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Abstract: Let A and A be bounded operators in a Hilbert space. We consider the following problem:
let the spectrum of A lie in some angular sector. In what sector the spectrum of A lies if A and A
are “close”? Applications of the obtained results to integral operators are also discussed.
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1. INTRODUCTION AND PRELIMINARIES

Let H be a complex separable Hilbert space with a scalar product (.,.),
the norm ||.|| = +/(.,.) and unit operator I. By B(H) we denote the set of
bounded operators in 1. For an A € B(H), A* is the adjoint operator, ||A]l
is the operator norm and o(A) is the spectrum.

We consider the following problem: let A and A be “close” operators and
o(A) lie in some angular sector. In what sector o(A) lies?

Not too much works are devoted to the angular localizations of spectra.
The papers [5], 6 [7, [§] should be mentioned. In particular, in the papers by
E.L. Jury, N.K. Bose and B.D.O. Anderson [5} 0] it is shown that the test to de-
termine whether all eigenvalues of a complex matrix of order n lie in a certain
sector can be replaced by an equivalent test to find whether all eigenvalues of
a real matrix of order 4n lie in the left half plane. The results from [5] have
been applied by G.H. Hostetter [4] to obtain an improved test for the zeros
of a polynomial in a sector. In [7] M.G. Krein announces two theorems con-
cerning the angular localization of the spectrum of a multiplicative operator
integral. In the paper [§] G.V. Rozenblyum studies the asymptotic behavior of
the distribution functions of eigenvalues that appear in a fixed angular region
of the complex plane for operators that are close to normal. As applications,
he calculates the asymptotic behavior of the spectrum of two classes of oper-
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ators: elliptic pseudo-differential operators acting on the sections of a vector
bundle over a manifold with a boundary, and operators of elliptic boundary
value problems for pseudo-differential operators. It should be noted that in
the just pointed papers the perturbations of an operator whose spectrum lie
in a given sector are not considered. Below we give bounds for the spectral
sector of a perturbed operator.

Without loss of the generality it is assumed that

B(A) :==infRec(A) > 0. (1.1)

If this condition does not hold, instead of A we can consider perturbations of
the operator A; = A+ Ic with a constant ¢ > |3(A)|.

For a Y € B(H) we write Y > 0 if Y is positive definite, i.e., inf,cp jo|=1
(Yz,z) > 0. Let Y > 0. Define the angular Y -characteristic 7(A,Y) of A by

Re(Y Az, z)

AY):= R A
cos7(4,Y) xEHl,IﬁmHzl |(Y Az, x)|

The set
S(AY):={z€C : |argz| <T(A4,Y)}

will be called the Y-spectral sector of A.

LEMMA 1.1. Foran A € B(H), let condition (1.1)) hold and Y be a positive
definite operator, such that (Y A)*+Y A > 0. Then o(A) lies in the Y -spectral
sector of A.

Proof. Take a ray z = re't (0 < r < 00) intersecting o(A), and take the
point zy = 7pe® on it with the maximum modulus. By the theorem on the
boundary point of the spectrum [I, Section 1.4.3, p. 28] there exists a normed
sequence {x,}, such that Az, — zpz, — 0, (n — 00). Hence,

Re(Y Az, z,)  Re roe (Y, ,)

= + €, =cost +¢€
0 Az, el ol Vem )] " '

with €, =+ 0 asn — 0o . So 2 is in S(A,Y). This proves the lemma. I

EXAMPLE 1.2. Let A = A* > 0. Then condition (I.1)) holds. For any
Y > 0 commuting with A (for example Y = I) we have (YA)* + YA =2Y A
and Re(Y Az, z) = |[(YAz,z)|. Thus cos7(A,Y)=1and S(A,Y)={z€C :
arg z = 0}.
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So Lemma is sharp.

Remark 1.3. Suppose A has a bounded inverse. Recall that the quantity
dev(A) defined by

Re(Az, z)

dev(A) :=
cos dev(A) xeﬁ}z#o | Az ||| ]|

is called the angular deviation of A, cf. [I, Chapter 1, Exercise 32]. For
example, for a positive definite operator A one has

2V A

A M+ A

where A, and Aj; are the minimum and maximum of the spectrum of A,
respectively (see [I, Chapter 1, Exercise 33]). Besides, in Exercise 32 it is
pointed that the spectrum of A lies in the sector |argz| < dev(A). Since
|(Az, z)| < ||Az||||z||, Lemma [1.1] refines the just pointed assertion.

cos dev(A)

2. THE MAIN RESULT

Let A be a bounded linear operator in H, whose spectrum lies in the open
right half-plane. Then by the Lyapunov theorem, cf. [I, Theorem 1.5.1], there
exists a positive definite operator X € B(H) solving the Lyapunov equation

2Re(AX) = XA+ A*X = 2I. (2.1)
So Re(XAz,z) = (XA+ A*X)z,x)/2 = (x,z) (r € H) and
) (z,x) 1 1
cosT(A, X)=  inf = > .
4.5 vettfal=1 [(X Az, z)|  supP,ep||aj=1 |(X Az, 2)| — [[AX]|
Put

o
J(A) = 2/ e 2dt.
0
Now we are in a position to formulate our main result.

THEOREM 2.1. Let A, A € B(H), condition (I.1)) hold and X be a solution

of ([2.1). Then with the notation ¢ = ||A — A|| one has
i (1 —qJ(4))
cosT(A,X)>cos7(A, X)—2=,

) 2 st N )

provided
qJ(A) < 1.
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The proof of this theorem is based on the following lemma.

LEMMA 2.2. Let A, A € B(#), condition (T.1) hold and X be a solution

of (2.1). If, in addition,
gl X1 <1, (2:2)

then

i (1 —[1Xllg)
cosT(A, X) > COST(A,X)W.

