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Abstract : Over the (1|2)-dimensional real superspace, we study aff(1|1)-trivial deformations of the

action of the affine Lie superalgebra aff(2|1) on the direct sum of the superspaces of weighted
densities. We compute the necessary and sufficient integrability conditions of a given infinitesimal

deformation of this action and we prove that any formal deformation is equivalent to its infinitisemal

part.
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1. Introduction

Let Vect(R) be the Lie algebra of polynomial vector fields on the real space.
Consider the 1-parameter deformation of Vect(R)-action on C∞(R)

Lλ
X d

dx

(f) = Xf ′ + λX ′f,

where X, f ∈ C∞(R) and X ′ := dX
dx . Denote by Fλ the Vect(R)-module struc-

ture on C∞(R) defined by Lλ for a fixed λ. Geometrically, Fλ =
{
fdxλ : f ∈

C∞(R)} is the space of polynomial weighted densities of weight λ ∈ R. The
space Fλ coincides with the space of vector fields, functions and differential
1-forms for λ = −1 , 0 and 1, respectively.

The superspace Dλ,µ := Homdiff(Fλ,Fµ) the linear differential operators

with the natural Vect(R)-action denoted Lλ,µX (A) = LµX ◦ A − A ◦ LλX . Each
module Dλ,µ has a natural filtration by the order of differential operators; the
graded module Sλ,µ := gr Dλ,µ is the space of symbols. The quotient-module
Dk
λ,µ /Dk−1

λ,µ is isomorphic to the module of weighted densities Fµ−λ−k; the
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isomorphism is defined by the principal symbol map σpr defined by

A =
k∑
i=0

ai(x)

(
∂

∂x

)i
7−→ σpr(A) = ak(x)(dx)µ−λ−k,

(see, e.g.,[15]). Therefore, as a Vect(R)-module, the space Sλ,µ depends on
the difference β = µ− λ, so that Sλ,µ be written as Sβ, and

Sβ =
∞⊕
k=0

Fβ−k

as Vect(R)-modules. The space of symbols of order ≤ n is

Snβ :=
n⊕
k=0

Fβ−k.

The space Dλ,µ cannot be isomorphic as a Vect(R)-module to the space of
symbols, but is a deformation of this space in the sense of Richardson and
Neijenhuis [19].

Deformation theory plays a crucial role in all branches of physics. In
physics the mathematical theory of deformations has been proved to be a
powerful tool in modeling physical reality. The concepts symmetry and de-
formations are considered to be two fundamental guiding principles for devel-
oping the physical theory further. The notion of deformation was applied to
Lie algebras by Nijenhuis and Richardson [19, 18]. This theory is developed
by Ovsienko and by other authors [3, 9, 19].

We consider the superspace R1|2 endowed with its standard contact struc-
ture defined by the 1-form α2, and K(2) of contact vector fields on R1|2. We
introduce the K(2)-module F2

λ of λ-densities on R1|2 and the K(2)-module of
linear differential operators, D2

λ,µ := Homdiff(F2
λ,F

2
µ), which are super analogs

of the spaces Fλ and Dλ,µ, respectively. The Lie superalgebra aff(2|1), a su-
per analog of aff(1), is a subalgebra of K(2). We classify the aff(1|1)-trivial
deformations of the structure of the aff(2|1)-module

S2
µ−λ =

∞⊕
k=0

F2
µ−λ− k

2

,

which is super analog of the space Sβ. We prove that any formal deformation
is equivalent to its infinitesimal part and we give an example of deformation
with one parameter.
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2. Definitions and notations

We briefly give in this section the basics definitions of geometrical objects
on R1|2 that will be needed for our purpose, for more details, see [7, 11, 6, 16,
15, 17].

