let Ã be defined by (4.1) and the conditions (4.2) and
(4.3) hold. If, in addition, q0Ĵ0 < 1, then σ(Ã) lies in the angular sector{

z ∈ C : | arg z| ≤ arccos
(1− q0Ĵ0)

(1 + q0Ĵ0)

}
.

Example 4.2. To estimate the sharpness of our results consider in L2(0,1)
the operators

(Ah)(x) = 2h(x) and (Ãh)(x) = (2 + i)h(x) (h ∈ L2, x ∈ [0, 1]).
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σ(A) consists of the unique point λ = 2 and so cos(A,X) = cos arg λ = 1.
We have

J(A) = 2

∫ ∞
0

e−4tdt = 1/2 and q = 1.

By Corollary 3.2

cos τ(Ã,X) ≥ 1− 1/2

1 + 1/2
= 1/3.

Compare this inequality with the sharp result: σ(Ã) consists of the unique
point λ̃ = 2 + i. So tan(arg λ̃) = 1/2, and therefore cos(arg λ̃) = 2/(

√
5).
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