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Abstract: Using the hierarchy of weakly null sequences introduced in [2], we introduce two new
families of operator classes. The first family simultaneously generalizes the completely continuous
operators and the weak Banach-Saks operators. The second family generalizes the class . We
study the distinctness of these classes, and prove that each class is an operator ideal. We also
investigate the properties possessed by each class, such as injectivity, surjectivity, and identification
of the dual class. We produce a number of examples, including the higher ordinal Schreier and
Baernstein spaces. We prove ordinal analogues of several known results for Banach spaces with
the Dunford-Pettis, hereditary Dunford-Pettis property, and hereditary by quotients Dunford-Pettis
property. For example, we prove that for any 0 < &,( < w1, a Banach space X has the hereditary
w¢, wé-Dunford Pettis property if and only if every seminormalized, weakly null sequence either has
a subsequence which is an Z‘l"g -spreading model or a cgc—spreading model.

Key words: Completely continuous operators, Schur property, Dunford Pettis property, operator
ideals, ordinal ranks.
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1. INTRODUCTION

In [I4], Dunford and Pettis showed that any weakly compact operator de-
fined on an L; (i) space must be completely continuous (sometimes also called
a Dunford-Pettis operator). In [I7], Grothendieck showed that C'(K) spaces
enjoy the same property. That is, any weakly compact operator defined on a
C(K) domain is also completely continuous. Now, we say a Banach space X
has the Dunford-Pettis property provided that for any Banach space Y and
any weakly compact operator A : X — Y, A is completely continuous. A
standard characterization of this property is as follows: X has the Dunford-
Pettis Property if for any weakly null sequences (x,)2%; C X, (2})22, C X*,
lim,, x} (z,) = 0. Generalizing this, one can study the class of operators
A : X — Y such that for any weakly null sequences (z,)5°; C X and
(yp)oe, C Y*, lim, v (Az,) = 0.

By the well-known Mazur lemma, if X is a Banach space and (z,,)02 is
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a weakly null sequence in X, then (z,)2; admits a norm null convex block
sequence. Of course, the simplest form of convex block sequences would be
one in which all coefficients are equal to 1, in which case the convex block
sequence of (x,)5°; is actually a subsequence. The next simplest form of a
convex block sequence is a sequence of Cesaro means. A property of signifi-
cant interest is whether the sequence (z,); has a subsequence (or whether
every subsequence of (x,,)22; has a further subsequence) whose Cesaro means
converge to zero in norm. A weakly null sequence (z,,)2°; having the prop-
erty that for every e > 0, there exists k = k(¢) € N such that for any
x* € Bx+, {n € N : |z*(z,)| > €} < k is called uniformly weakly null.
A weakly null sequence has the property that each of its subsequences has
a further subsequence whose Cesaro means converge to zero in norm if and
only if it has the property that each of its subsequences has a further sub-
sequence which is uniformly weakly null. Schreier [2I] produced an example
of a weakly null sequence which has no uniformly weakly null subsequence.
Schreier’s example showed that the convex combinations required to witness
weak nullity in Mazur’s lemma cannot be assumed to be Cesaro means, and
must occasionally be more complex convex combinations. Providing a quan-
tification of the complexity of convex combinations required to witness weak
nullity in Mazur’s lemma, Argyros, Merkourakis, and Tsarpalilas [2] defined
the Banach-Saks index, which provides canonical coefficients which measure
the complexity a given weakly null sequence requires to obtain norm null con-
vex block sequences. As described above, norm null sequences are 0-weakly
null, uniformly weakly null sequences are 1-weakly null, and for every count-
able ordinal £ there exists a weakly null sequence which is {-weakly null and
not (-weakly null for any ¢ < £. By convention, we establish that a sequence is
said to be wy-weakly null if it is weakly null. Consistent with this convention
is the fact that for any 0 < ¢ < ¢ < wi, every sequence which is &-weakly
null is (-weakly null. The ordinal quantification assigns to a given weakly null
sequence some measure of how complex the convex coefficients of a norm null
convex block sequence must be.

Our notation and terminology follows the standard reference of Pietsch
[20]. We denote classes of operators with fraktur letters, 2,%B,J, etc. We
recall that for a given operator ideal J, the associated space ideal is the class
of Banach spaces X such that I'x € J. Given an operator ideal 2,B,7,...,
the associated space ideal is denoted by the corresponding sans serif letter,
A,B,I,.... The notion of quantified weak nullity defined in the preceding
section yields a natural generalization of the class ©9B. Given an opera-
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tor A : X — Y, rather than asking that every weakly null sequence in
(xr)02; C X and any weakly null sequence (y);)>°, C Y*, lim, vy} (Ax,) = 0,
we may instead only require the weaker condition that every pair of sequences
(xn)o2y C X, (y5)o2; C Y™ which are “very” weakly null, lim,, v (Axz,) = 0.
Formally, for any 0 < £,¢ < wy, we let M ¢ denote the class of all opera-
tors A : X — Y such that for every &-weakly null (z,)22; C X and every
¢-weakly null (y5)s2; C Y™, lim, y);(Ax,) = 0. We let M¢ ¢ denote the class
of all Banach spaces X such that Iy € 9M¢ . Then DP = M, o, and My, o,
is the class of all Banach spaces with the Dunford-Pettis property. Note that
every operator lies in ¢ ¢ when min{¢, (} = 0, since 0-weakly null sequences
are norm null. Thus we are interested in studying the classes ¢, only for
0 < &,(. Furthermore, one may ask for a characterization, as one does with
the Dunford-Pettis property, of Banach spaces all of whose subspaces, or all
of whose quotients, enjoy a given property (in our case, membership in Mg ¢).
We note that the classes My, were introduced and studied in [16], while
the classes My, ¢, were introduced and studied in [I]. The study of classes of
operators with these weakened Dunford-Pettis conditions rather than spaces
with these conditions is new to this work. Along these lines, we have the
following results.

THEOREM 1.1. For every 0 < &,¢ < wy, Mg ¢ is a closed ideal which is
not injective, surjective, or symmetric. Moreover, the ideals (Mg ¢)o<e,c<wn
are distinct.

In addition to generalizations of the Dunford-Pettis property, one may use
the quantified weak nullity to generalize other classes of operators. Two classes
of interest are the classes U of completely continuous operators and wB& of
weak Banach-Saks operators. Also of interest are the associated space ideals
V of Schur spaces and wBS of weak Banach-Saks spaces. The concepts be-
hind these classes are that weakly null sequences are mapped by the operator
to sequences which are “very” weakly null (completely continuous operators
send weakly null sequences to 0-weakly null sequences, and weak Banach-Saks
operators send weakly null sequences to 1-weakly null sequences). In [12], the
notions of &-completely continuous operators, the class of which is denoted
by U¢, and ¢-Schur Banach spaces were introduced. These notions are weak-
enings of the notions of completely continuous operators and Schur Banach
spaces, respectively. An operator is {-completely continuous if it sends &-
weakly null sequences to norm null (0-weakly null) sequences. Heuristically,
this is an operator which sends sequences which are “not too bad” to se-
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quences which are “good.” In [3], the notion of {-weak Banach-Saks was intro-
duced. An operator is £-weak Banach-Saks if it sends weakly null sequences to
&-weakly null sequences. Heuristically, this is an operator which sends any
weakly null sequence, regardless of how “bad” it is, to sequences which are
“not too bad.” Of course, there is a simultaneous generalization of both of
these notions. For 0 < ¢ < § < wyq, we let &¢ ¢ denote the class of operators
which send &-weakly null sequences to (-weakly null sequences. Along these
lines, we prove the following.

THEOREM 1.2. For every 0 < ¢ < § < wy, &¢ ¢ is a closed, injective ideal
which fails to be surjective or symmetric. These ideals are distinct.

We also recall the stratification (2g¢)o<e<w, of the weakly compact oper-
ators. Note that, by the Eberlein-Smulian theorem, an operator A : X — Y
is weakly compact if and only if every sequence in ABx has a subsequence
which is weakly convergent. Equivalently, A : X — Y is weakly compact
if and only if for any (z,)?%; C Bx, there exist a subsequence (z/,)%° of
(xp)s2; and y € Y such that (Az), — )22, is weakly null. The classes 20,
0 < ¢ < wi, are analogously defined using our quantified weak nullity: The
operator A : X — Y lies in ¢ if and only if for any (z,);2, C By, there
exist a subsequence (z,)2%; of (2,)72; and y € Y such that (Az] — )2,
is {-weakly null. The class 2¢ appears in the literature under the names
&-weakly compact operators and &-Banach-Saks operators. The former name
is due to the fact that 20, is the class of weakly compact operators, while
the latter is due to the fact that 20, is the class of Banach-Saks operators. In
this work, we use the former terminology.

We recall the basic facts of these classes and basic facts about operator
classes, including the quotients 2 o B! and B! o A, in Section 3. We note
that 2y is the class of compact operators, also denoted by K. The class
of weakly compact operators is denoted by 20 and 20,,, and 20; denotes
the class of Banach-Saks operators. It is a well-known identity regarding
completely continuous operators that % = &0 01, It is also standard that
DP =W oW =W oRoW!. Rewriting theses identities using the ordinal
notation for these classes gives

B, = W oW, !

w1y

_ —1 —1
My o = W, 0 Ko WL,

We generalize these identities in the following theorem.
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THEOREM 1.3. For 0 < ( < & < wq,
Gec =W oW, 1,
9521,%&1 _ (mguzﬂ)q o wgum‘
For 0 < ¢,& < wy,
Me ¢ = (W)™ 0 Ve = (W)~ o Ro W,

The appearance of Qﬂg“al, rather than simply 20, as it appeared in the
identities preceding the theorem are due to the fact that

Wy =R = ﬁdual — w(oiual and Q;U“q — 9 = Qﬂdual — Qﬂfffal,

while 0, # Qﬁg“al for 0 < & < wi. This duality is known to fail for all
0 < ¢ < wi. The failure for £ = 1 is the classical fact that the Banach-
Saks property is not a self-dual property, while the 1 < £ < w; cases are
generalizations of this.

We say Banach space X is hereditarily M ¢ if for every every closed sub-
space Y of X, Y € M¢ . We say X is hereditary by quotients M ¢ if for every
closed subspace Y of X, X/Y € M¢.. In Section 2, we define the relevant
notions regarding Ef and cg—spreading models. We also adopt the convention
that a sequence which is equivalent to the canonical ¢y basis will be called
a c§'-spreading model. We summarize our results regarding these hereditary
and spatial notions in the following theorem. We note that item (i) of the
following theorem generalizes a characterization of the hereditary Dunford-
Pettis property due to Elton, as well as a characterization of the hereditary
(-Dunford-Pettis property defined by Argyros and Gasparis.

THEOREM 1.4. Fix 0 < &,( < wy.

(i) X is hereditarily Mg ¢ if every {-weakly null sequence has a subsequence
which is a cg—spreading model.

(i) X is hereditary by quotients M., ¢ if and only if X* is hereditarily M¢ ., .

(ili) If £ < wy, then X is hereditarily M, ¢ for some wt < v < Wt if and
only if X is hereditarily M., ¢ for every w® < vy < w®*L.

(iv) If ¢ < wi, then X is hereditarily Mg, for some w® < vy < Wt if and
only if X is hereditarily Mg ., for every w¢ < v < wStL.
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We also study three space properties related to the £-weak Banach-Saks
property, modifying a method of Ostrovskii [19]. In [I9], it was shown that the
weak Banach-Saks property is not a three-space property. Our final theorem
generalizes this. In our final theorem, wBS; denotes the class of Banach spaces
X such that Ix € 0 BG,.

THEOREM 1.5. For(0 < (,€ < wy, if X is a Banach space and Y is a closed
subspace such that Y € wBS; and X/Y € wBS¢, then X € wBS¢, .

For every 0 < (,¢ < w1, there exists a Banach space X with a closed
subspace Y such that Y € wBS;, X/Y € wBSg¢, and for each v < £ +(, X
fails to lie in wBS,,.

2. COMBINATORICS

REGULAR FAMILIES.  Througout, we let 2 denote the power set of N.
We endow {0, 1} with its product topology and endow 2N with the Cantor
topology, which is the topology making the identification 2V 5 F « 1p €
{0, 1} a homeomorphism. Given a subset M of N, we let [M] (resp. [M]<N)
denote set of infinite (resp. finite) subsets of M. For convenience, we often
write subsets of N as sequences, where a set F is identified with the (possibly
empty) sequence obtained by listing the members of F in strictly increasing
order. Henceforth, if we write (m;)l_; € [N]<N (resp. (m;)2; € [N]), it will be
assumed that m; < --- < m, (resp. m; < mg < ...). Given M = (my), €
[N] and F C [N]<N, we define

F(M) = {(mn)ner : E € F},
f(M_l): {E : (mn)ngEGf}.

Given (m;)i_y, (ni)i_y € [NJ<N) we say (n;)7_, is a spread of (m;)T_, if
m; < n; for each 1 < ¢ < r. We agree that & is a spread of @. We write
E < F if either E = @ or E = (m;)]_; and F = (m;){_, for some r < s.
In this case, we say F is an initial segment of F'. For E,F C N, we write
E < F to mean that either ¥ = @, ' = &, or max E < min F. Given
n € Nand F C N, we write n < E (resp. n < F) to mean that n < min E
(resp. n < min E).

We say G C [N]<N is

(i) compact if it is compact in the Cantor topology,

(ii) hereditary if E C F € G implies E € G,
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(ili) spreading if whenever £ € G and F is a spread of E/, F' € G,

(iv) regular if it is compact, hereditary, and spreading.

Given a regular set G C [N]<N) we let MAX(G) denote the members of G
which are maximal in G with respect to inclusion. We note that, since G is
regular, MAX(G) coincides with the set of members of G which are maximal
in G with respect to the initial segment ordering, and also coincides with the
set, of isolated points of G in the Cantor topology.

Let us also say that G is nice if

(i) G is regular,
(i) (1) €6,
(iii) for any @ # E € G, either E € MAX(G) or EU (1 + max E) € G.

Let us briefly explain why these last two properties are desirable. We wish to
create norms on cgg of the form

Zanen :sup{2|an| :FEF}.
n=1 F

ner
In order for this to be a norm and not just a seminorm, we require that
(1) € F. The last condition is because we wish to have the property that any
M € |N] can be uniquely decomposed into sets F; < F» < ..., where each
F, € MAX(F). If F is compact and M € [N], then there exists a largest
(with respect to inclusion) F' which is an initial segment of M and which lies
in F, but this F' need not be a maximal member of F. To see why, let

F={EcN:|E <2\ {(1,2)}

This is compact, spreading, and hereditary, but the largest initial segment
of the set M = (1,3,4,...) which lies in F is (1), which is not a maximal
member of F.