Proof. Put E = A — A. Then q = ||E|| and due to (2.1), with z € #,
|z|| = 1, we obtain

Re(X(A+ E)x,z) > Re(X Az, z) — (X Ez, x)|
= (z,2) — [(XEx,z)| (2.3)
> (z,2) — | X[ 1Bz =1~ [ XIlg-

In addition,
(X(A+ E)z,2)| < [(X Az, z)| + | X[ El]|2]

— (X A 2)] (1 n ”X”q) (] = 1).

(X Az, z)|
But
(X Az, z)| > |Re(X Az, z)| = Re(X Ax,z) = (x,z) = 1.
Hence
(6 + Bo)] < (X dw.a)] (14 e ) < 100 An I3+ X )
Re(X Az, x)
Now yields.
XA 1—||X
et A4 T 01 = 1)
provided holds. Since
~ ) Re(Xfl:c,a:)

cosT(A4,X) =

i

m =
zeB)|zll=1 |(X Ax, )]

we arrive at the required result. |
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Proof of Theorem [2.1] Note that X is representable as
o0 *
X = 2/ e Atem Aty
0

[1, Section 1.5]. Hence, we easily have || X|| < J(A). Now the latter lemma
proves the theorem. [

3. OPERATORS WITH HILBERT-SCHMIDT HERMITIAN COMPONENTS

In this section we obtain an estimate for J(A) (A € B(#)) assuming that
A€ B(H) and

Ar = (A— A%)/i is a Hilbert-Schmidt operator, (3.1)

i.e., No(Ar) := (trace(A2))Y/? < oco. Numerous integral operators satisfy this
condition. Introduce the quantity (the departure from normality)

1/2

g1(A) := |2N3(Ar) = 2 ) | Tm A (4)[ < V2Ny(Ap),
k=1

where A\g(A) (k = 1,2,...) are the eigenvalues of A taken with their mul-
tiplicities and ordered as |Im A\gy1(A)| < |[ImAgx(A4)|. If A is normal, then
g1(A) =0, cf. [2| Lemma 9.3].

~

LEMMA 3.1. Let conditions (1.1) and (3.1) hold. Then J(A) < J(A),
where

YN < g1 (A)(k + )
J(A4) = %Z:O 2j+k@Ij+k+1(A)(j! k)32

Proof. By [2, Theorem 10.1] we have

oo k k
e < exp [~ A(AYN] 3 LA 5 )
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Then
J(A) <2 /0 " expl- (ki;o g(k(é)m )2
=2 /0 " exp[-25(4)] j:ogk+],k, li’;ﬂ dt
_jkzo (28(A k—i;—]l-gf—i-f;k!(]j;?;/r

as claimed. 1

If A is normal, then g;(A) = 0 and with 0° = 1 we have .J(A4) = ﬁ.
The latter lemma and Theorem imply

~ COROLLARY 3.2. Let A, A € B(H) and let the conditions (T.1)), (3.1) and
qJ(A) <1 hold. Then

. 1—qJ(A

cosT(A,X) > MCOST(A,X).
(1+qJ(A))
4. INTEGRAL OPERATORS

As usually L2 = L?(0,1) is the space of scalar-valued functions h defined
on [0,1] and equipped with the norm

o= [ [ oas] "

Consider in L2(0,1) the operator A defined by
1
(AR)(z) = a(2)h(z) +/ bz, s)h(s)ds (heI%ze[0,1]),  (41)
0

where a(x) is a real bounded measurable function with
ap :=infa(x) > 0, (4.2)

and k(z,s) is a scalar kernel defined on 0 < z,s < 1, and

/01 /01 le(z, 8)[2ds dz < oo, (4.3)
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So the Volterra operator V' defined by
1
(Vh)(x) :/ k(x,s)h(s)ds (h€ L* z€0,1]),

is a Hilbert-Schmidt one. Define operator A by

1
(Ah)(z) = a(x)h(x) +/ E(x,s)h(s)ds (h€ L? 2 €0,1]).

T

Then A = D +V, where D is defined by (Dh)(x) = a(x)h(x). Due to Lemma
7.1 and Corollary 3.5 from [3] we have 0(A) = o(D). So o(A) is real and
B(A) = ag. Moreover,

1,1 1/2
Na(A)) = No(Vy) < Na(V) = [/0 / e(z, 5)[2ds dw} .
Here V; = (V — V*)/2i. Thus,
91(A) < gv :==V2No(V)

5 1 x 1/2
4= Al <= | [ [ e srasad
0 0

Simple calculations show that under consideration

. . 00 ]Jrk(k _|_])
A) < Jy:= .
J( ) =~ JO ];0 2]+k %+k+1( ' k')3/2

and

Making use of Corollary and taking into account that in the considered
case cosT(A, X) =1, we arrive at the following result.

COROLLARY 4.1. Let A be defined by (4.1) and the conditions and
(4.3) hold. If, in addition, qoJo < 1, then O'(A) lies in the angular sector

L
ze€C : |argz| Sarccos(iqo{o) .
(1 + qoJo)

EXAMPLE 4.2. To estimate the sharpness of our results consider in L?(0,1)
the operators

(Ah)(x) = 2h(x) and (Ah)(z) = (2+i)h(z) (he L* zc€[0,1]).
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o(A) consists of the unique point A = 2 and so cos(A, X) = cos arg A = 1.
We have

J(A)z?/ e Mdt=1/2 and q=1.
0

By Corollary
1-1/2

A, X) >
cosT(A, X) > 1512

=1/3.

Compare this inequality with the sharp result: o(A) consists of the unique
point A = 2 + 4. So tan(arg \) = 1/2, and therefore cos(arg \) = 2/(1/5).
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