2.1. The Lie superalgebra of contact vector fields on R1|2.
Let R1|2 be the superspace with coordinates (x, θ1, θ2), where θ1 and θ2 are
odd indeterminates: θiθj = −θjθi. We consider the superspace C∞(R1|2) of
polynomial functions. Any element of C∞(R1|2) has the form

F = f0 + f1θ1 + f2θ2 + f12θ1θ2,

where f0, f1, f2, f12 ∈ C∞(R). Even elements in C∞(R1|2) are the functions
F (x, θ) = f0(x) + f12(x)θ1θ2, the functions F (x, θ) = f1(x)θ1 + f2(x)θ2 are
odd elements. We denote by |F | the parity of a function F . Let Vect(R1|2)
be the space of polynomial vector fields on R1|2:

Vect(R1|2) =
{
F0∂x + F1∂1 + F2∂2 : Fi ∈ C∞(R1|2)

}
,

where ∂i and ∂x stand for ∂
∂θi

and ∂
∂x

. The superbracket of two vector fields
is bilinear and defined for two homogeneous vector fields by

[X,Y ] = X ◦ Y − (−1)|X||Y |Y ◦X.

The supespace R1|2 is equipped with the contact structure given by the 1-form

α2 = dx+ θ1dθ1 + θ2dθ2.

This contact structure is equivalently defined by the kernel of α2, spanned by
the odd vector fields

ηi = ∂i − θi∂x.

We consider the superspace K(2) of contact vector fields on R1|2. That is,

K(2) =
{
X ∈ Vect(R1|2) : ∃ F ∈ C∞(R1|2) such that LX(α2) = Fα2

}
,

where LX is the Lie derivative of a vector field, acting on the space of functions,
forms, vector fields, . . . .

Any contact vector field on R1|2 can be expressed as

XF = F∂x −
1

2
(−1)|F |

2∑
i=1

ηi(F )ηi , where F ∈ C∞(R1|2).
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Of course, K(2) is a subalgebra of Vect(R1|2), and K(2) acts on C∞(R1|2)
through

LXF
(G) = FG′ − 1

2
(−1)|F |

2∑
i=1

ηi(F ) · ηi(G), (2.1)

where G ∈ C∞(R1|2).

The contact bracket is defined by [XF , XG] = X{F,G}. The space

C∞(R1|2) is thus equipped with a Lie superalgebra structure isomorphic
to K(2). The explicit formula can be easily calculated:

{F,G} = FG′ − F ′G− 1

2
(−1)|F |

2∑
i=1

ηi(F ) · ηi(G). (2.2)

2.2. The superalgebra aff(2|1). Recall that the Lie algebra aff(1) can
be realized as a subalgebra of Vect(R):

aff(1) = Span (X1, Xx) ,

and the affine Lie superalgebra aff(1|1) is realized as a subalgebra of K(1):

aff(1|1) = Span(X1, Xx, Xθ).

The space aff(1|1)0 is isomorphic to aff(1), while

(aff(1|1))1̄ = Span(Xθ).

Similarly, the affine Lie superalgebra aff(2|1) can be realized as a subalge-
bra of K(2):

aff(2|1) = Span(X1, Xx, Xθ1 , Xθ2 , Xθ1θ2),

where

(aff(2|1))0̄ = Span(X1, Xx, Xθ1θ2),

(aff(2|1))1̄ = Span(Xθ1 , Xθ2).

We easily see that aff(1|1) is subalgebra of the Lie superalgebra aff(2|1).
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2.3. The space of weighted densities on R1|2. We introduce a one-
parameter family of modules over the Lie superalgebra K(2). As vector spaces
all these modules are isomorphic to C∞(R1|2), but not as K(2)-modules.

For every contact vector field XF , define a one-parameter family of first-
order differential operators on C∞(R1|2):

LλXF
= XF + λF ′, λ ∈ R. (2.3)

We easily check that
[LλXF

,LλXG
] = LλX{F,G}

. (2.4)

We thus obtain a one-parameter family of K(2)-modules on C∞(R1|2) that we
denote F2

λ, the space of all weighted densities on C∞(R1|2) of weight λ with
respect to α2:

F2
λ =

{
Fαλ2 : F ∈ C∞(R1|2)

}
. (2.5)

In particular, we have F0
λ = Fλ. Obviously the adjoint K(2)-module is iso-

morphic to the space of weighted densities on R1|2 of weight −1.

