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Abstract : For every n ≥ 2 this paper is devoted to the description of the sets of extreme and exposed

points of the closed unit balls of L(nl2∞) and Ls(nl2∞), where L(nl2∞) is the space of n-linear forms
on R2 with the supremum norm, and Ls(nl2∞) is the subspace of L(nl2∞) consisting of symmetric

n-linear forms. First we classify the extreme points of the closed unit balls of L(nl2∞) and Ls(nl2∞),

correspondingly. As corollaries we obtain | extBL(nl2∞)| = 2(2
n) and | extBLs(nl2∞)| = 2n+1. We

also show that expBL(nl2∞) = extBL(nl2∞) and expBLs(nl2∞) = extBLs(nl2∞).

Key words: n-linear forms, symmetric n-linear forms, extreme points, exposed points.

AMS Subject Class. (2010): 46A22.

1. Introduction

Let n ∈ N, n ≥ 2. We write BE for the unit ball of a real Banach space E
and the dual space of E is denoted by E∗. An element x ∈ BE is called an
extreme point of BE if y, z ∈ BE with x = 1

2(y + z) implies x = y = z. We
denote by extBE the set of all the extreme points of BE . An element x ∈ BE

is called an exposed point of BE if there is a f ∈ E∗ so that f(x) = 1 = ‖f‖
and f(y) < 1 for every y ∈ BE \{x}. It is easy to see that every exposed point
of BE is an extreme point. We denote by expBE the set of exposed points of
BE . We denote by L(nE) the Banach space of all continuous n-linear forms on
E endowed with the norm ‖T‖ = sup‖xk‖=1 |T (x1, · · · , xn)|. Ls(nE) denote
the closed subspace of all continuous symmetric n-linear forms on E.

Let us say about the history of the classifications of extreme and exposed
points of the unit ball of continuous (symmetric) multilinear forms on a
Banach space. Kim [1] initiated and classified extBLs(2l2∞) and expBLs(2l2∞),
where ln∞ = Rn with the supremum norm. It was shown that extBLs(2l2∞) =
expBLs(2l2∞). Kim [2, 3, 4, 5] classified extBLs(2d∗(1,w)2), extBL(2d∗(1,w)2),
expBLs(2d∗(1,w)2), and expBL(2d∗(1,w)2), where d∗(1, w)2 = R2 with the octago-

nal norm ‖(x, y)‖w = max
{
|x|, |y|, |x|+|y|1+w

}
. Kim [6, 7] classified extBLs(2R2

h(w)
)
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and extBL(2R2
h(w)

), where where R2
h(w) = R2 with the hexagonal norm

‖(x, y)‖h(w) = max{|y|, |x|+ (1−w)|y|}. Kim [8, 9, 10] classified extBLs(2l3∞),
extBLs(3l2∞) and extBL(3l2∞). It was shown that every extreme point is exposed
in each space. Kim [11] characterized extBL(2ln∞) and extBLs(2ln∞). Recently,
Kim [12] classified extBL(2l3∞) and showed expBL(2l3∞) = extBL(2l3∞).

2. The extreme and exposed points of the unit ball of L(nl2∞)

Let l2∞ = {(x, y) ∈ R2 : ‖(x, y)‖∞ = max(|x|, |y|)}. For n ≥ 2, we denote

Wn := {[(1, w1), . . . , (1, wn)] : wj = ±1 for j = 1, . . . , n}.

Note that Wn has 2n elements in Sl2∞ × · · · × Sl2∞ .
Recall that the Krein-Milman Theorem [13] say that every nonempty com-

pact convex subset of a Housdorff locally convex space is the closed convex
hull of its set of extreme points. Hence, the unit ball of l2∞ is the closed convex
hull of

{(1, 1), (−1, 1), (1,−1), (−1,−1)}.

Theorem 2.1. Let n ≥ 2 and T ∈ L(nl2∞). Then,

‖T‖ = sup
W∈Wn

|T (W )|.

Proof. It follows that from the Krein-Milman theorem and multi-
linearity of T .

Let Z1, . . . , Z2n be an ordering of the monomials xl1 · · ·xljyk1 · · · ykn−j
with

{l1, · · · , lj , k1, · · · , kn−j} = {1, · · · , n}. Note that {Z1, . . . , Z2n} is a basis for
L(nl2∞). Hence, dim(L(nl2∞)) = 2n. If T ∈ L(nl2∞), then,

T =
2n∑
k=1

akZk

for some a1, . . . , a2n ∈ R. By simplicity, we denote T = (a1, · · · , a2n)t. Let
W1, . . . ,W2n be an ordering of the elements of Wn. Let

M(Z1, . . . , Z2n ;W1, . . . ,W2n) = [Zi(Wj)]

be the 2n × 2n matrix. Note that, for every T ∈ L(nl2∞),

M(Z1, . . . , Z2n ;W1, . . . ,W2n)T = (T (W1), . . . , T (W2n))t.