If M € |N] and if F is nice, then there exists a unique, finite, non-
empty initial segment of M which lies in MAX(F). We let Mz denote this
initial segment. We now define recursively Mr1 = Mz and Mz, 11 = (M \
U M ]:ﬂ') P An alternate description of Mz 1, Mr,... is that the sequence
Mz 1,MFro,... is the unique partition of M into successive sets which are
maximal members of F.

If F is nice and M € [N], then there exists a partition Fy < E» < ... of
N such that Mz, = (m;)icg, for all n € N. We define M]?ln =F,.
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Given a topological space K and a subset L of K, L' denotes the Can-
tor Bendixson derivative of L consists of those members of L which are not
relatively isolated in L. We define by transfinite induction the higher order
transfinite derivatives of L by

=1, L& = (LYY,

and if ¢ is a limit ordinal,
L= LS
¢<¢

We recall that K is said to be scattered if there exists an ordinal £ such
that K¢ = @. In this case, we define the Cantor Bendixson index of K
by CB(K) = min{¢ : K¢ = @}. We recall the standard fact that every
countable, compact, Hausdorff topological space is scattered with countable
Cantor-Bendixson index.

For each n € NU {0}, we let A, = {E € [N]<N : |E| < n}. It is clear
that A, is regular. Also of importance are the Schreier families, (S¢)¢<.,,. We
recall these families. We let

So = Ay,

n
S§+1:{@}U{UE1' : @#EZES@ nSEl,E1<-~~<En},
=1

and if £ < w; is a limit ordinal, there exists a sequence &, T £ such that

Se={Ec NN : In<FEeS,.1},

and (&,);2 has the property that for any n € N, S¢, 11 C S, ,. The existence
of such families with the last indicated property is discussed, for example, in
[11]. With the fact that S, 41 C S¢,,; C Sg,y1+1, and equivalent, useful way
of representing these sets is

Se={2}U{B N : & # B €S, )
Sometimes for convenience, we simply represent
S={Ee N :Im<EeS,},

where (, = £, + 1. In each instance, we use the notation which is most
convenient.
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Given two non-empty regular families F, G, we let

I[Q]Z{Q}U{UEE' : O # FE; €G,E <---<En,(minEi)?16.7:}.

=1

We let F[G] = @ if either F =& or G = &.
The following facts are collected in [11].

ProPOSITION 2.1. (i) For any non-empty regular families F, G, F[G] is
regular. Furthermore, if CB(F) = f+ 1 and CB(G) = a + 1, then
CB(F[G]) =af + 1.

(ii) For any n € N, CB(A,) =n+ 1.
(iii) For any &€ < wy, CB(S¢) = w® + 1.

(iv) If F is regular and M € [N], then F(M~1) is regular and CB(F) =
CB(F(M™Y)).

(v) For regular families F,G, there exists M € |[N] such that F(M) C G if
and only if there exists M € [N] such that F C G(M~1') if and only if
CB(F) < CB(G).

(vi) For & < ( < wy, there exists n € N such that n < E € S¢ implies E € S;.
(vil) Forall1 <§ <wi, 81 C Se.

Item (vi) is sometimes referred to as the almost monotone property.

LEMMA 2.2. Fix a countable ordinal +y.

(i) For any L € |[N] and § < wi, there exists M € [L] such that for all
(ni)2, € [M],GeSs,and By < Ey<...,0#E; €8,,

U EjnZ S S»y+§.
i€G

(ii) For any L € [N], there exists M € [L] such that for all (n;);°, € [M]
and any E € .15, there exist By < --- < Eg, @ # E; € Sy, such that
(nminEi)gzl €8s and E = U;'i:1Ei'

Remark 2.3. Both parts of Lemma are strengthenings of Propo-
sition [2.11
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Proof. For both (i) and (ii), we induct on §.

(i) For § = 0, we can simply take M = L. Now suppose that the result
holds for 6 and L € [N] is fixed. By the inductive hypothesis, there exists
M € [L] such that for any (n;);2, € [M], E1 < E» < ..., @ # E; € S5,
and G € S5, UicpEn, € Sy45. Now fix (n;)52, € [M], By < Ey < ...,
@#FE; €S8y,and @ # G € Sy41. Let K = min G and note that we may write
G = UglzlGi for some Gy < -+- < Gg, T # G; € S, nd d < k. By the choice
of M, for each 1 < j < d, F; := Ujeq; En;, € Sy4s. Since F1 < --- < Fy and
min F} = min E, > k > d,

d
U E ;= UF]' GS’Y—HS—H'
i€G J=1

Now suppose that ¢ < w; is a limit ordinal. Let (0,)22, (8n)52, be the
sequences such that

Sips={0YU{E : 8£FE€S8s,,,}
Ss={0}U{E: @ #E€S;}.
Now let us choose natural numbers p; < p2 < ... and ¢; < g2 < ... such that
Y+ 0n < Bp,
and if g, < E € Sy46,, £ € S, . By the inductive hypothesis, we may fix
Moy:=L>M DMy>D...,

M, € [N], such that for each n € N, each (n;)5°, € [My], each E; < Ey < ...
with @ # E; € S, and each G € S;,, UicgEyn, € Sy4s,. Since each M,
may be taken to lie in any infinite subset of M,,_1, we may also assume that
min M,, > max{py,,¢,} for all n € N. Now write M,, = (m}")2; and let
my, = mj. Note that m; < mg < .... Let M = (m;)2,. Fix (n;)2, € [M],
Ei<Ey<...withog#FEcS,,and @ # G € Ss5. Let k = minG and note
that G € Ss,. Let

S = (m’f,mg,...,mﬁ,l,nk,nk+1,nk+2,...) € [My).

Write S = (s;)52, and note that since s; = n; for all i > k, H := UjcgEn, =
UiegEs,. Since G € S5, and S € [My], H € S,5,. Note that

min H > ng > min My > max{pg, qx }.
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Since g < H € Sy46,, H € Sgpk. Since pp < H € Sgpk, HeS, .

(ii) Note that if M = (m;)°; and N = (n;)32, € [M], then for any
@ # E € [N]<N, (n;)icE is a spread of (m;);ep. Thus if we reach the conclusion
when (n;)2; = M, this implies the result for all (n;)°, € [M].

For 6 = 0, we may simply take M = L. Suppose the result holds for § and
fix L € [N]. Choose M = (m;);2, € [L] such that for any £ € S5, there exist
Fy < --- < Fy such that £ = U?:lpi’ o+ F; € S,y, and (mminFi)?:l € Ss.
Now fix E € Sy1541 and let k = min E. Write E = U\_ E;, By < --- < Ej,
@ # E; € 8§y, and | < k. We may recursively select [y < --- < F,,, @ # F; €
Sy and 0 =dg < -+ < d; = n such that for each 1 <i <1, E; =UJ, | F;
and H; = (mminFj)?i:di,lﬂ € Ss. Note that min H; > minF; = minE =
k > 1. Therefore E = UézlEi = Uj_, I} and

l

l
(mminFj)?:l = U(mminFj);‘li:diiﬁ_l = U H; € S(S—l—l-
=1 =1

Last, let 0 < w; be a limit ordinal. Let (d,)52

> 15 (Bn)y2 be the sequences
such that

S ={@}U{E : @ #E €8s, 1}

and recall that S5, 11 C Ss,,, for all n € N. Choose natural numbers p; <
p2<...,q1 <gq2<...suchthatforalln €N, 3, <~vy+d,, and g, < FE € Sg,
implies £ € S5, - Recursively select

MQ:LDMlDMQD...

such that min M,, > max{py,q,} and, with M, = (m})2,, if £ € S,45, ,
there exist F1 < --- < Fy such that @ # F, € &y, E = U;i:lEi, and
(mﬁlinEi)?:l € Ss,,. Let my, = mp,. Now fix @ # E € S,45 and let
E=minE. If k =1, then F = (1), and we may write £ = Ey, E; = (1) € S,
(Mmink,) € Ss. Assume 1 < k. Then E € Sg,, and E N [gy, 00) € Sy, - Let
us choose Fy < Fy < --- < Fy, @ # F; € S, such that EN[g, c0) = ud_, F; and
J = (mfninpi);-i:l € 85%‘ Since minFy > k, pp, < my < J € Sgpk C S(;pkﬂ,
J € Ss5. Then since H = (mminpi);-i:l is a spread of J, H € S5pk N Ss.
If £ N gy, 00) = E, this is the desired conclusion. Otherwise enumerate

En(1,qx) = (b1,...,b) and let G; = {b;} for each 1 < i < t. Note
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that G1 < -+ < Gy < Fy < -+ < Fy, E = (Ul_,G;) U (UL, F}), and
@ # G, F;, € 8. Let G = (Mmming,)i_; and note that my; < G and
|G| < g < mg, so G € S C Sgpk. Since 2 < G < H and G, H € Sgpk,
GUH e Sgpk+1. Since pp < my, < G,

(Mmin G¢)§:1 U (mminFi)gzl =GUH € S;.

€§ AND CS—SPREADING MODELS. Given a regular family F, a Banach

space X, and a seminormalized sequence (z,,)2°; C X, we say (z,)52 is an
Elf -spreading model provided that

0 <inf {|z|| : F € F,z € aco(z, :n € F)}.

Here,

aco(z, :n € F) = { > anzn t Y an| = 1}.

nel nel

We say that a sequence (x,,)2% is a (:O]E -spreading model provided that

0 < inf FeF =1
in { ?;Enxn ,Iglea}%(‘&‘n’ }
SSUP{ T;Enxn : FEF,I}LlEa%(En|:1}<oo.

If F = &, we write €§ or cg—spreading model in place of éff or c‘gg. Note that

a weakly null £ or cJ-spreading model is simply a seminormalized, weakly
null sequence.

Note that for a regular family F, the spreading property of F yields that
for any k1 < ko < ...,

inf {||z|| : F € F, z €aco(xy, :n € F)}
>inf {||z|| : F € F, zcaco(z,:neF)},

so that any subsequence of an E{: -spreading model is also an 6{: -spreading
model. Similarly, every subsequence of a cof -spreading model is also a cof -
spreading model.

We are now ready to define the notions of £-weak nullity.
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DEFINITION 2.4. For £ < wp, we say a sequence (zp,)52; is &-weakly null
if for any subsequence (y,)22; of (z,)7%; and € > 0, there exist F' € S¢ and
y € co(yn : n € F) such that |ly|| <e. We say (z,,)02, is &-weakly convergent
to x if (x, — x)52 is {-weakly null. We say (x,,)22, is {-weakly convergent
if it is &-weakly convergent to some x.

We say a sequence is wi-weakly null, wi-weakly convergent to x, or
wi-weakly convergent if it is weakly null, weakly convergent to z, or weakly

convergent, respectively.

Remark 2.5. Note that if (z,)02; is a {-weakly null sequence in the Ba-
nach space X, then there exist sets 1 < Fy < ..., F,, € S, and positive
scalars (a;)icu | F, such that for each n € N, 7, a; = 1, and such that
limp, || ;e p, @izl = 0. We will use this fact often. However, we will also
often need a technical fact which states that the coefficients (a;)icr, can come
from the repeated averages hierarchy. We make this precise below.

Remark 2.6. It follows from Theorem C' of [2] that a weakly null sequence
fails to be &-weakly null if and only if it has a subsequence which is an
Eﬁ—spreading model. From this it follows that if (z,,)02; is a weakly null
Eﬁ—spreading model, it can have no £-weakly convergent subsequence. Indeed,
since &-weak convergence to x implies weak convergence to x, the only = to
which a subsequence of (x,,)22; could be {-convergent is x = 0. But if (x,,)0°
is an Eﬁ—spreading model, all of its subsequences are, and so no subsequence
can be &-convergent to zero by the first sentence of the remark.

Let & denote the set of all probability measures on N. We treat each
member P of & as a function from N into [0,1], where P(n) = P({n}). We
let supp(P) = {n € N : P(n) > 0}. Given a nice family P and a subset
B ={Py, : M € [N],n € N} of &, we say (B, P) is a probability block
provided that

(i) for each M € [NJ, supp(Pps1) = Mp 1, and

(ii) for any M € [N] and r € N, if N = M\ U;;ll supp(Pas,i), then
Pni1i =Py

Remark 2.7. It follows from the definition of probability block that for any
M € [N], (Mpy)p2, = (supp(Parn))se; and for any s € N and M, N € N,
and r; < --- < rg such that Uj_, supp(Pas,,) is an initial segment of N, then
Py = Pary, for all 1 <i <s. This was proved in [12].
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Suppose that Q is nice. Given L = (1,,)72; € [N], there exists a unique
sequence 0 = pg < p1 < ... such that (1;)7", ., € MAX(Q) for all n € N.
We then define Léln = NN (pr—1,pn)-

Suppose we have probability blocks (B, P), (Q, Q). We define a collection
Q « P such that (Q*P, Q[P]) is a probability block. Fix M € N and for each
n € N, let l,, = minsupp(Par,,) and L = (1,)52,. We then let

Opm = Z Qrn(li)Par
ieLg!,
and Q P = {Onr,, : M € [N],n € N}

In [2], the repeated averages hierarchy was defined. This is a collection
S¢, £ < wi, such that (&¢, S¢) is a probability block for every & < wi. We
will denote the members of &¢ by S%J’n, M €[N, neN.

For £ < w1, we say a probability block (B, P) is {-sufficient provided that
for any L € [N], any € > 0, and any regular family G with CB(G) < w¢, there
exists M € [N] such that

sup{Pn1(E) : E€G,N € [M]} <e.

It was shown in [2] that (S¢,S¢) is &-sufficient.
The following facts were shown in [12]. Item (ii) was shown in [2] in the
particular case that (P, P) = (&¢, Se).

THEOREM 2.8. (i) For £,( < wy, if (P, P) is &-sufficient and (9, Q) is
(-sufficient, then (Q %P, Q[P]) is (£ + ¢)-sufficient.

(ii) If X is a Banach space, {£ < wi, (B,P) is &-sufficient, and CB(P) =
w® +1, then a weakly null sequence (v,)°%, C X is &-weakly null if and
only if for any L € [N] and € > 0, there exists M € [L] such that for all
N € [M], [| 2255 P (d)as]| <e.