2.4. Differential operators on weighted densities. A differen-
tial operator on R1|2 is an operator on C∞(R1|2) of the form:

A =

m∑
j=0

aj∂
j
x +

2∑
i=1

ni∑
k=0

bk,i∂
k
x∂i +

n∑
`=0

c`∂
`
x∂1∂2, (2.6)

where aj , bk,i, c` ∈ C∞(R1|2). Any differential operator defines a linear
mapping Fαλ2 7→ (AF )αµ2 from F2

λ to F2
µ for any λ, µ ∈ K; thus, the space

of differential operators becomes a family of osp(2|2)-modules D2
λ,µ for the

natural action:

XF ·A = LµXF
◦A− (−1)|A||F |A ◦ LλXF

. (2.7)

Proposition 2.1. Every differential operator A ∈ D2
λ,µ can be expressed

in the form
A(Fαλ2) =

∑
`,m

a`,m(x, θ)η`1η
m
2 (F )αµ2 , (2.8)

where a`,m(x, θ) are arbitrary functions.

Proof. Since −η2
i = ∂x, and ∂i = ηi − θiη2

i , every differential operator A
given by (2.6) is a polynomial expression in η1 and η2.
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Proposition 2.2. As a aff(1|1)-module, we have

D2
λ,µ ' D1

λ,µ ⊕D1
λ+ 1

2
,µ+ 1

2

⊕Π
(
D1
λ,µ+ 1

2

⊕D1
λ+ 1

2
,µ

)
. (2.9)

Proof. Any element F ∈ C∞(R1|2) can be uniquely written as follows:
F = F1 +F2θ2, where ∂2F1 = ∂2F2 = 0. Therefore, for any XH ∈ aff(1|1), we
easily chek that

LλXH
(F ) = LλXH

(F1) + L
λ+ 1

2
XH

(F2)θ2.

Thus, the following map is an aff(1|1)-isomorphism:

Φλ : F2
λ −→ F1

λ ⊕Π(F1
λ+ 1

2

)

Fαλ2 7−→
(
F1α

λ
1 ,Π(F2α

λ+ 1
2

1 )

)
.

(2.10)

So, we deduce an aff(1|1)-isomorphism:

Ψλ,µ : D1
λ,µ ⊕D1

λ+ 1
2
,µ+ 1

2

⊕Π
(
D1
λ,µ+ 1

2

⊕D1
λ+ 1

2
,µ

)
−→ D2

λ,µ (2.11)

A 7−→ Φ−1
µ ◦A ◦ Φλ.

We identify the aff(1|1)-modules the following isomorphisms:

Π
(
D1
λ,µ+ 1

2

)
−→ Homdiff

(
F1
λ,Π(F1

µ+ 1
2

)
)
, Π(A) 7−→ Π ◦A,

Π
(
D1
λ+ 1

2
,µ

)
−→ Homdiff

(
F1
λ+ 1

2

,Π(F1
µ)
)
, Π(A) 7−→ A ◦Π,

D1
λ+ 1

2
,µ+ 1

2

−→ Homdiff

(
Π(F1

λ+ 1
2

),Π(F1
µ+ 1

2

)
)
, Π(A) 7−→ Π ◦A ◦Π.

3. aff(1|1)-trivial deformation of aff(2|1)-modules

Deformation theory of Lie algebra was first considered with one-parameter
of deformation [13, 19, 12, 21, 4, 5]. Recently, deformations of Lie (su-
per)algebras with multi-parameters were intensively studied (see, e.g., [1, 2,
3, 8, 20]).