Here, (ε1, . . . , ε2n)t denote the transpose of (ε1, . . . , ε2n).
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Theorem 2.2. Let n ≥ 2. Then,

extBL(nl2∞) =
{
M(Z1, . . . , Z2n ;W1, . . . ,W2n)−1(ε1, . . . , ε2n)t

: εj = ±1, j = 1, . . . , 2n
}
.

Proof. Claim 1: M(Z1, . . . , Z2n ;W1, . . . ,W2n) is invertible.
Consider the equation

M(Z1, . . . , Z2n ;W1, . . . ,W2n)(t1, . . . , t2n)t = (0, . . . , 0)t. (*)

Let a1, · · · , a2n be a solution of (*) and let T =
∑2n

k=1 akZk ∈ L(nl2∞). Then,

T (Wj) = 0 j = 1, . . . , 2n.

By Theorem 2.1, ‖T‖ = 0, hence T = 0. Since Z1, . . . , Z2n are linearly
independent in L(nl2∞), we have aj = 0 for all j = 1, . . . , 2n. Hence, the
equation (*) has only zero solution. Therefore, M(Z1, . . . , Z2n ;W1, . . . ,W2n)
is invertible.

Claim 2: M(Z1, . . . , Z2n ;W1, . . . ,W2n)−1(ε1, . . . , ε2n)t is an extreme
point for εj = ±1, (j = 1, . . . , 2n).

Let

T := M(Z1, . . . , Z2n ;W1, . . . ,W2n)−1(ε1, . . . , ε2n)t.

Since

M(Z1, . . . , Z2n ;W1, . . . ,W2n)T = (ε1, . . . , ε2n)t,

T (Wj) = εj for j = 1, . . . , 2n. By Theorem 2.1,

‖T‖ = sup
1≤j≤2n

|T (Wj)| = sup
1≤j≤2n

|εj | = 1.

Suppose that T = 1
2(T1 +T2) for some Tk ∈ BL(nl2∞) (k = 1, 2). We may write

T1 = M(Z1, . . . , Z2n ;W1, . . . ,W2n)−1(ε1, . . . , ε2n)t + (δ1, . . . , δ2n)t

and

T2 = M(Z1, . . . , Z2n ;W1, . . . ,W2n)−1(ε1, . . . , ε2n)t − (δ1, . . . , δ2n)t

for some δj ∈ R (j = 1, . . . , 2n). Note that

(Tk(W1), . . . , Tk(W2n))t = M(Z1, . . . , Z2n ;W1, . . . ,W2n)Tk for k = 1, 2.
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Therefore,

(T1(W1), . . . , T1(W2n))t = (ε1, . . . , ε2n)t

+M(Z1, . . . , Z2n ;W1, . . . ,W2n)(δ1, . . . , δ2n)t

and

(T2(W1), . . . , T2(W2n))t = (ε1, . . . , ε2n)t

−M(Z1, . . . , Z2n ;W1, . . . ,W2n)(δ1, . . . , δ2n)t.

Hence, for j = 1, . . . , 2n,

T1(Wj) = εj + (Z1(Wj), . . . , Z2n(Wj))(δ1, . . . , δ2n)t,

and
T2(Wj) = εj − (Z1(Wj), . . . , Z2n(Wj))(δ1, . . . , δ2n)t.

It follows that, for j = 1, . . . , 2n,

1 ≥ max{|T1(Wj)|, |T2(Wj)|}

= |εj |+ |(Z1(Wj), . . . , Z2n(Wj))(δ1, . . . , δ2n)t|

= 1 + |(Z1(Wj), . . . , Z2n(Wj))(δ1, . . . , δ2n)t|,

which shows that

(Z1(Wj), . . . , Z2n(Wj))(δ1, . . . , δ2n)t = 0 for j = 1, . . . , 2n.

Hence,
M(Z1, . . . , Z2n ;W1, . . . ,W2n)(δ1, . . . , δ2n)t = 0 .

Therefore,

(δ1, . . . , δ2n)t = M(Z1, . . . , Z2n ;W1, . . . ,W2n)−1(0, . . . , 0)t

= (0, . . . , 0)t.