Remark 2.9. Since for each £ < wj, at least one &-sufficient probability
block (B, P) with CB(P) = w® + 1 exists, item (ii) of the preceding theorem
yields that if X is a Banach space and (x,)52, (yn)o2; are {-weakly null
in X, then (x, + y,)52; is also {-weakly null. This generalizes to sums of
any number of sequences. The importance of this fact, which we will use
often throughout, is that if for k =1,...,1, if (mfi)%o:l C X is a &~-weakly null
sequence, then for any € > 0, there exist F' € S¢ and positive scalars (a;)icr
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such that ) ;. a; = 1 and for each 1 <k <1,

E ai:zi-“

el

<e.

That is, there is one choice of F' and (a;);er such that the corresponding linear
combinations of the [ different sequences are simultaneously small.

Note that the preceding implies that for two Banach spaces X,Y and &-
weakly null sequences (2,)5%,; C X, (yn)22; C Y, for any € > 0, there exist
F € S¢ and positive scalars (a;);ep summing to 1 such that

Z i Z iYi

el el

<e€.
Y

X7
This is because the sequences (x,,0)7%; C X ® Y and (0,y,)5%; C X G YV

are also &-weakly null, as is their sum in X ® Y.

Remark 2.10. Let X be a Banach space and let (x,,)52; be &-weakly null.
Let (B, P) be &-sufficient with CB(P) = w® 4 1. Then by Theorem (ii), we
may recursively select M1 D My D ..., M,, € [N] such that for each n € N,

oo
sup { Z Pr (i)
i=1

Now choose m,, € M,, with m; < mg < ... and let M = (m,)52 ;. Then for
any N € [M] and n € N, if F; < F, < ... is a partition of N into consecutive,
maximal members of P and N; = N \ Ug;llFi for each j € N, N,, € [M,]. By
the permanence property mentioned in Remark

oo o0
ZPN,n(i)xi ZPNn,l(i)xi
1=1 1=1

. N e [Mn]} <1/n.

<1/n.

Before proceeding to the following, we recall that for M € [N] and a regular
family F, we let M|r denote the maximal initial segment of M which lies in
F. If F is nice, then M|r lies in MAX(F).

LEMMA 2.11. Let X be a Banach space, (z,)22; C X a seminormalized,
weakly null sequence, and F a nice family.
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i) (2,,)°%, admits a subsequence which is a ¢l -spreading model if and only
n=1 0

if there exists L € [N] such that

sup{‘ >

neM|x
(ii) If (z,)S2; admits no subsequence which is a ¢, -spreading model, then
there exists L € [N] such that for any H; < Hy < ..., H, € MAX(F)N
[L]<N, | > icm, Till > n for each n € N.

:Mem}<m

Proof. (i) Assume there exists L € [N] such that
sup {‘ >

TLGM‘]:
By passing to an infinite subset of L, we may assume (x,,)ncr, is 2-basic. If
F € FN[L]<Y, there exists an infinite subset M of L such that F' is an initial
segment of M|z, from which it follows that

S S

nekF TLEM‘]:

:MEM@:C<W.

<2 < 2C.

Thus

D o

neF

sup {

Then if @ # F € FO[LI<Y, (ap)ner € [-1,1]F,

Zanxn€co<2xn : GCF>—00<an : GCF) C 4CByx.

ner neG neG

:FeFn [L]<N} <2C.

Now for any @ # F € F N [L]<Y and for any scalars (a,)ner with |a,| < 1,

Z AnTn Z Re (an)xy, Z Im (ay,)zy,

neF ner ner

< + < 8C.

If L = (1,)$2, this yields the appropriate upper estimates to deduce that

n=1»
(z1,)%° is a ¢ -spreading model. The lower estimates follow from the fact

that (x7,)0 ; is seminormalized basic.
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For the converse, suppose that (z,, )% | is a ¢} -spreading model and let

n=1
¢ = sup { Z Ty,

neF
Let us choose 1 = 51 < s9 < ... such that s,41 > r,, for alln € N. Let [, =
Tsns L= (1n)0 1, and S = (s,)5° ;. Fix M € [L] and note that M = (r4,)°
for some (t,)%; € [S]. Let M|z = (r4,)%_; € F and note that (t,)F_, € F.
Indeed, if ¢,—1 = s; and ¢,, = s;, then ¢ < j and then

:FE.F}<OO.

tn = Sj 2 Si+1 > Ts; = Ttp_1-

Thus E := (t,)F_, is a spread of (ry,)*~} < (r,)f_, € F, and E € F.
Therefore, with b = sup,, ||z,]|,

k
|5 <o |+ [ ]| = | # | S| <04 =
neM|x n=2 nekr
Therefore we have shown that
sup{ Z Tn, :ME[L]}SC.

TL€M|_7:
(ii) For each n € N, let

>

iEMl]:

Vn:{Me[N]:

<}

It is evident that V, is closed, and in fact M — || 30,0, @il is locally
constant on [N]. By the Ramsey theorem, we may select M; D Ma D ...
such that for all n € N, either [M,] C V, or V,, N [M,] = @. By (i) and
the hypothesis that (z,)%; admits no subsequence which is a ¢ -spreading
model, for each n € N, V, N [M,] = @. Now fix [ < Iy < ..., I, € M,,
and let L = (1,)%%,. Fix @ # Hy < Hy < ..., H, € MAX(F) n [L]<N.
For each n € N, let N,, = U°, H; € [M,] and note that H, = N,|r. Since
Ny € [My] C [N]\ Vy,

Z il > n.

1EN|F 1
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For ordinals §,{ < w; and any M € [N], there exists N € [M] such that
Se[Se)(N) C Seqe and Sepe(N) C SelSe] (M8, Proposition 3.2]). From this
it follows that for a given sequence (z,)5>; in a Banach space X, there exist
mi1 < mo < ... such that

0 <inf {||z[| : F € Scye,x € aco(zm, :n € F)}
if and only if there exist m; < mo < ... such that
0 <inf {[|z] : F € &[S, = € aco(zpm, :n € F)}.

This fact will be used throughout to deduce that if (x,,)%; is an E%Jré—spreading

n=1
model (or has a subsequence which is an £§+£—spreading model), then there

exists a subsequence of (x,,)5% ; which is an E‘% [SC]—spreading model. Similarly,

if (2,)52; has a subsequence which is a cg+£—spreading model, then it has a

subsequence which is a cg5 [SC]—spreading model.

COROLLARY 2.12. Fix «a,f(,7v < wi. Let X,Y be Banach spaces,
A : X — Y an operator, and let (z,)52; be a seminormalized, weakly null
sequence in X.

(i) If (Azy)22 has a subsequence which is an E?J“B—spreading model and
(xr)0%, has no subsequence which is an €?+7—spreading model, then
there exists a convex block sequence (z,)7>, of (z)52; which has no

subsequence which is an (] -spreading model and such that (Az,)S°; is

an Ef -spreading model.

(ii) If (z5)52, has a subsequence which is a cg‘+6—spreading model but no
subsequence which is a cg+7—spread1'ng model, then there exists a block
sequence of (xy)7° which is a cg—spreading model and has no subse-
quence which is a c¢}-spreading model. If 0 < j3, the block sequence is
also weakly null.

Proof. (i) We first assume sup,, ||z, || = 1. By passing to a subsequence,
we may assume without loss of generality that

0 <e=inf {|Az| : F € S5[Sa],x € abs co(zy, : n € F)}.

Let P =8,[S.], B=6,%«64 ={Pum,, : M € [N],n € N}. As mentioned in
Remark we may also fix L € [N] such that for all M € [L] and n € N,

00
Z PM,n(Z)$1
1=1

<1/n.
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Now fix Fy < F» < ..., F, € MAX(S,), L = U2, F, and let y, =
>ty 8¢ a(zi = Yiep, ST, (9)x. It follows from the second sentence of
the proof that

e <inf {||Ay|| : F € Sg,y € abs co(y, : n € F)}.

That is, (Ay,)2, is an £2-spreading model. It remains to show that (y,)%>,
has no subsequence which is an ¢]-spreading model. To that end, assume
R = (rp)52;, d > 0 are such that

Z an¥Yr,

nelr

5§inf{

‘:F687,2|an]:1}.

ner

Now let E, = F,,,, N = U2 E,, S = (s,)52 = (min E,,)>2; and note that,
by the permanence property,

00
Zn = Yr, = ZS?V,n(i)wz
=1

for al n € N. Now fix 1 = ¢1 < ¢ < ... such that g¢,41 > s4,. Let
M = U2 E,, and note that there exist 0 = kg < k1 < ... such that for all
n €N,

kn
Prrn = Z S?F,n(sqj')a

J=kn—1+1
kn
and (sqj)j:kn_1+1 € Sy, where T' = (sqj)] 1- Moreover S%yn(sqkn_lﬂ) -0
since 0 < 7. We now observe that since s;; < gji1, G = (qj)‘l]?lkn—l“rQ is a
spread of (qj) " 1 410 Which is a subset of a member of S,. Therefore, for
any n € N,
.
6<1 B ST,n(San,lJrl)) < Z STn SQ]
ol
< Z STn Sq;)7 JFST,n(qun,lH)
o0
< ZPM,n(i)xl + S%,n(s%n_lﬂ)
i=1
<

1/n+S7n(5a, _y41)-
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Since lim,, S%n(sqk%ﬁl) = 0, these inequalities yield a contradiction for suf-
ficiently large n.
(i) We may assume without loss of generality that

sup { z Enlp

nelF
and that (z,)22, is basic. By Lemma applied with F = §,[S,], there
exists L € [N] such that for all Hy < Hy < ..., H, € MAX(S,[S,]) N [L]<N,
1> icm, zill > n. We claim that for any [} < F2 < ..., I}, € MAX(S,) N
(LN, (Xiep, wi)52, fails to have a subsequence which is a ¢]-spreading
model. In order to prove this, it is sufficient to prove that (3. 2i);2; is not
a c¢]-spreading model. To see this, simply observe that if F} < F» < ..., F,, €
MAX(S,) N [L]<N and (3,c F.
dicts the previous sentence, since F,,, < F,, < ... also lie in MAX(S,)N[L]<N.
Seeking a contradiction, suppose that

sup{ Y

neFEieF,
Now fix 1 = 51 < sy < ... such that for all n € N, 5,41 > min F, . Let
T = Uy F, and let Hy < Hy < ... be such that H, € MAX(S,[S,]) and
T = Uyl Hy. Note that || Yoy wZH > n for all n € N. Note also that there

exist 0 = kg < k1 < ... such that H,, = U J Lk

. F e 83[8.], \en]_l}:0<oo

;)22 is a ¢}-spreading model, this contra-

:EES’Y}:D<OO.

o Esys and these numbers are

uniquely determined by the property that (min Fj, )?;kn_l 41 € MAX(S,). As

is now familiar, we note that for each n € N, E,, := (sj)iz , is a spread of

-1+
a subset (min F, )j"kl 41> so that E, € S,. We note that for each n € N,
| sale] £ o] £ v
’LGHn iEFkn71+1 +2 ZEF
<C+| ) =< C+D.

JEER

This is a contradiction for sufficiently large n. |

SCHREIER AND BAERNSTEIN SPACES. If F is a nice family, we let X r
denote the completion of cyg with respect to the norm

|z||F = sup {|Ezl¢, : E € F}.
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In the case that F = S¢, we write ||-||¢ in place of ||-||s, and X in place of X,
The spaces X¢ are called Schreier spaces. Note that Xo = co isometrically.

Given 1 < p < oo and a nice family F, we let Xz, be the completion of
coo with respect to the norm

o 1/p
|z]| 7, = sup { (Z HEixH’Zl) :Bi<Ey<..., E¢€ f}.
i=1

For convenience, we let X¢ ;, and |[|-[|¢ , denote Xs, , and || - ||s, p, respectively.
The spaces X¢;, are called Baernstein spaces. For convenience, we let X¢
denote X¢.

Remark 2.13. The Schreier families S¢, { < w1, possess the almost mono-
tone property, which means that for any { < ¢ < wy, there exists m € N such
that if m < E € §¢, then E € S¢. From this it follows that the formal inclu-
sion I : X¢ — X is bounded for any ¢ < § < w;. In fact, there exists a tail
subspace [e; : © > m] of X¢ such that the restriction of I : [e; : ¢ > m] — X,
is norm 1. We will use this fact throughout.

It is also obvious that the formal inclusion from X¢, to X, is bounded
for any ( < £ < wy, as is the inclusion from X¢ ), to X¢ , whenever p < g < oo.
Combining these facts yields that the formal inclusion from X¢, to X, is
bounded whenever ¢ < £. Furthermore, the adjoints of all of these maps are
also bounded.

The following collects known facts about the Schreier and Baernstein
spaces. Throughout, we let || - [|¢, denote the norm of X¢, as well as its
first and second duals.

THEOREM 2.14. Fix ¢ <wj and 1 < p < o0.

1) | iy milley = 120y |xillle,p for any disjointly supported x1, ...,y
S X&p.
(i) The canonical basis of X¢ ), is shrinking.

(iii) The basis of X¢, is boundedly-complete (and X¢ ), is reflexive) if and
only if p < oc0.

(iv) Ifp<ocand 1/p+1/qg =1,

n n 1/p n 1/q
> (Xlelt,)  and OEN
i=1 1=1

>
for any xq1 < --- <x, € X¢p and a7 < -+ < @y, x;‘EXgp.

n

*
P

i=1

<
=1 fap gzp
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(v) The canonical basis of X¢ ) is a weakly null Eﬁ—spreading model, while
every normalized, weakly null sequence in X¢,, is § + 1-weakly null.

(vi) The space X¢ is isomorphically embeddable into C(Sg).

Remark 2.15. Throughout, if F € [N]<N, we will use the notation * = E
to mean that ||z*|., < 1 and supp(z*) = E. It is evident that for any regular
family F,

U {x* A E} C BX;E_.
EcF

Moreover, a convexity argument yields that for any y* € Bxx with supp(y*) C

F ¢ [N]<N,
y* ECO( U (=¥ 2" cC E}).

FOEeF

Finally, we note that if there exist z7 < --- < z}; and for each 1 < i <
d, there exist l; € N, E;; C supp(z}), and zi; j = 1,...,1; such that
zi; C E;; Csupp(z;), 27 € co(zj; : 1 < j < ;), and for each Gk, €
H?Zl{l, ooy li}y U?:lEiyji € F, then

d
S <
i=1  XE
Moreover, if we replace z] with a;z}, where ai,...,aq are such that |a;| <1
for each 1 < ¢ < d, the resulting functionals a1z7,. .., aqx) also satisfy the

hypotheses, so || 2?21 a;zf||xx <1 for any (ai)L, € 4.