3.1. Infinitesimal deformations and the first cohomology. Let
ρ0 : g→ End(V ) be an action of a Lie superalgebra g on a vector superspace
V and let h be a subagebra of g (if h is omitted it assumed to be {0}). When
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studying h-trivial deformations of the g-action ρ0, one usually starts with
infinitesimal deformations

ρ = ρ0 + tΥ, (3.1)

where Υ : g → End(V ) is a linear map vanishing on h and t is a formal
parameter with p(t) = p(Υ). The homomorphism condition

[ρ(x), ρ(y)] = ρ([x, y]), (3.2)

where x, y ∈ g, is satisfied in order 1 in t if and only if Υ is a h-relative
1-cocycle. That is, the map Υ satisfies

(−1)|x||Υ|[ρ0(x),Υ(y)]− (−1)|y|(|x|+|Υ|)[ρ0(y),Υ(x)]−Υ([x, y]) = 0.

Moreover, two h-trivial infinitesimal deformations ρ = ρ0 + tΥ1, and ρ =
ρ0 + tΥ2, are equivalents if and only if Υ1 −Υ2 is h-relative coboundary:

(Υ1 −Υ2)(x) = (−1)|x||A|[ρ0(x), A] := δA(x),

where A ∈ End(V )h and δ stands for differential of cochains on g with values
in End(V ) (see, e.g., [14, 19]). So, the space H1(g, h; End(V )) determines and
classifies infinitesimal deformations up to equivalence. If

dim H1(g, h; End(V )) = m,

then choose 1-cocycles Υ1, . . . ,Υm representing a basis of H1(g, h; End(V ))
and consider the infinitesimal deformation

ρ = ρ0 +

m∑
i=1

ti Υi, (3.3)

where t1, . . . , tm are independent parameters with |ti| = |Υi|.
Since we are interested in the aff(1|1)-trivial deformations of the aff(2|1)-

module structure on the space

S2,m
β =

2m⊕
k=0

F2
β− k

2

, where m ∈ 1

2
N. (3.4)

The first differential cohomology spaces H1
diff(aff(2|1), aff(1|1),D2

λ,µ) was
computed in [10]. The result is as follows:

dim(H1(aff(2|1), aff(1|1),D2
λ,µ)) =


1 if µ = λ,

2 if µ− λ = k, k ∈ {1, 2, . . . },
0 otherwise.
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The following 1-cocycles span the corresponding cohomology spaces:

Υλ,λ(XG) = η1η2(G),

Γ1
λ,λ+k(XG) = η1η2(G)∂kx ,

Γ2
λ,λ+k(XG) = η1η2(G)η1η2∂

k−1
x .

We consider the space H1(aff(2|1), aff(1|1), End(S2,m
β )) spanned by the classes

Υi
λ,λ and Γiλ,λ+k, i = 1, 2, where k ∈ {1, . . . , [m]}, [m] denoting the integer

part of m, and 2(β − λ) ∈ {2k, . . . , 2m} for a generic β. Any infinitesimal
aff(1|1)-trivial deformation of the aff(2|1)-module structure on S2,m

β is then
of the form

L̃XF
= LXF

+ L
(1)
XF
, (3.5)

where LXF
is the Lie derivate of S2,m

β along the vector XF defined by (2.3),
and

L
(1)
XF

=
∑
λ

tλ,λΥλ,λ(XF ) +
∑
λ

[m]∑
k=1

2∑
i=1

tiλ,λ+kΓ
i
λ,λ+k(XF ), (3.6)

where tλ,λ and tiλ,λ+k are independent parameters with |tλ,λ| = |Υλ,λ| and

|tiλ,λ+k| = |Γiλ,λ+k|.