Hence, Tk = T for k = 1, 2. Therefore, T is extreme.
Suppose that T ∈ extBL(nl2∞). Note that

(T (W1), . . . , T (W2n))t = M(Z1, . . . , Z2n ;W1, . . . ,W2n)T.
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Claim 3: |T (Wj)| = 1 for all j = 1, . . . , 2n.

If not. There exists 1 ≤ j0 ≤ 2n such that |T (Wj0)| < 1. Let δ0 > 0 such
that |T (Wj0)|+ δ0 < 1. Let

T1 = M(Z1, . . . , Z2n ;W1, . . . ,W2n)−1

× (T (W1), . . . , T (Wj0−1), T (Wj0) + δ0, T (Wj0+1), . . . , T (W2n))t

and

T2 = M(Z1, . . . , Z2n ;W1, . . . ,W2n)−1

× (T (W1), . . . , T (Wj0−1), T (Wj0)− δ0, T (Wj0+1), . . . , T (W2n))t.

Hence,

T1(Wj0) = T (Wj0) + δ0, T2(Wj0)

= T (Wj0)− δ0, T1(Wj) = T2(Wj) = T (Wj) (j 6= j0).

Obviously, T 6= Tk for k = 1, 2. By Theorem 2.1, ‖Tk‖ = 1 for k = 1, 2 and
T = 1

2(T1 + T2), which is a contradiction. Therefore,

T = M(Z1, . . . , Z2n ;W1, . . . ,W2n)−1(T (W1), . . . , T (W2n))t

with |T (Wj)| = 1 for all j = 1, . . . , 2n.

Kim [10] characterized extBL(3l2∞). Notice that using Wolfram Math-
ematica 8 and Theorem 2.2, we can exclusively describe extBL(nl2∞) for a
given n ≥ 2.

For every T ∈ L(nl2∞), we let

Norm(T) :=
{

[(1, w1), . . . , (1, wn)] ∈ Wn : |T ((1, w1), . . . , (1, wn))| = ‖T‖
}
.

We call Norm(T) the set of the norming points of T .

Corollary 2.3. (a) Let n ≥ 2. extBL(nl2∞) has exactly 2(2n) elements.

(b) Let n ≥ 2 and T ∈ L(nl2∞) with ‖T‖ = 1. Then T ∈ extBL(nl2∞) if
and only if Norm(T) =Wn.

Theorem 2.4. ([4]) Let E be a real Banach space such that extBE is
finite. Suppose that x ∈ extBE satisfies that there exists an f ∈ E∗ with
f(x) = 1 = ‖f‖ and |f(y)| < 1 for every y ∈ extBE\{±x}. Then x ∈ expBE .
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Theorem 2.5. Let n ≥ 2. Then, expBL(nl2∞) = extBL(nl2∞).

Proof. Let T ∈ extBL(nl2∞) and let

f :=
1

2n

∑
1≤j≤2n

sign(T (Wj))δWj ∈ L(nl2∞)∗.

Note that 1 = ‖f‖ = f(T ). Let S ∈ extBL(nl2∞) be such that |f(S)| = 1. We
will show that S = T or S = −T . It follows that

1 = |f(S)| = | 1

2n

∑
1≤j≤2n

sign(T (Wj))S(Wj)|

≤ 1

2n

∑
1≤j≤2n

|S(Wj)|

≤ 1,

which shows that

S(Wj) = sign(T (Wj)) (1 ≤ j ≤ 2n)

or

S(Wj) = − sign(T (Wj)) (1 ≤ j ≤ 2n).

Suppose that

S(Wj) = − sign(T (Wj)) (1 ≤ j ≤ 2n).

It follows that

S = M(Z1, . . . , Z2n ;W1, . . . ,W2n)−1(S(W1), . . . , S(W2n))t

= M(Z1, . . . , Z2n ;W1, . . . ,W2n)−1(− sign(T (W1)), . . . ,− sign(T (W2n)))t

= M(Z1, . . . , Z2n ;W1, . . . ,W2n)−1(−T (W1), . . . ,−T (W2n))t

= −T.