Let us see why || 239, zf|| x5 < 1. Write 2] = Z?Zl wj jx; ; where w; ; > 0
and Zé‘iﬂ wij =1. Let T =[], {1,...,1;} and for each t = (j;)%_, € I, let
wy = Hf.l:l w; j, and xf = Z?Zl xi ;. Then z* = 3, jwry, wy > 0, and
> terwt = 1. Therefore it suffices to show that ||z7||xs < 1 for each t € I.
But 2 C UL E;j, € F, and ||z} xs <1 follows.

PropPoOSITION 2.16. Fix 0 < 7,0 <wi, and 1 < p < 0.

< C, then

there exists a subsequence (z;,, )52, of (z;,)52 such that for any G € S,
H ZieG x?LHLg <C.

* || *
n=1 n”y

(i) If (x3)52, C X5 is weakly null and satisfies lim inf||x
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(ii) Suppose (x,)52 C Xy4s,p is weakly null in X, 5,, and for every 8 <
7, limy, ||z,]|g = 0. Then every subsequence of (x,)52, has a further
subsequence which is dominated by a subsequence of the X, basis.

(iii) If (xn)52y C Xqts,p is a weakly null sequence such that lim sup,, ||z, |, >
0, then (x,);2; has a subsequence which dominates the X, basis.

Proof. (i) By passing to a subsequence, we may assume that (z)>° is a
block sequence and sup,, ||z}|| < C1 < C. By scaling, we may assume C; = 1.
For each n € N, let S,, = supp(z},). For each n € N, it follows from convexity
and compactness arguments that for each n € N, there exist d,,, (:L‘;kl’i);-i;l, and
(En,i)fgl c SN [S,]<N such that zy, ; C En;, and zj, € co(xf’n 1< <dy).
By Lemma [2.2] there exist ny < ny < ... such that for any G € S5 and
Ey <Ey<...,E €8, Ugcgly, € S;45. Now we conclude that for each
G € S5, || Yonea ®hllv+s < C1 =1 using the facts contained in Remark

(ii) By perturbing and scaling, we may assume (z);2; C Bx,, is a block
sequence. If v is a successor, let v, +1 =« for all n € N if v is a successor.
If ~y is a limit ordinal, let (7). ; be such that

S,={F:In<EeS,}

For each n € N, let ¢, = 272, Let m,, = maxsupp(z,). We may recursively
choose 1 = k1 < ko < ... such that for any n < [,

kal ”%n < 5n/mkn‘

By relabeling, we may assume k,, = n.

Now by Lemma[2.2] we may fix (n;)32, such that if E € S5, there exist
EFy<---< By, +#EFE; € Sq/ such that (nminE)?zl € S5 and FF = nglEi-
Now let 7; = nyy,,. We first consider the p = oo case. We claim that (z;)$°; is
dominated by (e, )52, C Xs. Fix (a;)2, € cooNSe,, and let x = Y :°, a;z; and
y=> 2 ae,. Fix E € 8,5 and write E = nglEi, where Fp < -+ < Ey,
@ # E; € Sy, and (nminEi)glzl € Ss. If v = 0, we can take each F; to be
a singleton. By omitting any superfluous F; and relabeling, we may assume
that for each 1 <4 < d, there exists j such that F;x; # 0.

As the following estimates involve many definitions, we say a word before
proceeding. For each Ej;, our choice of the sequence (x;)°; will yield that
| Eixi]|e, will be essentially negligible for all vectors except the first one whose
support F; intersects. Moreover, of all of the sets E; which intersect the
support of x;, since the sets are successive, at most one of the sets can intersect
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the support of a later vector, so we can control the number of negligible pieces.
For each 1 <i <d, let j;, = min{l : E;z; # 0} and J = {j; : 1 <i < d}. For
each j € J,let S; ={i <d : j; = j}. Foreach j € J, let s; = max.S; and
let T; = S; \ {s;}. Note that for each i € S;, Fyz; = 0 for all [ < j by the
minimality of j = j;. Note also that for each i € T}, F;x; = 0 for all [ > j,
since

max F; < min E; < maxsupp(x;) < minsupp(z;).

Furthermore, since Es x; # 0, Es; € S,y with min Es; < mj. If v is a limit
ordinal, then Es; € S,ij, which means that for any k& > j,

|1 Es; ke, < ex/mj < e

If 7 is a successor, then v = v, +1 and min Fs, < m; yield that Eg;, = Ul F;
for some Fy < --- < Fy, ¢ <mj,and F; € S 5 Then for k > 7,

q

1Eszilley <D I Fiaelley < mallzelly,, < e
i=1

In the case 7 = 0, each F; is a singleton, so we have the trivial estimate that
for i € S; and [ > j, Ejx; = 0. Therefore in each of the v = 0, v a successor,
and v a limit ordinal cases,

[e.e] [e.e]
S NExle <lajllBxille, + > IEgzrlle, <lagl+ ) e
ieS; k=j+1 k=j+1

Summing over ¢ yields that

o0 o0 o0
IBzlle, <D > NBle, <D lagl+> 0 Y e < lajl+ D> > ek

jeJics; jeJ Je€J k=j+1 jeJ j=m(E) k=]

where m(E) = min{j : Exz; # 0}. Now for each j € J, fix some i; €
{1,...,d} such that j = j;;. Then j ~ i; is an injection of J into {1,...,d},
and (m;,)jes is a spread of a subset of (minE;)?,. Therefore T(E) :=
(ri;)jes = (nmij )jes is a spread of a subset of (Nmin ;)L € S5, s0 T(E) € S;.
Therefore
lylls = IT(E)ylles =) _ layl.
jeJ
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Collecting these estimates and recalling our assumption that (a;)5°; € Se_,
we deduce that

o0 oo
lzllyes <D lail + D > e < 2lylls.

jeJ j=m(E) k=j

This completes the p = oo case.
Now assume 1 < p < co. Fix By < FEy < ..., E; € §,45. Let z =
Yooy aimi, Yy = Y ooy aey, as in the previous paragraph. For each i € N, let

Ji = {j eN: (VZ #*ke N)(Ejl'k = 0)}
Let J =UX,J; and I = N\ J. Let us rename the sets (E;);cr as F1 < Gi <
F, < Gy < ... (ignoring this step if I is empty and with the appropriate
notational change if I is finite and non-empty). By the properties of I, for
each i such that F; (resp. G;) is defined, there exist at least two distinct indices
J, k such that Fyxj, Fizy, # 0 (resp. at least two distinct indices j, &’ such that
Gizj, Gixp # 0). From this it follows that, with
Uy={j : Fix; #0} and Vi={j : Gizj # 0},

the sets (U;); are successive, as are (V;);. In particular, Fjz; = Gixz; = 0
whenever j < i. Observe that

1/p 1/p
<Z|Eix||§1) <Z|aJ|PZHEx]||) < lap)2alle, < I9llon.

e ieJj

Now, arguing as in the p = oo case, for each i such that F; is defined, if
m(F;) = min{j : Fjz; # 0}, there exists a set T'(F;) € S5 such that

|Fialle, < IT(F)yle, + Z S e

F) k=l

Furthermore, T'(F;) C {nm, : j € U}, from which it follows that the sets
T(F;) are successive, since the sets U; are. From this, the triangle inequality,
and the fact that m(F;) > i for each appropriate 4, it follows that

(Siratt) " < (L) + 3 > zé—k

1=1 |=m(F,

<y

o0 o0 o0
spt D> ek = |yllsp+1 < 2yl
=1 k=l

=t
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A similar argument yields that

1/p
(Znaixuz) < 2lyls»

Therefore
o0 1/p
(ZnEjocHz) < 5lyls,
=1

Since Ey < Ey < ..., E; € 8,15 were arbitrary, ||| 15, < 5|/ylls,p-

(iii) By passing to a subsequence and perturbing, we may assume ()5 ;
is a block sequence in X5, and inf, |[z,], = ¢ > 0. We may fix a block
sequence (z}) € E_lB)q biorthogonal to (z,)5% ;. By (i), after passing to a
subsequence and using properties of the X5, basis, assume that

sup { Z Eny,

neG
If p = oo, note that for any (a;)$2; € coo,

iaiei :sup{ Z lan| : G € 85}
i=1 ¥

neG

sup {Re (Z E,ﬂﬁ) (Zanl‘n) G e S’w |5n| = 1}
n=1

neG

(o)
< g1 <Z anxn> .
n=1

: G € Ss,len| = 1} <1/e.

v+6

IN

Now suppose that 1 < p < oo. Fix (a;)52; € cpo and let = Y .7, aje;.
Fix By < B3 < --- < E,, E; € S5 and a sequence (b;)I, € Sgg, such that

n 1/p n
lallrp = (Z rEz-xnz) - Zbi( T \%I)-
=1 =1

JEE;

Let yf = > jep, €575, where gja; = |aj], and let y* = > 1, biy;. Since
yi s < et and 30 b7 = 1, |ly*|ly+6p < €' Indeed, by Hélder’s in-

=1
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equality, for any = € cqo, if Iy < --- < I,, are such that supp(y;) C I;, then

y (@) < 3 bl (@) < e Y bl Ll
i=1 i=1

n n 1/p
<o (L u) (Thaelz) << el
i=1 i=1
Moreover,

5—1

oo [e.e] n
Y | =y (Zaiffvi) = Z@( > |aj|> = |zl p-
i=1 i—1 i=1

&p JEE;

Let us recall that for any ordinals ~, & with v < £, there exists a unique
ordinal § such that v+ d = £. We denote this ordinal § by & — ~.

We also recall that any non-zero ordinal £ admits a unique representation
(called the Cantor normal form) as

§=wny + -+ whng,

where k,n1,...,nr € Nand ;1 > --- > €. Using the Cantor normal form
& = wlng + -+ + W ny, we define the least non-trivial part A(§) of £ by
A(§) = w®'. For completeness, we let A(0) = 0. We also note that if ¢ < ¢,
A(C) < A(8).

For 0 < &, let w®'ny + - -+ + wny be the Cantor normal form of £. By
writing w®n = w® + - - -+ w®, where the summand w® appears n times, we may
also uniquely represent £ as

E=w +. W
where [ € N and 61 > --- > §;. In this case, 4; = €7.

THEOREM 2.17. Fix ¢ < wj and 1 < p < co. Fix a weakly null sequence
(xn)pey C Xep. Let T'={¢ < ¢ : limsup, ||z, > 0}.

(i) If p = o0, then I' = @ if and only if (x,)5%; is norm null.

n=1
(ii) If p < o0 and T’ = @, then either (x,)° is norm null or (z,)3%, has a
subsequence equivalent to the canonical ¢, basis.
(iii) If ' # @ and v = minT, then (z,):2, admits a subsequence which is
equivalent to a subsequence of the X¢_.,,, basis. In particular, (xy)52,
is &€ — v+ 1 weakly null and not £ — v weakly null.
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(iv) If p = oo, then every subsequence of ()72, has a further WUC subse-
quence if and only if T' C {&}.

o
n—

(v) If 0 < &, a weakly null sequence (xy,)
for every 3 < A(§), limy, ||z,||g = 0.

1 is {-weakly null if and only if

Proof. First note that by the almost monotone property of the Schreier
families, if ¢ € T', then [(,£] C T.

(i) It is evident that lim, ||z,||¢ = 0 if and only if { ¢ T".

(ii) If & ¢ T, then let v = ¢ and § = 0. By Proposition [2.16{ii), any
subsequence of (z,,)72; has a further subsequence which is dominated by a
subsequence of the X, = £, basis. Then since every seminormalized block
sequence in X¢, which dominates the £, basis, either lim, ||zy|¢, = 0, or
(n)s2; has a seminormalized subsequence which dominates the ¢, basis, and
this subsequence has a further subsequence equivalent to the ¢, basis.

(iii) Let § = £ — v, so that v + 6 = £ Proposition [2.16(ii) yields that
every subsequence of (z,,)7°; has a further subsequence which is dominated
by a subsequence of the X5, basis. Since no subsequence of the X;, basis is
an E‘f“—spreading model, this yields that (z,)02 is 6 + 1-weakly null. Since
v € I', Proposition m(iii) yields the existence of a subsequence (yy)22; of
(zn)p2; which dominates the X5, basis, so (2,)52; is not d-weakly null. Now
note that limy, ||y, [ s = 0 for all 3 <+, so by Proposition [2.16[ii), there exists
a subsequence (2z,)22; of (yn)22, which is dominated by some subsequence
(@n, )72, of the canonical X;, basis. This sequence (z,)52; also dominates
some subsequence (z,,)72; of the canonical X;, basis (where m; has the
property that z; = ¥m,). Now let us choose 1 = k; < k2 < ... such that
my,,., > ny, for all i € N and let u; = z,. Then (u;)72; is dominated by
some subsequence (z,,)2, of the X5, basis and dominates some subsequence
(xs,)72, of the X5, basis, where s1 < 1 < sy < 1y < .... This is seen
by taking s; = my, and r; = ny,. But it is observed in [I0] that two such
subsequences of the X5, basis must be 2-equivalent, so (u;)52; is equivalent
to (67“1‘)2921 (and to (eSi)ZQil)'

(iv) IfT C {&}, then by Proposition [2.16{ii) applied with v = £ and § = 0,
every subsequence of (z,,)72; has a further subsequence which is dominated
by the X5 = ¢¢ basis. Conversely, if & > v € T', then with § = £ — v > 0,
(xn)52, has a subsequence which is an E‘f—spreading model. No subsequence
of this sequence can be WUC.

(v) Note that both conditions are satisfied if (x,)5°; is norm null, so
assume ()%, is not norm null. If I' = @, then p < oo, and every sub-
sequence of (x,)72; has a further subsequence which is equivalent to the ¢,



THE &, (-DUNFORD PETTIS PROPERTY 163

basis, which means (z,,)22 ; is 1-weakly null, and therefore {-weakly null. Thus
both conditions are satisfied in this case as well.