3.2. Integrability conditions and deformations over supercom-
mutative algebras. Consider the superalgebra with unity C[[t1, . . . , tm]]
and consider the problem of integrability of infinitesimal deformations. Start-
ing with the infinitesimal deformation (3.3), we look for a formal series

ρ = ρ0 +

m∑
i=1

ti Υi +
∑
i,j

titj ρ
(2)
ij + · · · , (3.7)

where the higher order terms ρ
(2)
ij , ρ

(3)
ijk, . . . are linear maps from g to End(V )

with |ρ(2)
ij | = |titj |, |ρ

(3)
ijk| = |titjtk|, . . . such that the map

ρ : g→ C[[t1, . . . , tm]]⊗ End(V ) (3.8)

satisfies the homomorphism condition (3.2).
Quite often the above problem has no solution. Following [13] and [2],

we will impose extra algebraic relations on the parameters t1, . . . , tm. Let R
be an ideal in C[[t1, . . . , tm]] generated by some set of relations, and we can
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speak about deformations with base A = C[[t1, . . . , tm]]/R, (for details, see
[13]). The map (3.8) sends g to A⊗ End(V ).

Setting

ϕt = ρ− ρ0, ρ
(1) =

∑
ti Υi, ρ

(2) =
∑

titj ρ
(2)
ij , . . . ,

we can rewrite the relation (3.2) in the following way:

[ϕt(x), ρ0(y)] + [ρ0(x), ϕt(y)]− ϕt([x, y]) +
∑
i,j>0

[ρ(i)(x), ρ(j)(y)] = 0. (3.9)

The first three terms are (δϕt)(x, y). For arbitrary linear maps γ1, γ2 : g →
End(V ), consider the standard cup-product : [[γ1, γ2]] : g⊗g→ End(V ) defined
by:

[[γ1, γ2]](x, y) = (−1)|γ2|(|γ1|+|x|)[γ1(x), γ2(y)]

+ (−1)|γ1||x|[γ2(x), γ1(y)].
(3.10)

The relation (3.9) becomes now equivalent to

δϕt +
1

2
[[ϕt, ϕt]] = 0. (3.11)

Expanding (3.11) in power series in t1, . . . , tm, we obtain the following equa-
tion for ρ(k):

δρ(k) +
1

2

∑
i+j=k

[[ρ(i), ρ(j)]] = 0. (3.12)

The first non-trivial relation δρ(2) + 1
2 [[ρ(1), ρ(1)]] = 0 gives the first ob-

struction to integration of an infinitesimal deformation. Thus, considering
the coefficient of ti tj , we get

δρ
(2)
ij +

1

2
[[Υi,Υj ]] = 0. (3.13)

It is easy to check that for any two 1-cocycles γ1 and γ2 ∈ Z1(g, h; End(V )), the
bilinear map [[γ1, γ2]] is a h-relative 2-cocycle. The relation (3.13) is precisely
the condition for this cocycle to be a coboundary. Moreover, if one of the
cocycles γ1 or γ2 is a h-relative coboundary, then [[γ1, γ2]] is a h-relative 2-
coboundary. Therefore, we naturally deduce that the operation (3.10) defines
a bilinear map:

H1(g, h; End(V ))⊗H1(g, h; End(V )) −→ H2(g, h; End(V )). (3.14)

All the obstructions lie in H2(g, h; End(V )) and they are in the image of
H1(g, h; End(V )) under the cup-product.
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3.3. Equivalence. Two deformations ρ and ρ′ of a g-module V over A
are said to be equivalent (see [13]) if there exists an inner automorphism Ψ
of the associative superalgebra A⊗ End(V ) such that

Ψ ◦ ρ = ρ′ and Ψ(I) = I,

where I is the unity of the superalgebra A⊗ End(V ).

The following notion of miniversal deformation is fundamental. It as-
signs to a g-module V a canonical commutative associative algebra A and a
canonical deformation over A. A deformation (3.7) over A is said to be
miniversal if

(i) for any other deformation ρ′ with base (local) A′, there exists a homo-
morphism ψ : A′ → A satisfying ψ(1) = 1, such that

ρ = (ψ ⊗ Id) ◦ ρ′;

(ii) under notation of (i), if ρ is infinitesimal, then ψ is unique.

If ρ satisfies only the condition (i), then it is called versal. This definition
does not depend on the choice 1-cocycles Υ1, . . . ,Υm representing a basis of
H1(g, h; End(V )).