Note that if S(Wj) = sign(T (Wj)) (1 ≤ j ≤ 2n), then S = T . By Theorem
2.4, T is exposed.
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3. The extreme and exposed points of the unit ball of Ls(nl2∞)

Let n ≥ 2 and

Un :=
{

[(1, 1), (1, 1), . . . , (1, 1)], [(1,−1), (1, 1), . . . , (1, 1)],

[(1,−1), (1,−1), (1, 1), . . . , (1, 1)],

[(1,−1), (1,−1), (1− 1), (1, 1), . . . , (1, 1)],

. . . , [(1,−1), (1,−1), . . . , (1,−1), (1, 1)],

[(1,−1), (1,−1), . . . , (1,−1), (1,−1)]
}
.

Note that Un has n+ 1 elements in Sl2∞ × · · · × Sl2∞ .

Theorem 3.1. Let n ≥ 2 and T ∈ Ls(nl2∞). Then,

‖T‖ = sup
U∈Un

|T (U)| .

Proof. It follows that from Theorem 2.1 and symmetry of T .

For j = 0, . . . , n, we let

Fj =
∑

{l1,··· ,lj ,k1,··· ,kn−j}={1,··· ,n}

xl1 · · ·xljyk1 · · · ykn−j
.

Then, {F0, . . . , Fn} is a basis for Ls(nl2∞). Hence, dim(Ls(nl2∞)) = n + 1. If
T ∈ Ls(nl2∞), then,

T =

n∑
j=0

bjFj

for some b0, . . . , bn ∈ R. By simplicity, we denote T = (b0, · · · , bn)t. For
j = 0, . . . , n, we let

Uj = [(1, u1), . . . , (1, un)] ∈ Un,

where uk = −1 for 1 ≤ k ≤ j and uk = 1 for j + 1 ≤ k ≤ n. Let

M(F0, . . . , Fn;U0, . . . , Un) = [Fi(Uj)]

be the (n+ 1)× (n+ 1) matrix. Note that, for every T ∈ Ls(nl2∞),

M(F0, . . . , Fn;U0, . . . , Un)T = (T (U0), . . . , T (Un))t.

By analogous arguments in the claim 1 of Theorem 2.2, M(F0, . . . , Fn;U0,
. . . , Un) is invertible.
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Theorem 3.2. Let n ≥ 2. Then,

extBLs(nl2∞) =
{
M(F0, . . . , Fn;U0, . . . , Un)−1(ε0, . . . , εn)t

: εj = ±1, j = 0, . . . , n
}
.

Proof. It follows by Theorem 3.1 and analogous arguments in the claims
2 and 3 of Theorem 2.2.

Notice that using Wolfram Mathematica 8 and Theorem 3.2, we can ex-
clusively describe extBLs(nl2∞) for a given n ≥ 2.

For every T ∈ Ls(nl2∞), we let

Norm(T) :=
{

[(1, u1), . . . , (1, un)] ∈ Un : |T ((1, u1), . . . , (1, un))| = ‖T‖
}
.

We call Norm(T) the set of the norming points of T .

Corollary 3.3. (a) Let n ≥ 2. extBLs(nl2∞) has exactly 2n+1 elements.
(b) Let n ≥ 2 and T ∈ Ls(nl2∞) with ‖T‖ = 1. Then T ∈ extBLs(nl2∞) if

and only if Norm(T) = Un.

Theorem 3.4. Let n ≥ 2. Then, expBLs(nl2∞) = extBLs(nl2∞).

Proof. Let T ∈ extBLs(nl2∞) and let

f :=
1

n+ 1

∑
0≤j≤n

sign(T (Uj))δUj ∈ Ls(nl2∞)∗.

Note that 1 = ‖f‖ = f(T ). By analogous arguments in the proof of Theorem
2.5, f exposes T . Therefore, T is exposed.

Questions. (a) Let n ≥ 2 and ε1, . . . , ε2n be fixed with εj = ±1, (j =
1, . . . , 2n). Is it true that

extBL(nl2∞) =
{
M(Z1, . . . , Z2n ;W1, . . . ,W2n)−1(ε1, . . . , ε2n)t

: Z1, . . . , Z2n ,W1, . . . ,W2n are any ordering
}

?

(b) By Theorem 2.2, M(Z1, . . . , Z2n ;W1, . . . ,W2n)−1(ε1, . . . , ε2n)t is ex-
treme if Z1, . . . , Z2n , W1, . . . ,W2n are any ordering. Similarly, we may ask the
following: Let n ≥ 2 and δ0, . . . , δn be fixed with δk = ±1, (k = 0, . . . , n). Is
it true that

extBLs(nl2∞) =
{
M(F0, . . . , Fn;U0, . . . , Un)−1(δ0, . . . , δn)t

: F0, . . . , Fn, U0, . . . , Un are any ordering
}

?
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