It remains to consider the case I' # @. Let v = minI'. Let us write
§:w€1+...+w6k’

where €1 > --- > ¢;. Note that A\(§) = w®'. First assume that lim,, ||z, |3 =0
for all B < A(&), which means v > A(§). Then if v+ =&, 6 < w24+ +wsk,
By (iii), (z5)52; is 6 4+ 1-weakly null, and

0+1<w? 4 +w +1
KW+ W+ < W W=

yields that (z,,)52 ; is {-weakly null. Conversely, assume there exists 8 < A(£)
such that limsup, ||z,|g > 0. Then v < A(§). If v+ =&, then 6 = £. By
(iii), (xn)92; is not &-weakly null. 1

COROLLARY 2.18. For any 0 < £ < w; and any seminormalized, weakly
null sequence ()52, in X e, (2,)02, has a subsequence (yy)32, which is
either equivalent to the canonical ¢y basis or to a subsequence of the X
basis.

Proof. By Theorem [2.17|(iv), every subsequence of (z,)52; has a further
WUC (and therefore equivalent to the ¢y basis) subsequence if and only if
limy, ||zn||g = 0 for every B < & = A(§). If this condition fails, then there
exists a minimum v < w® such that limsup,, ||z,[], > 0. Then if v + ¢ = w?,
§ = wé, and (xr)92; has a subsequence equivalent to a subsequence of the
X ¢ basis. 1

w

COROLLARY 2.19. Fix 0 < { < w1, 1 < p < o0, and let (v,)52, C X¢,
be weakly null. Then (xy,);2; is §&-weakly null in X¢,, if and only if for every
v < A(), limy, |||, = 0 if and only if every subsequence of (xy,)72; has a
further subsequence which is WUC in Xy g).

Proof. This follows from combining Theorem (iv)—(v). 1

In the sequel, we will need the following standard duality argument. As it
involves some non-trivial computation, we isolate it.

ProprosITION 2.20. Suppose that F is a spreading set of finite subsets of
N, (xn), C X is weakly null, (x})2°, is weakly null, inf |z (x,)] > € > 0.

n=1
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sup {

then there exists a subsequence (xy, )72, of (xy)5>, such that
€
inf : F =1;>—.
m{ S b || - F e F S bl }_20
nelF nelF
sup{ Zan:nn :FGf,|an§1}:C'<oo,
nek
then there exists a subsequence (z}, )72 of (z},);%, such that
€
inf bpay || - FeF byl =1p> —.
i | Set | s Fer S mi=1f 2

ner nelF
Proof. (i) First note that the condition

sup { Z anc;

nekF
passing to subsequences, since F is spreading. Fix (€,)5%;(0,¢) such that
Dot Domeng1 €m < €/4. We may recursively choose 1 = k1 < ky < ...
such that for all n < m, |z} ()|, |z}, (zn)| < €m. Then for any F' € F and
(bn)ner, fix (an)ner such that |a,| =1 for all n € F' and

Zan nr, (Th, ) Z|an 0, (Th, |>5Z|b[

ner ner ner

(i) If

Zanmfl :FE}',|an§1}:C<oo,
neF

(i) If

:Fe]—",|an|§1}§0

Since || Y _,cr anty, || < C by the first sentence of the proof,

g 2[5 ()

neF neF neF
> anboay, (zr,) Z Z (bl |, (2k,)]
nel n=1m=n+1
(%S) 00
=D > [bmllri, ()]
n=1m=n+1

> e |bn | — 2max|by \Z Z Em > nyb\

ner n=1m=n+1 neFr
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(ii) This follows from (i) by considering (x,)5% ; as a sequence in X**. 1

LEMMA 2.21. Fix0<€{<w; and 1 <p<oo.

(i) If (z3")p2y C Xg), is {-weakly null, then lim, ||2}*(|y = 0 for every

n

¥ < A(§)-

(ii) If (3" )nzy C X¢), is §-weakly null and (z7,)52, C X3¢ 18 weakly null,
then lim, z;*(z;) = 0.

Proof. (i) Suppose not. Then for some v < A(§) and € > 0, we may pass
to a subsequence and assume inf, ||z}*[, > €. We may choose a sequence
(zh)nz1 C Bxz Nego such that infy |27 (2,)| > €. Since lim, 27,7 (ef) = 0 for
all 7 € N, we may, by passing to a subsequence and replacing the functionals
x; by tail projections thereof, assume that (z)2°; is a block sequence in
B Xz M coo- Then by standard properties of ordinals, if § is such that v+6 = &,
d = £. By Proposition [2.16(i), we may pass to a subsequence once more and
asssume (z7,)p2 is a cg-spreading model in X{, and therefore weakly null in
X. By passing to a subsequence one final time and appealing to Proposition
assume (z}%)2°
&-weakly null. This contradiction finishes (i).

is an K%—Spreading model. Therefore (x*)%°; is not

n /n=1

(ii) Also by contradiction. Assume (z3")p2; C X{7, is {-weakly null,
(xp)oe, C X3 (¢ 1s weakly null, and inf, |z (x})| > e > 0. By perturbing, we
may assume (z)>°; is a block sequence and there exist I; < I < ... such
that I,x; =« for all n € N. Let (74)22, C [0, A(&)) be a sequence (possibly
with repitition) such that [0, A\(§)) = {v : k € N}. By (i), limy, ||z}*],, =0
for all £ € N. By passing to a subsequence and relabeling, we may assume
that for each 1 <k <mn, ||z};*||5, < 1/n. Let z, = I,x};* € X¢ and note that

for each v < A(§), limy, ||y, ||y = 0. Indeed, if v = 4, then for all n > k,
lznlly < llz3" [l < 1/n.

Since Iz} = z}, |z} (xn)| = |z (z))| > €. But by Corollary some
subsequence of (z,)° ;, which we may assume is the entire sequence after
relabeling, is WUC in X)(¢). But now we reach a contradiction by combining
the facts that (z,);2; is WUC in X)(g), (27,)721 C X3(¢) is weakly null, and
inf,, |z} (x,)] > 0. 1
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3. IDEALS OF INTEREST

BASIC DEFINITIONS. We recall that Ban is the class of all Banach
spaces and £ denotes the class of all operators between Banach spaces. For
each pair X,Y € Ban, £(X,Y) is the class of all operators from X into Y.
Given a subclass J of £, we let J(X,Y) =TNL(X,Y).

We say that a class J of operators is an operator ideal (or just an ideal)
provided that

(i) forany W, X, Y, Z € Ban, C € £(W, X), B€ 3(X,Y),and A € £(Y, Z),
ABC € 3(W, Z),
(ii) Ix €7,
(iii) for each X,Y € Ban, J(X,Y) is a vector subspace of £(X,Y).
Given an operator ideal J, we define the

(i) closure J of J to be the class of operators such that for every X,Y €

Ban, 1(X,Y) = 3(X,Y),

(ii) injective hull 3™ of J to be the class of all operators A : X — Y such
that if there exists Z € Ban and an isometric (equivalently, isomorphic)
embedding j : Y — Z such that jA € 3(X, Z),

(iii) surjective hull 3°*" of J to be the class of all operators A : X — Y
such that there exist W € Ban and a quotient map (equivalently, a
surjection) ¢ : W — X such that Aq € J(W,Y),

(iv) dual 39! to be the class of all operators A : X — Y such that A* €
I(Y*, X).

We also let 0J denote the class of operators such that for each pair X,Y of
Banach spaces, [J(X,Y) = £(X,Y) \ J(X,Y).

Each of J, 3™ J° is also an ideal.

Given two ideals 7,3, we let

(i) 303! denote the class of all operators A : X — Y such that for all
W eBan and R € J(W, X), AR € J(W,Y),

(ii) 37! o J denote the class of all operators A : X — Y such that for all
ZeBanandall LeJ(Y,Z), LAc J(X,Z).

We remark that for any three ideals J1, Jo, J,
(371 03) 00yt =310 (303,50,

so that the symbol ’Jl_l oJo 32_1 is unambiguous.
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We say an operator ideal is
(i
(ii

(iii

closed if 3 =17,
injective if J = JM,

surjective if J = J5",

dual

)
)
)
(iv) symmetric if 3 =7

With each ideal, we will associate the class of Banach spaces the identity
of which lies in the given ideal. Our ideals will be denoted by fraktur lettering
(A,%,7,...) and the associated space ideal will be denoted by the same sans
serif letter (A,B,1,...).

We next list some ideals of interest. We let 8,20, and U denote the class of
compact, weakly compact, and completely continuous operators, respectively.

For the remaining paragraphs in this subsection, & will be a fixed ordinal
in [0,wi]. We let 20¢ denote the class of operators A : X — Y such that
any bounded sequence in X has a subsequence whose image under A is &-
weakly convergent in Y (let us recall that a sequence (y,)22,; C Y is said to
be {-weakly convergent to y € Y if (y, — y)52, is &~weakly null). Note that
Wy = K and W,,, = W. We refer to W, as the class of {-weakly compact
operators. This class was introduced in this generality in [6].

We let w0B&,¢ denote the class of operators A : X — Ysuch that for
any weakly null sequence (zy,)2%, (Azy)02, is {-weakly convergent to 0 in
Y. Note that 0867 = T, wBS,, = £, and wBS; is the class of weak
Banach-Saks operators. For this reason, we refer to w8&, as the class of
¢-weak Banach-Saks operators. These classes were introduced in this gener-
ality in [4].

We let U, denote the class of operators A : X — Y such that for any
&-weakly null sequence (z,)0%,, (Azp)0%; is norm nul. It is evident
that U, = UV and Yy = L£. These classes were introduced in this gener-
ality in [12].

For 0 < ¢ < wy, we let B¢ denote the class of operators A : X — Y
such that whenever (x,)0° is {-weakly null, (Az,)0%, is (-weakly null. We
isolate this class because it is a simultaneous generalization of the two previous
paragraphs. Indeed, Us = &¢ g, while WBEG, = &, . It is evident that
&¢ ¢ = £ whenever { < (. These classes are newly introduced here.

For 0 < ¢ < wy, we let M, - denote the class of all operators A : X — Y
such that for any &-weakly null (z,)5°; C X and any (-weakly null (y})5, C
Y*, lim, y)(Ax,) = 0. The class M, o, (sometimes denoted by D) is a
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previously defined class of significant interest, most notably because the asso-
ciated space ideal M, ., is the class of Banach spaces with the Dunford-Pettis
property. As a class of operators, ¢ ¢ has not previously been investigated,
but the space ideals My, and M, ¢ have been investigated in [16] and [II,
respectively.

Remark 3.1. Let us recall that the image of a £&-weakly null sequence under
a continuous, linear operator is also £-weakly null, for any 0 < £ < ( < wq, any
sequence which is &-weakly null is also (-weakly null, and the 0-weakly null
sequences are the norm null sequences. From this we deduce the following:

(i) B¢ =L forany £ < (¢ < wy.
(ii) Me e = L if min{§, ¢} =0.
(ili) For ( K a<wi and B <& <wi, G C Bg,.
(iv) f a < ¢ <wj and B < &€ <wi, then Me ¢ C Mg 4.
We next record an easy consequence of Corollary

COROLLARY 3.2. For any 0 < (,¢ < wy,

Gee C ) Bateatc

a<wi

Proof. Suppose X,Y are Banach spaces, A : X — Y is an operator,
a < wi,and 0 < ¢, € < w; are such that A € E®a+§,a+§- Then there exists a
sequence (xy,)0>; C X which is a 4+ &-weakly null and such that (Az,)52, is
not o+ (-weakly null. Note that ( < wq, since otherwise a+( = a+w; = wi,
and (Az,)>2, would be a non-weakly null image of a weakly null sequence.
If £ = wi, we deduce that A € (&g, since (2,)52; is a {-weakly null se-
quence the image of which under A is not «+ (-weakly null, and therefore not
¢-weakly null. If £ < wy, we use Corollary [2.12]to deduce the existence of some
convex blocking (z,)5%; of (x,)5%; which is £&-weakly null and the image of

which under A is an Eg—spreading model. Thus A € 0S¢ . Therefore
C&arigarc C OO

Taking complements and noting that o < w; was arbitrary, we are done. |

Remark 3.3. We remark that adding « on the left in the previous corollary
is necessary. The analogous statement fails if we add « on the right. For
example, for any 0 < ¢ < w; and ¢ < w¢, the formal identity I : X_¢ — X
lies in ®w5,0 N E®w5+1,<'
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ExAMPLES.  In this subsection, we provide examples to show the richness
of the classes of interest, WBS,, &¢ ¢, and M, .. We note that wBG, = U,
G¢c = £ whenever £ < ¢, and M = £ whenever min{¢, (} = 0. We typically
omit reference to these trivial cases.

PROPOSITION 3.4. Fix 0 < £ < wy. Then for any subset S of [0,&) with
sup S =&, (®C€5XC)€1(S) S WBSg N U<<£ BWBSC.

Proof. By Theorem [2.14(v), if ¢ < &, X € wBS¢. We will prove in
Proposition [3.15] that the /; direct sum of members of wBS¢ also lies
in wBS¢. 11

THEOREM 3.5. For 0 < ¢ < { < wy, the formal inclusion I : X¢ — X lies
in 05574 N E®E+LC'

Proof. Fix (xn)p2; C X¢ &weakly null. Then by Theorem [2.17](v),
limy, ||y||g = 0 for every B < A(§). If ( = 0, then ¢ < A(§) and lim,, ||z, ||¢ = 0.
Therefore (Izy,)02 is (-weakly null. If ¢ > 0, then since A(() < A(§),
limy, ||/z,]|g = 0 for every 8 < A(¢), and Theorem[2.17|(v) yields that (Iz,)52
is (-weakly null in this case. In either case, (Ix,)52; is (-weakly null, and
I € &; . However, the canonical basis is { + 1-weakly null in X, and not
¢-weakly null in X, so I € [19554_1,4. |

It is well-known and obvious that every Schur space and every space whose
dual is a Schur space has the Dunford-Pettis property. The generalization of
this fact to operators is 2,09 c ©9P. The ordinal analogues are also
obvious: For any 0 < § < wy, Vg C M, and %gual C My, ¢ Thus it is of
interest to come up with examples of members of M, , or more generally
M¢ ¢, which do not come from ¢ or %gual.