The miniversal deformation corresponds to the smallest ideal R. We refer
to [13] for a construction of miniversal deformations of Lie algebras and to
[2] for miniversal deformations of g-modules. Superization of these results is
immediate by the Sign Rule.

3.4. Integrability conditions. In this subsection, we obtain the in-
tegrability conditions for the infinitesimal deformation (3.5).

Theorem 3.1. (i) The following conditions are necessary and sufficient
for integrability of the infinitesimal deformation (3.5):

t1λ,λ+ktλ,λ − tλ+k,λ+k t
1
λ,λ+k = 0

t2λ,λ+ktλ,λ − tλ+k,λ+k t
2
λ,λ+k = 0

}
for 2(β − λ) ∈ {2k, . . . , 2m} . (3.15)

(ii) Any formal aff(1|1)-trivial deformation of the aff(2|1)-module
S2,m
β is equivalent to a deformation of order 1, that is, to a deformation

given by (3.5).
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The super-commutative algebra defined by relations (3.15) corresponds to
the miniversal deformation of the Lie derivative LX . Note that the super-
commutative algebra defined in Theorem 3.1 is infinite-dimensional.

The proof of Theorem 3.1 consists in two steps. First, we compute ex-
plicitly the obstructions for existence of the second-order term, this will prove
that relations (3.15) are necessary. Second we show that under relations (3.15)
the highest-order terms of the deformation can be chosen identically zero, so
that relations (3.15) are indeed sufficient.

Proof. Assume that the infinitesimal deformation (3.5) can be integrated
to a formal deformation

L̃X = LX + L
(1)
X + L

(2)
X + · · · ,

where L
(1)
X is given by (3.6) and L

(2)
X is a quadratic polynomial in t with

coefficients in S2,m
β . Considering the homomorphism condition, we compute

the second order term L(2) which is a solution of the Maurer-Cartan equation:

∂(L(2)) = −1

2
[[L(1), L(1)]]. (3.16)

For arbitrary λ, the right hand side of (3.16) yields the following aff(1|1)-
relative 2-cocycles:

Bλ,λ = [[Υλ,λ,Υλ,λ]] : aff(2|1)⊗ aff(2|1) −→ D2
λ,λ,

B̃i
λ,λ+k = [[Γiλ,λ+k,Υλ,λ]] : aff(2|1)⊗ aff(2|1) −→ D2

λ,λ+k, i ∈ {1, 2},

B
i
λ,λ+k = [[Υλ+k,λ+k,Γ

i
λ,λ+k]] : aff(2|1)⊗ aff(2|1) −→ D2

λ,λ+k, i ∈ {1, 2}.

By a straightforward computation, we check that

Bλ,λ = 0, B̃1
λ,λ+k = −B1

λ,λ+k and B̃2
λ,λ+k = −B2

λ,λ+k,

with

B̃1
λ,λ+k(XF , XG) =

(
η1η2(F )G′ − F ′η1η2(G)

)
∂kx ,

B̃2
λ,λ+k(XF , XG) =

(
η1η2(F )G′ − F ′η1η2(G)

)
η1η2∂

k−1
x .

We will need the following:
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Proposition 3.2. Each of the bilinear map

B̃1
λ,λ+k, B̃

2
λ,λ+k

define generically nontrivial cohomology class. Moreover, these cohomology
classes are linearly independent.

Proof. Each map B̃i
λ,λ+k, i = 1, 2, is a aff(1|1)-relative 2-cocycle on

aff(2|1) since it is the Kolmogorov-Alexander product of two aff(1|1)-relative
1-cocycles. Assume that, for some differential 1-cochain bλ,λ+k on aff(2|1)

with coefficients in D2
λ,λ+k, we have B̃i

λ,λ+k = ∂(bλ,λ+k). The general form of
such a cochain is

bλ,λ+k(XF ) =
∑

a`1`2m1m2(x, θ1, θ2)η`11 η
`2
2 (F )ηm1

1 ηm2
2 ,

where the coefficients a`1`2m1m2(x, θ1, θ2) are arbitrary functions.
To complete the proof of the proposition we will need the following:

Lemma 3.3. The condition B̃i
λ,λ+k = ∂(bλ,λ+k) implies that the coeffi-

cients a`1`2m1m2(x, θ1, θ2) are functions of θi, not depending on x.