THEOREM 3.6. For 0 < £ < w; and 1 < p < oo, the formal inclusion
I Xep — Xy lies in Mgy, N COMei11 N BV, and the formal inclusion
J 0 X3¢y — XE, lies in Mg,y ¢ 00Ny g4y N OB

Proof. 1t follows from Lemma|2.21(ii) that I € M, and J € M, ¢. Since
the canonical basis of X¢, C X g ’; is € 4+ 1-weakly null and the canonical basis

of X;(g) is a c}-spreading model, and therefore 1-weakly null, I € Bm£+171 and

J € By e41. Now if (7,)22, C [0, A(€)) is such that [0, A\(€)) = {yx : k € N},
we may select F} < Fy < ..., F; € S)\(g), and positive scalars (ai)ieuz":an
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such that for each 1 <k <n, > . p a; =1and ||} ;cp aieill,, <1/n. Then
with x,, = ) ,cp aie;, Theorem v) yields that (xy,)22 is &-weakly null

in Xe, C X7, Evidently ()52, is normalized in X)), so that I € Cu,
and J € Bmgmﬂ. |

COROLLARY 3.7. For any 0 < o, 3,(,§ < wy, B, = O¢ ¢ if and only if
one of the two exclusive conditions holds:

(i) ¢ < ¢ and B < o (in which case g, = £ = B¢ ).
(i) a=C<&=p.

Proof. Tt is obvious that (i) and (ii) are exclusive and either implies equal-
ity. Now suppose that neither (i) nor (ii) holds. Suppose £ < ¢ and § > «.
Then I'x, € 2(7&’557@ = 0557<ﬂ|3(’557a, and &¢ - # &g . Similarly, &¢ - # B3,
if 8 <aand (<&

For the remainder of the proof, suppose that a < § and ( < £&. Now
suppose o < (. Then

Ix, € 0BG, N Em%Ga C ®§7C N C@g@.

Similarly, &¢ . # &g, if ( < a. Next assume ( = o < { < . Then if
I: X¢ — X¢ is the formal inclusion, I € &¢ ¢ N Eﬁﬁ,a- If{=a<p<g we
argue similarly with the inclusion I : X3 — X,. Since this is a complete list
of the possible ways for (i) and (ii) to simultaneously fail, we are done. 1

COROLLARY 3.8. For any 0 < o, 3,(,§ < wi, Mg o C M ¢ if and only if
one of the two exclusive conditions holds:
(i) 0 =min{¢,&} (in which case Mg o = £ = Me ).
(i) 0<(<aand0<¢<pB.

In particular, Mg o = M ¢ if and only if min{3,a} = 0 = min{,(} or
O<a=Cand0< pB=E¢&.

Proof. Tt is obvious that (i) and (ii) are exclusive, and either implies that
m@a C Qﬁg,c.

Now assume that min{¢,£} > 0. If min{a, 5} = 0, Mg = £ € M,
since Iy, € EDJTM C Ei)ﬁgﬁg. If0<a,Band B <, thenlet I: Xg — Xy be
the formal inclusion. Then

Ie mg’wl N BgﬁngLl C m@a N CEUI&Q
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Now if 0 < , B and o < (, let J : X;(a) — X be the formal inclusion. Then

J e mwha N Bm17a+1 C 91715,@ N Emt&c.

The last statement follows from the fact that if Mg, = M, then
either both classes must equal £, which happens if and only if min{s, a}
= 0 = min{¢,(}, or neither class is £, in which case min{s, a}, min{¢, (}
> 0. In the latter case, using the previous paragraph and symmetry, a = ¢

and =& 1
GENERAL PROPERTIES.  We will need the following fact, shown in [12].

PROPOSITION 3.9. If X is a Banach space and (x,)52; C X is€-weakly

null, then there exists a subsequence (x,, )2, of (x,)0° such that the operator
Q0 — X given by Y 20 aje; = > 7 aiy, lies in We (4, X).

Remark 3.10. It follows that if Y is a Banach space and (y;;)72, C Y*
is {-weakly null, there exist a subsequence (y;, )52, of (y;;)n2; such that the
operator given by ¥ : Y — ¢ given by Uy = (y;, (y))i2; lies in Qﬁgual(Y, o).
This follows immediately from Proposition [3.9] since U* : {; — Y* is given by

* o8} _ o0 ok
v Zi:l aie; = Zi:l AiYp, -

Remark 3.11. In the following results, we will repeatedly use the previ-
ously stated fact that a weakly null E%—spreading model can have no (-weakly
convergent subsequence.

THEOREM 3.12. Fix 0 < ( < & < w;i. Then
65’4 _ Qﬂ{ o wgl and 62}?1 _ (wgual)fl o wcciual'

Consequently, &¢ ¢ is a closed, two-sided ideal containing all compact opera-
tors. Moreover, &¢  is injective but not surjective. Finally,

62}?1 dual g 6570

dual

while neither of ®¢ ¢, Qig & s contained in the other.

Proof. Fix X,Y € Ban and A € £(X,Y). First suppose that A €
B¢ ¢(X,Y). Fix a Banach space W and R € 20¢(W, X). Fix a bounded
sequence (wy, )5 ;. By passing to a subsequence, we may assume there exists
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x € X such that (z — Rwy)32, is &-weakly null, from which it follows that
(Az — ARwy,)S° ; is ¢-weakly null. Since this holds for an arbitrary bounded

n—

sequence in (wy)p2,, AR € ;. Since W € Ban and R € 20¢(W, X) were

arbitrary, A € QHZ olzngl(x, Y).

Now suppose that A € 805574. Then there exists a £-weakly null sequence
(xr)0%, in X such that (Az,)5°; is an Eg—spreading model. By Proposition
after passing to a subsequence and relabeling, we may assume the operator
R :l1 — X given by RY 72, aje; = Y .0, a;x; lies in We(¢1, X). But since
(ARe;)2, = (Az;)°, has no (-weakly convergent subsequence, A € 020; o
W (X,Y).

Next, suppose that A € 05212"‘1(X,Y). Fix Z € Ban and an operator
L € WY, Z). Then A* € G¢c(Y*, X*) = W o W, ' (V*, X*) and L* €
We(Z*,Y*), and (LA)* = A*L* € W¢(Z*, X*). Thus LA € WM(X, Z).
Since this holds for any Z € Ban and L € Qﬁg“al(Y, Z), A e (Qﬂg“al)_l o
WX, Y).

Now if A € C@g}al(X, Y'), there exists (y;;)72,; C Y™ which is &-weakly
null and (A*y})%° , is an Eg—spreading model. By the remarks preceding the

n=1
theorem, by passing to a subsequence and relabeling, we may assume the
operator L : Y — ¢p given by Ly = (y}(y))52, lies in mgual(y, cp). But
since (A*L*e;)2, = (A*yf)$2, is a weakly null Zg—spreading model, (LA)* =
A*L* € CQBC(&,X*). Thus LA € C((QU‘gual)_l o QU‘gual)(X, Y).

This yields the first two equalities. It follows from the fact that 20,20,
are closed, two-sided ideals containing the compact operators that & ¢ is also.

It is evident that & ¢ is injective, since a given sequence is (-weakly null if
and only if its image under some (equivalently, every) isomorphic image of that
sequence is (-weakly null. The ideal &, ¢ is not surjective, since X, € EGE’Q,
while X, is a quotient of /1 € V C G¢ .

It is also easy to see that if A™ € &¢ ¢, then A € &¢ ¢, so 62}?1‘1“&1 C B¢ .
If ( = 0, note that /1 € V C G¢¢, but £7* contains an isomorphic copy of
ly, so that (1" € CG&O. This yields that Gﬁg}f]aldual # G¢o. Now if ¢ > 0,
co € wBSy C G But log = ¢f* € CG@C. In order to see that /o, € EG“,
simply note that /., contains a sequence equivalent to the X basis, which is
&-weakly null and not (-weakly null.

Finally, let us note that if ( =0, ¢1 € V C G¢ ¢, while ¢g, loo € EGg,o. Thus

neither of &¢ g, QSg%al is contained in the other. Now suppose that { > 0. Then
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since X[y € wBSy C Gec,
Xeo € G N CGe and XZy € Gee NCGEEL

Here we recall that X¢o is reflexive. This yields that if 0 < ( < § < wy,
neither of &¢ ¢, Qﬁg‘?l is contained in the other. 1

THEOREM 3.13. Fix 0 < (,& < wi. Then
mg( — (mgual)—l o mf — (mgual)—l o ﬁom]gl.

Consequently, M ¢ is a closed, two-sided ideal containing all compact opera-
tors. Moreover, M ¢ is neither injective nor surjective. Finally,

M C M e and Myl C e .

Proof. It follows from the fact that U = Ko 201, which was shown
n [12], that (W)~!oWe = (W)~ o Ko W, . We will show that
Mee = (Qﬁgual)*l oRo Qﬁgl. To that end, fix Banach spaces X,Y and
Ae £(X,)Y).

Suppose that A € £(X,Y). Fix Banach spaces W, Z and operators R €
We(W, X) and L € WY, Z). We will show that LAR € &(W, Z). Seeking
a contradiction, suppose LAR € CR. Note that there exists a bounded se-
quence (wy,)52; C W such that inf,,+, | LARwy,, — LARwy|| > 4. By passing
to a subsequence, we may assume there exist € X such that (x — Rwy)2% is
&-weakly null. Since || LARwy,, — LARw,|| > 4 for all m # n, there is at most
one n € N such that |LAx — LARw, | < 2. By passing to a subsequence, we
may assume ||LAx — LARwy,|| > 2 for all n € N. For each n € N, fix 2} € By«
such that |z} (LAx — LARw,)| > 2. By passing to a subsequence one final
time, we may assume there exists y* € Y* such that (y*—L*z})>  is (-weakly
null and, since (Az — ARw,,)22 is weakly null, |y*(Az — ARwy,)| < 1 for all
n € N. Then (y* — L*z})>°, C Y* is (-weakly null, (z — Rw, )02 is {-weakly
null, and

inf |(y* — L*2))(Az — ARwy,)| > inf |L*2) (Az — ARw,)| — 1

= inf |2, (LAx — LARwy)| — 1 > 1.

This contradiction yields that M, - C (Qﬂgual)*l oRo Qﬂgl.
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Now suppose that A € 09 ¢(X,Y). Then there exist a &-weakly null
sequence (z,,)0%; C X and a (-weakly null sequence (y})2°; C Y™ such
that inf, |y} (Ax,)| = 1. Using Proposition and the remark following
it, after passing to subsequences twice and relabling, we may assume the
operators R : {1 — X given by R> 2, aje; = Y.~ ax; and L : Y — ¢
given by Ly = (y;(y))s2, lie in W (41, X) and Qﬁgual(Y, ¢p), respectively. But
LAR : {1 — c¢g is not compact, since

len(LARen)| = [y, (Azn)| > 1

for all n € N. This yields that Mg ¢ = (W)~ o Ko W, .

Since {9 € CMM - EI\/I&C is a subspace of {o, € My, 0, C Mg and a
quotient of £1 € My, w; C Mg ¢, M ¢ is neither injective nor surjective.

Now suppose A € Sﬁgzal(X ,Y). Now if (z,)02, C X is (-weakly null,

(y2)9oo; is &-weakly null, and j : X — X** is the canonical embedding, then
(jn)pey C X** is ¢-weakly null. Since A € MW (X,Y),

limy (Az,) = lim A"y} (z,) = lim jx,,(A*y;) = 0.

Thus A € M¢¢(X,Y). This yields that zmdlgﬂ C M¢¢. To see that smdual #
M ¢, we cite Stegall’s example [22], X = ¢;(¢3). This space has the Schur
property, and therefore lies in My, o, C M¢¢, while X™* contains a comple-
mented copy of £5. The fact that X* contains a complemented copy of #o is
stated explicitly in [8]. Thus X € BMdual C CMdual.

Next, we note that

mdual dual (gﬁdual)dual C mdual C m£ c.

To see that Sﬁd%al dual _ M ¢, we make yet another appeal to Stegall’s example
and let Y = ¢o(¢5). Then Y* = X has the Schur property, and therefore
Y e Mwhwl C MfaC' But

Y™ =X*¢c EM1,1 C EM&C
Therefore Y € CI\/Ig}éal dual — n

DirEcT suMs. For 1 < p < oo and classes 7,3, we say J is closed under
J-¢,, sums provided that for any set I and any collection (A4; : X; = Y;)ier CJ
such that sup;¢; || Ail| < oo, the operator A : (Sic1Xi)e, (1) — (DierYi)e, (1) lies
in J. The notion of an ideal being closed under J-¢y sums is defined similarly.

We will use the following well-known fact about weakly null sequences in
¢1 sums of Banach spaces.
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Fact 3.14. Let I be a set, (X;)ier a collection of Banach spaces, and
(xn)o, = ((%,n)ig[)zo:l a weakly null sequence in (®ierXi)e, (). Then for
any € > 0, there exists a subset J C I such that |\ J| < oo and for all n € N,
e loinll < <.

ProproOSITION 3.15. Fix 0 < ( <& < ws.

(i) The class &¢ ¢ is closed under &¢ -f1 sums.

(i) The class ®¢ ¢ is closed under ¢ ¢-f, sums for 1 < p < oo if and
only if ¢ > 0.

(ili) The class &¢ ¢4 Is closed under &¢ c-co sums.
iv) The class &¢ ¢ is not closed under &¢ -cy sums.
&¢ &¢

(v) The class &¢ ¢ is not closed under U-lo, sums.

Proof. Throughout, let I be a set, (4; : X; — Y;);er a collection of oper-
ators such that sup;c; [|Ail| = 1. Let X}, = (®ierXi)e, (1), Yp = (DicrYi)e, (1),
and A, : X, — Y}, the operator such that A,|x, = A;. As usual, p = 0 will
correspond to the ¢y direct sum.

(i) Assume A; € B¢ for all i € I. Fix (2,)52; C Xi §-weakly null.
Write 2, = (2)icr and note that for each ¢ € I, ()52, is {-weakly null,
50 (Aiz )2, is (-weakly null. Fix ¢ > 0 and M € |[N]. Using Fact there
exists a subset .J of I such that |1\ .J| < oo and sup,, >, [|[%in|| < /2. Since
(Aim; )00, is (-weakly null, then there exists F' € S¢ N [M]<N and positive
scalars (an)ner summing to 1 such that

g AnTin

neF

e/2
< —— -
v, L1+ I[I\J]|

for each ¢ € I'\ J. Then

HA1 S| < 3

neF iel\J

g anAixi,n

nekl

+3an Y il
Y;

i neF  iel\J
<€e/2+¢€/2=c¢.

Since € > 0 and M € [N] were arbitrary, (A1z,)5%; is (-weakly null.
(ii) Fix 1 < p < oco. Since ¢, € EG&O and K € G¢, &¢ is not closed
under ¢, sums. It follows by an inessential modification of work from [3] that

for 0 < ¢ < wy, B¢ is closed under & -f, sums. More specifically, let
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(zn)ply C Bx, be {&-weakly null and let v, = (||zi x| x,)ier € By, (1) Assume
(Apxy)22, satisfies

0<e<inf{||Apz| : F €S8 xccolzy,:neF)}

By passing to a subsequence, we may assume v, — v = (v;)ie; € By,
weakly, and that v, is a small perturbation of v + b,, where the sequence
(b)) consists of disjointly supported vectors in Bx,. We may fix a subset
J of I such that |I'\ J| < oo and (ZieJ”?)l/p < ¢/3. For k € N, we may first

choose M = (m;)72, € [N] such that S¢[Ag|(M) C S¢ and let

1 (n+1)k

Up — % Z .’Emj.
j=nk+1
If k was chosen sufficiently large, then
1/p
sup (Z HumH’;(Z) <e/2.
" Nieg

By our choice of M, (Apu,)s2, also satisfies

e <inf {||Au,|| : F € S,z € co(zn:n € F)}.

Since (A;z;n)ne, is (-weakly null, there exist F' € S¢ and positive scalars
(an)ner summing to 1 such that

g anAixi,n

e/2
<7
v, 1+[I\J]|

for each ¢ € I\ J. We reach a contradiction as in (i).

(iil) Fix (xn)22 = ((win)ier)2>, C Bx, &{-weakly null. Fix (e,)02; such
that > 7, e, < 1. Since for each i € I, (Ajz; )02, is (-weakly null, we may
recursively select Fy < Iy < ..., I}, € S, positive scalars (a;)jeus  F,, and
finite subsets @ = Iy C Io C ... of I such that for each n € N,

Ai Y ajaig > ajzi,
JEF, JEF,

<e, and max
ie\I,

< én.

g aj =1, max
. iEInfl
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2n
m=n-+

Then since for each n € N, U

1 2n
AOE Z Z AT 5

m=n-+1jeF,

1Fm € S¢qq for each n € N, we deduce that

sup
el

§ : ;i

JEFn

2n
< max{ max g ,
’iEI\IQn

m=n+1

2n
1
max max —||4; Z a;zi |l + Z A; Zajmi,j
n<m<2n | i€Ln\Im—1 T ; ‘
JjEFm m#l=n+1 JjeER
(o]
1
<-4+ Z em — 0

n n—oo

m=n+1

(iv) For the ¢ = 0 case, cop = co(K) yields that & is not closed under
B¢ o-co sums. If ( = p+ 1, let F,, = A,[S,] and note that Xz, is isomorhpic
to X,,. If ¢ is a limit ordinal, let ({,)52; be the sequence defining Sy and
let F,, = S¢,+1. In either the successor or limit case, Sp = {F : In < E €
Fn}. Also, in both cases, X7, € wBS; C G¢¢ for all n € N. Let z,, =
(én,en,en,...,€n,0,0,...), where (e;)?°; simultaneously denotes the basis of
each X7, and e, appears n times. Now fix @ # G € S¢, let m = min G, and
note that G € F,. Fix (a,)neq and note that the m® term of the sequence
Y neG @nTn 18 D, e Gnen, which has norm )~ la,| in Xz, . Thus (2,)52,
is a weakly null, isometric €§—spreading model. By (iii), (x,)02; is &-weakly
null (more precisely, we are using the fact that wBS¢41, and therefore wBSg,
is closed under wBS¢-co sums).

(v) Let E, = [e; : i < n] C X¢ 2, which lies in V. But, analogously to Ste-
gall’s example, /o (E,) contains a complemented copy of X 2. More precisely,
let Z denote the subspace of (o (Ey,) consisting of those z = (31 | ainei)ne
such that for all m < n € Nand 1 < i < m, a;,m = a;, (that is, the se-
quences (a; )52, are each initial segments of a single scalar sequence (a;)$°).
For z = Y .°, aje; € Xeo, let j(z) = (D07, a;e;)52,, which is an isometric
embedding of X¢ 5 into Z. Moreover, j is onto. Indeed, since the basis of X¢ o
is boundedly-complete and if z = (3_;" | a;je;)32, € Z, then

n
E a;€;

i=1

= |12lleee (B0) < 00,

sup
n £72

and x := ) 7, aje; € X¢ o is such that j(z) = z. Thus Z is isometrically iso-
morphic to X¢ 2. Let U be a free ultrafilter on Nand for z = (3°7 | a;ne;)32; €
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loo(Ey), let

n
Pz = weak lim ain€ € Xeo.
U Zl 1,nCq £,2

1=

This limit is well-defined, since (37 @i ne;)52, is bounded in the reflexive
space X¢o. Then Z is an isometric copy of X¢ o which is 1-complemented in
lx(E,) via the map jP. Since X¢ € 0G¢¢, loo(Ey), while each E, is finite
dimensional and therefore a Schur space, we reach the desired conclusion. |

PrOPOSITION 3.16. Fix 0 < (, ¢ < wy.

(i) The class M ¢ is closed under cq and {1 sums.
(ii) The class M ¢ is not closed under ¢, sums for any 1 < p < oco.

(ili) The class My ¢ is not closed under £, sums.

Proof. Ttem (i) follows from inessential modifications of the fact that the
class of spaces with the Dunford-Pettis property are closed under ¢y and /¢4
sums, using Fact [3.14]

Item (ii) follows from the fact that £, = ¢,(K), 1 < p < oo, does not lie in
M171, while K € V.

Item (iii) again follows from Stegall’s example, which is an £, sum of Schur
spaces which contains a complemented copy of /o, and therefore does not lie
in Ml,l- I

4. SPACE IDEALS

HEREDITARY PROPERTIES. Let us say a Banach space X is hereditarily
Mg, provided that any subspace Y of X lies in M¢ . For convenience, let us
say a sequence (z,)5%; in a Banach space is a ¢’ -spreading model provided
that it is equivalent to the canonical ¢y basis.

PROPOSITION 4.1. For 0 < &,( < wy, X is hereditarily M ¢ ¢ if and only if
every seminormalized, £-weakly null sequence in X has a subsequence which
isa cg—spreading model.

Remark 4.2. Since for £ < wi, a seminormalized, weakly null sequence
is either £&-weakly null or has a subsequence which is an ﬁ%—spreading model,
Proposition can be restated as follows: For 0 < £ <wj and 0 < ( <wi, X
is hereditarily M¢ ¢ if and only if every seminormalized, weakly null sequence
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in X has a subsequence which is either an E?—spreading model or cg—spreading
model.

Remark 4.3. The proof below requires a result due to Elton concerning
near unconditionality. To the best of our knowledge, this result is only known
to hold for real scalars. We include a proof of the requisite result in the com-
plex case, which is an easy modification of what are now standard arguments
regarding partial unconditionality. We relegate the details of the complex case
to the final section of this work.

Proof of Proposition Suppose that every normalized, £-weakly null
sequence in X has a subsequence which is a cg—spreading model. Let Y be any
subspace of X. Suppose that (y,)5%; C Y is &-weakly null, (y5)52, C Y* is
weakly null, and inf,, |y} (y,)| = ¢ > 0. By passing to a subsequence, we may
assume (y,)o2; is a cg—spreading model. By Proposition applied with
F =8 if ( <w and F = IN]<N'if ¢ = w;, we may pass to a subsequence,
relabel, and find some C' < oo such that

inf{ Zanyfl :Fe]-",Z]an|:1}22€C.

neF neF
This yields that (y;)52; is not (-weakly null, and Y € M ..

For the converse in the ( < w; case, suppose that (z,)02, is a semi-
normalized, {-weakly null sequence in X having no subsequence which is a
cg—spreading model. Assume that (z,,)52; is a basis for Y = [z, : n € N] and
let (x})2°, C Y* denote the coordinate functionals. For M = (m,)5, € [N],
let Yar = [xm,, : n € N]. By hypothesis, there does not exist L € [N] such that

(Tn)ner 1s a cg—spreading model. By [I, Theorem 3.9], there exists M € [N]

such that for each L € [M], (z}|y,,)ner is not an E%—spreading model. Then
(@} |vay Jnem is (-weakly null in Y};. Since (2, )nens is {-weakly null in Yj; and
2} (x,) =1for allm € M, Yas € CM¢.

For the ( = w; case of the converse, this is an inessential modification
of Elton’s characterization of the hereditary Dunford-Pettis property, with a
slight comment in the complex case to be discussed in the final section. For
the sake of completeness, we record the argument as given in [I3] Page 28].
Suppose that (z,,)52; C X is {&-weakly null having no subsequence equivalent
to the cg basis. By passing to a subsequence, we may assume (x,)5 is
basic with coordinate functionals (z7)° ; and for any subsequence (y,,)22; of
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()5 and (ay)52 € oo \ co, limy, || D0 aiyi|| = co. Now if

Py [zp:n €N = [z, :n < K]

denotes the basis projections, for any z** € X**, then

n
> et (@)
i=1

Therefore (z**(x}))22, € co, and (z})2°  is wi-weakly null. Since z}(z,,) =1

foralln € N, [z, :n € N] € CM¢,,. 11

sup < [l sup [|Pa] < oc.
n n

Remark 4.4. For each 0 < § < wy, X, is hereditarily M ¢ ,, , since every
seminormalized, weakly null sequence in X ¢ has either a subsequence which
is an E‘ff—spreading model or a subsequence equivalent to the canonical cg
basis.

In [5], for each 0 < £ < wy, a reflexive Banach space %‘0"{1 with 1-uncondi-
tional basis was defined such that every seminormalized, weakly null sequence
has a subsequence which is either an E“fg—spreading model or a c(l)—spreading
model, and both alternatives occur in every infinite dimensional subspace.
Thus %‘551 furnish reflexive examples of members of M ;.

For 0 < (,§ < wy. Let us say that X is hereditary by quotients Mg ¢ if
every quotient of X is a member of Mg ¢.

THEOREM 4.5. Fix 0 < v < wj. For a Banach space X, the following are
equivalent.

(i) X* eV,.

(ii) X* is hereditarily M., , .
)
)

(iii) X is hereditary by quotients My, .
(iv) X € My, 4 and {1 # X.

Proof. (1)=(ii) Assume (i) holds. If (z})°; C X* is y-weakly null, it is
norm null. Thus for any subspace Y of X*, any v-weakly null (y,)22, C Y,
and any bounded sequence (y})2; C Y™, lim, v (y,) = 0.

(ii)=(ili) Assume (ii) holds. For any quotient X/N of X, (X/N)* =
Nt < X* 50 X/N € MJW C My, .

(iii)=(iv) Assume (iii) holds. If £; < X, then /3 is a quotient of X, which
is a contradiction. Thus ¢; ¢+ X. Since X is a quotient of itself, X € M,,, .
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(iv)=(i) Assume (iv) and —(i). Since X* € CV,,, there exists a seminor-
malized, y-weakly null sequence (z};)%°, in X*. Fix 0 < & < 3 inf,, ||2}]|. For
each n € N, we may fix z,, € Bx such that z(z,) > 2¢. By passing to a
subsequence and relabeling, we may assume that for all m < n, |z} (x,)| < €.
Since /1 #» X, we may also assume that (x,)22; is weakly Cauchy. Then with
yr = x5, and yn = Ton — Ton—1, (U)o, is y-weakly null, (y,)52; is weakly
null, and inf, |y (yn)| > €. 1

DISTINCTNESS OF SPACE IDEALS. We recall that, given an operator
ideal J, the associated space ideal | consists of all Banach spaces X such
that Ix € J. We showed in Section 3 that for any 0 < ( < & < w; and
0<a<B<w, G =6p, if and only if ( = a and § = ¢. Our next goal is
to show that this is not true for the space ideals, due to the idempotence of
identity operators. We recall the result from [12] that a Banach space X lies in
V¢ for some wé < ¢ < wttlif and only if X lies in V. for every Wt < ¢ < Wbt
which is a consequence of considering blocks of blocks. We prove analogous
results below. We need the following result for blocks of blocks.

PROPOSITION 4.6. Let X,Y,Z be operators, «,3,{ countable ordinals,
and assume B € g ¢ and A€ Gy ¢¢. Then AB € B¢

Proof. By Corollary B € &oqp4ca+¢. Thus if (z,)52, is o + B+ (-
weakly null, it is sent by B to a sequence which is o + (-weakly null, which is
sent by A to a sequence which is (-weakly null. |

COROLLARY 4.7. For a Banach space X and ¢ < w1, let g ((X) = wy if
X € Gy, ¢, and otherwise let g (X) be the minimum ordinal § < wy such that
X € CG ¢y¢¢ (noting that such a & must exist). Then there exists v < w;
such that g.(X) = w”.

Proof. Note that g.(X) > 0. Fix o, < g:(X). Then Ix € &g,¢¢ and
Ix € B4y¢c. By Proposition [£.6] Ix € B4yp51¢¢. Thus we have shown that
if a, 8 < g¢(X), a+ B < g:(X). Since 0 < g;(X) < wy, standard facts about
ordinals yield that there exists v < w; such that g (X) =w?. 1

For the following theorem, note that if w® < A(¢), then w® 4+ ¢ = ¢, so
(G ol = £. This is the reason for the omission of this trivial case.
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THEOREM 4.8. Fix 0 < ¢ < wy and € < wy such that w® > \(¢). Then

& # 0Gucrcc M ] Gusce
n<wt

Proof. Tt was shown in [12] that for any Banach space Y with a normalized,
bimonotone basis and 0 < { < wj, there exists a Banach space Z (there
denoted by Z¢(Ey)) such that Z has a normalized, bimonotone basis, Y is
a quotient of Z, Z € Ny<we Vy, and if (yn)o2, is an wé-weakly null sequence
in Y, then there exists an wé-weakly null sequence (z,)3%, in Z such that
qzn = ypn for all n € N,

If ¢ =0, we consider Z as above with Y = ¢y. This space lies in

CVoe N () Vo =CGueon ) Gno.
n<wt n<wé

This completes the ( = 0 case. For the remainder of the proof, we consider
¢ >0.

Suppose that &€ = 0. Then since 1 = w® > A(¢) > 1, ( is finite. Futhermore,
n+ ¢ = ¢ for any n < A(¢), since the only such 7 is 0. Then X = X, is easily
seen to satisfy the conclusions. For the remainder of the proof, we assume
0 <& <uwi.

If A(¢) = w¥, then for every n < w¢, n+¢ = (. In this case, membership in
(y<w¢ Gnt¢,c = Ban is automatic. In this case, X¢ € CngJrC’C is the example
we seek.