Proof. The condition B̃i
λ,λ+k = ∂(bλ,λ+k) reads

B̃i
λ,λ+k(XF , XG) = XF · bλ,λ+k(XG)− (−1)|G||F |XG · bλ,λ+k(XF )

− bλ,λ+k([XF , XG]).
(3.17)

We choose a constant function F = 1, and prove that X1 · bλ,λ+k = 0. Indeed,
we have

(X1 · bλ,λ+k)(XG) = X1 · bλ,λ+k(XG)− bλ,λ+k([X1, XG]).

Since `1 + `2 ≥ 1 in the expression of bλ,λ+k, it follows that bλ,λ+k(X1) = 0,
and thus the last equality gives

(X1 · bλ,λ+k)(XG) = X1 · bλ,λ+k(XG)−XG · bλ,λ+k(X1)− bλ,λ+k([X1, XG])

= ∂(bλ,λ+k)(X1, XG).

By assumption, B̃i
λ,λ+k = ∂(bλ,λ+k), from the explicit formula for B̃i

λ,λ+k, we

obtain B̃i
λ,λ+k(X1, XG) = 0 for all XG ∈ aff(2|1). Therefore, X1 · bλ,λ+k = 0.

Lemma 3.3 is proved.
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Now, by direct computation, we check that equation (3.17) has no solution.
This is contradiction with the assumption, B̃i

λ,λ+k = ∂(bλ,λ+k). Thus, the

maps B̃i
λ,λ+k are nontrivial aff(1|1)-relative 2-cocycles. Moreover, by a direct

computation, we can check that, for some differential 1-cochain bλ,λ+k on
aff(2|1) with coefficients in D2

λ,λ+k, the system(
B̃1
λ,λ+k, B̃

2
λ,λ+k, ∂(bλ,λ+k)

)
is linearly independent. Thus, the cohomology classes of B̃i

λ,λ+k are linearly
independent. This completes the proof of Proposition 3.2.

Proposition 3.2 implies that equation (3.16) has solutions if and only if the
quadratic polynomials given by (3.15) vanish simultaneously. We thus proved
that conditions (3.15) are, indeed, necessary.

To prove that the conditions (3.15) are sufficient, we will find explicitly a
deformation of LXF

, whenever the conditions (3.15) are satisfied. The solution
L(2) of (3.16) can be chosen identically zero. Choosing the hightest-order terms
L(m) with m ≥ 3, also identically zero, one obviously obtains a deformation
which is of order 1 in t. Theorem 3.1, part (i) is proved.

The solution L(2) of (3.16) is defined up to a aff(1|1)-relative 1-cocycle and
it has been shown in [13, 2] that different choices of solutions of the Maurer-
Cartan equation correspond to equivalent deformations. Thus, we can always
reduce L(2) to zero by equivalence. Then, by recurrence, the hightest-order
terms L(m) satisfy the equation ∂(L(m)) = 0 and can also be reduced to the
identically zero map. This completes the proof of part (ii).

Example 3.1. For m ∈ 1
2N and for arbitrary generic λ ∈ R, the following

example is a 1-parameter aff(1|1)-trivial deformation of the aff(2|1)-module
S2,m
λ+m

L̃XF
= LXF

+ t
2m∑
`=0

[ 2m−`
2

]∑
k=1

2∑
i=1

Γi
λ+ `

2
,λ+ `

2
+k
,

that is , we put ti
λ+ `

2
,λ+ `

2
+k

= t and tλ,λ = 0.

Of course it is easy to give many other examples of true deformations with
one parameter or with several parameters.
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