We consider the remaining case, 0 < ¢,¢ and A\(¢) < w®. Note that this
implies that ¢ < w®. We use a technique of Ostrovskii from [I9]. If A(¢) is
finite, then it is equal to 1. In this case, let Y = ¢o. If A\({) is infinite, then
it is a limit ordinal. In this case, let (A,)72; be the sequence used to define
Sx(¢)- Let Y be the completion of cop with respect to the norm

]| = sup 27" ||z x,,-
neN
Note that the formal inclusions I : X¢ — X(¢), I2 : X)) — Y are bounded.
The first is bounded by the almost monotone property. For n € N and E €
Sx,s F'=EN[n,00) € S\). Therefore for = € cgp,

27| Balle, <27"((n = Dlzlle, + [Fzlle) < n27"l|zllx) < 27 l2llre)-

Let us also note that a bounded block sequence (x,,)52 in X, is (-weakly null
if and only if lim, ||z||g = 0 for every 8 < A(() if and only if (JoI12,)52, is

n=1
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norm null in Y. We have already established the equivalence of the first two
properties. Let us explain the equivalence of the last two properties. First, if
(I2112,)02; is norm null in Y, then for any 5 < A((), we can fix k such that
8 < A and note that

lim ||zy||g < clim ||z, ||y, < c2F lim |zn|ly = 0.
n n n

Here, c is the norm of the formal inclusion of X, into Xjg. For the reverse
direction, suppose (7,);2; C Bx, and lim, ||z,[[g = 0 for all 3 < A(¢). Then

lim sup|| T2 1y ||
n

k
<inf { max {limsup Z |zl x,, , sup 2_"||IQH||I1H} ke N} =0.
n n>k

m=1

Let i = Is 11 and let Z be as described in the first paragraph with this choice
of Y. Let ¢ : Z — Y be the quotient map the existence of which was indicated
above. Let W =7 @1 X and let T : W — Y be given by T'(z,z) = iz — qz.
Let X = ker(T). Since we are in the case ¢ < w®, standard properties of
ordinals yield that for n < w®, 7+ ¢ < w®. Suppose that (z,,7,)5%; C X
is 7 4+ (-weakly null. Then since Z € V,, ||z,]| = 0. From this it follows
that (izy)22, = (gzn)52, is norm null. Therefore (iz,)32, is norm null, and
(n)pey is (-weakly null in X¢. Therefore (zy,,xn)pe; is (-weakly null in X.
We last show that X € Ewa—H},C' To that end, let us first note that the basis
of Y is A({)-weakly null. This is obvious if A(() = 1 and Y = ¢y. For the
case in which A\(({) is infinite, the space Y is a mixed Schreier space as defined
in [12], where it was shown that the basis of Y is A({)-weakly null. By the
properties of Z and ¢, since A(¢) < w¢, there exists an wé-weakly null sequence
(2r)0%, in Z such that ¢z, = e,, where (e;)22; simultaneously denotes the
bases of Y and X.. Also note that (e,)52 is ¢ + 1-weakly null in X¢. Since

WEHC>CHwE >+,

(€n)S%, is w® + (-weakly null in X¢. Therefore (zp,e,)%; is w® + (-weakly
null in X. However, since (e,)52; is not (-weakly null in X¢, (2,,e,)52, is

not (-weakly null in X. Therefore X € BGw5+C7C' |

COROLLARY 4.9. The classes WBS¢, Gyvyc e (7 < wi,w? > A((), are
distinct.
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THEOREM 4.10. The classes Geyoore, 0 < ¢ < wy, 0 < v < wy, are
distinct.

Proof. We first recall that if ( < w; and v < v < w1, Gegum ¢ C Gequn e
Thus the statement that these two classes are distinct is equivalent to saying
that the former is a proper subset of the latter.

We will show that the classes are distinct. Fix 0 < (,(; < w1 and 0 <

Y, Y1 S wi. Ifc < Cla

X ewBSe, N BGC.H,J’Y,C C Gepqum g N BGC-HN,C-

By symmetry, if G < ¢, GC*HUA’»C 7& G§1+w71,C1' Thus lfC 7& (1, GC"’W’YvC 75

Gey ¢ -
In order to complete the proof that the classes are distinct, it suffices to

assume that y1 < v < wp and exhibit some Banach space Z € Gy ¢ N
EGC+M,C- We first claim that it is sufficient to prove the case v < w;. This is
because if we prove that Geywv ¢ © Gegwn ¢ whenever 0 < v < < wi, then
for any 0 < 1 < wy,

Geur,¢ = Gun ¢ C Geyumti ¢ & Geum ¢

Fix 0 < v < wp and let (7,)22; be the sequence defining S,». Fix a
sequence (U,,)52; such that ¢ := > >° ¥, < 1. Given a Banach space E
with normalized, 1-unconditional basis, we define norm on [-] on ¢y by letting

o= 1"1E,

d
|Z|k41,n = sup {ﬂn Z |Eixl - ne N E) < --- < Ey, (minEZ-)ld:l eS n},
i=1

0o 1/2
|1 = max{r:r\k, (Z :c|z+1,n) }

n=1

[x] = lilgn || and [z], = liin || .-

Let us denote the completion of ¢y with respect to this norm by Z.(E). The
norm [-] on Z,(F) satisfies the following

21 = ma { ] wl[z]i)m}.

n=
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This construction is a generalization of a Odell-Schlumprecht construction.
We will apply the construction with £ = X,. It is a well known fact of such
constructions that, since the basis of X¢ is shrinking, so is the basis of Z,(X)
(see, for example, [12]). It was shown in [12] that if (z,)5; is any seminor-
malized block sequence in Z,(X¢), then

(a) (zn)52; is not S-weakly null for any 8 < w7,
(b) (zn)pe; is wY-weakly null in Z,(X¢) if and only if it is wY-weakly
null in Xe.

We will show that Z,(X¢) € Ng<wrGeipe, and in particular Z,(X¢) €
Getwn ¢, while Z,(X¢) € CGeipre. This will complete the proof of the dis-
tinctness of the classes.

We prove that Z,(X¢) € CG¢yyn ¢ As remarked above, the basis is shrink-
ing and normalized, and so it is weakly null. If it were not ( + w”-weakly null,
there would exist some (m,)52; € [N] and € > 0 such that

e<inf{[z] : F € 8:[8], 2 € colem, :n € F)}.

But by Theorem we may choose Fy < Iy < ..., F; € S, and positive
scalars (a;)ieu | F, such that » 7, a; = 1 and the sequence (z,);2; defined
by z, = Zie F, Qi€m, 18 equivalent to the cg basis in X.. But since

e<inf{[z] : F € 8[S],7 € co(em, :n € F)},

(2)52, is an £ -spreading model in Z,(X(), contradicting item (b) above.
Therefore the canonical Z, (X¢) basis is ( +w7-weakly null. But it is evidently
not ¢-weakly null, and Z,(X¢) € CG¢ o ¢

Now let us show that Z,(X¢) € Ng<wrGeipe. First consider the case
A(¢) < w7, which is equivalent to ( + 8 < w? for all § < w?. In this case,

{C—I—B : ﬁ<w7} =1[0,w7).

It therefore follows from property (a) above that

Zy (X)) € () Gso= [) Ges50C [ Gernc

B<wY B<wY B<wY

Let us now treat the case A(¢) > w?. Write

¢=A(Q) +u
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and note that
pAw’ <p+AQ) S MO +Hp=C

We claim that if (z,)52, is a seminormalized block sequence in Z,(X) which

is not (-weakly null in Z,(X¢), then there exists 3 < A(¢) such that
lim sup ||z,]|g > 0.

o0

To see this, suppose that for every § < A((), lim, ||z,][g = 0, but (z,)5%,;
is not (-weakly null in Z,(X¢). Then, by Proposition (ii), by passing
to a subsequence and relabeling, we may assume (z,)22;, when treated as
a sequence in X¢, is dominated by a subsequence (e, )72, of the X, basis,
and (2,)52, when treated as a sequence in Z,(X¢), is an E%—spreading model.

Since ¢ > p + w?, we may, after passing to a subsequence again, assume
0<e<inf{[z] : F €8S,z € co(zn:n€F)}

We may select Fy < Iy < ..., F; € S, and positive scalars (a,-),-euzo:lpn
such that } ;cp a; = 1 and (3 ,cp @iem,)pz1 C X, is equivalent to the
canonical ¢y basis (again using Theorem as in the previous case). Since
(#n)p1 C X¢ is dominated by (em, )21 C Xy, (X e, aizi)pey is WUC in X,
But since

0<e<inf{[z] : F €8[Su,z€co(zn:neF)},

(X iep, @izi)pey must be an /4" -spreading model in Z, (X¢), contradicting (b)
above. This proves the claim from the beginning of the paragraph. Now
suppose that (z,);2; is a weakly null sequence in Z,(X¢) which is not (-
weakly null. Then by the claim combined with Corollary (2r)92 1 is not
¢-weakly null in X.. After passing to a subsequence, we may assume (2, )52

is an E%—spreading model in X¢. Assume that

0<e<inf{[z] : FE€S82z€co(zn:n€F)}.
Now fix n € N and F € S,,[S¢| and scalars (a;)ier. By definition of S, [S¢],
there exist F} < .-+ < Fy such that F = U;l:le, @ # F; € S, and
(min Fj)?zl € S,,. Let E; = supp(z;) and let I; = Ujep, E;. Since

min /; = min supp(Zmin Fj) > min F},



THE &, (-DUNFORD PETTIS PROPERTY 187

(min Ij);-izl is a spread of (min Fj)?zl, so that (min Ij)?zl € S,,. Therefore

Y

(S5l 2[5 2l

k=1 ticF k

5

icF

= ﬁnzd: {Zam] > wnzdjz Jail = €0y lail.

j=1 LieF; j=1icF; ieF

Thus
0<inf{[z] : F€8,,[S],z€co(zy :n€F)}.

From this it follows that (2;)72; is not ¢ + ~y,-weakly null. Since this holds for
any n € N and sup,, 7, = w7, (%)%, is not ¢ + S-weakly null for any 8 < w”.
Thus by contraposition, for any 5 < w?, any ¢ + S-weakly null sequence in
Zy(X¢) is (-weakly null, from which it follows that Z,(X¢) € Ng<wrGeqp,c-
This completes the proof of the distinctness of these classes. 1

Remark 4.11. For §,n < wi and §,¢ < w;y with n # ¢, the classes G e ¢ ¢,
G tuws , are not equal. Indeed, if n < ¢, Xy € Gueye e N BGn+w5ﬂ7' This is
because every sequence in X, is 7 + l-weakly null, and therefore (-weakly
null. However, the basis of X, is 7 + 1-weakly null, and therefore n + wd-
weakly null, but not n-weakly null. Now if ¢ < 5, either w® + ¢ > ¢ or
W =C Hw+¢>C¢ X e G, N0Ge e If w® 4+ ¢ = ¢, then
Guercec =Ban # G, 0.

We next wish to discuss how the classes G,e . can be compared to the
classes Ggy 0 ¢ In particular, we will show that they are equal if and only
if W'+ ¢ =C+w’ If ¢ =0, then Gue ¢ = Ve and Ggy s ¢ = V5. Then
Viax{wé '} € Vinin{wé o}, With proper containment if and only if £ # 4.

Now for 0 < ( < wq, write ( = w*nq + --- +w%ny I,n,...,n; € N,
a1 > -+ > . Let us consider several cases. For convenience, let o = o and
n=mni.

Case 1: ¢ < a. Then w® + ¢ = ¢ and Guerce =Ban # Gy o 5.

For the remaining cases, we will assume & > a, which implies that w® + ¢
> (.

Case 2: ws+( < (4+w’. Then there exists 3 < w® such that wé+¢ = (+4.
Then the space Z5(X¢) from Theorem lies in

EGC-FW‘S,C NGegpe = CGC+57C N ng+c7<.
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Case 3: w® + ¢ = (4 w’. In this case, of course Guetee = Geypuseo By
considering the Cantor normal forms of wé + ¢ and ¢ + «?, it follows that
equality can only hold in the case that £ = § = « and { = w%n, in which case
W C=w(n+1)=C¢+ud.

For the remaining cases, we will assume w® 4+ ¢ > ¢ 4+ w®. Note that this
implies § < £. Indeed, if § > £, then since we are in the case £ > «, it follows
that w® > w¢, . By standard properties of ordinals, wé > w¢ + ¢. Therefore
for the remaining cases, wé + ¢ > ¢ + w’ and a,0 < €.

Case 4: ) =& > a. Then the space X s lies in EngJrC,C NGeyyo e To see
this, note that since § > «a, (+w® = w’. Moreover, we have already shown that
any wo-weakly null sequence in X s has the property that every subsequence
has a further WUC subsequence. Thus any w’-weakly null sequence in X6 1s
l-weakly null, and X s € G¢ 16 . But of course the basis of X s shows that
it does not lie in Gey¢ ¢ C Gyoyq -

Case 5: £ = a > 4. The space Z¢(X¢), as defined in Theorem [4.10] lies in
CngJFC’C N Gy ¢+ To see this, let us note that

Ze(X¢) € CGpiec N () Getoce

y<wé

Since & > o, W&+ ¢ > (+wb, and Gue ¢ C Gey e o and Zg(X¢) € 0Gy e o C
CG e ¢-Since w? < wb, Ze(X¢) € G ¢

Case 6: £ > a,¢. Then the space Z¢(co), as shown in [12], lies in wBS ¢ N
ﬂ7 <wé V4. Furthermore, the basis of the space is normalized, weakly null.
Therefore the basis is wé-weakly null but not v-weakly null for any v < wt.
Therefore Z¢(co) € Ewa,C - CGw5+C,C' However, since a, 8 < &, ¢ +w® < &,
and Zg(co) € Vg C Geyys oo Therefore Zg(co) lies in 0G ey ¢ o N Geyys o

Case 7: & = o = 4. In this case, we can write ( = w®n + u, where
w= w*ng + --- + w*n;. Note that in this case, u > 0, since otherwise
we would be in the case wé 4+ ¢ = ¢ + w’. Then the space X (ng1) lies in
CGuortcc M Gegwa . To see this, note that the canonical basis of Xoa(nt1) 18

w'n+ 1) +1<w*n+1)+p=w*~+¢

weakly null, but it is not w®(n+1) = w*n + w*-weakly null, and therefore not
¢-weakly null. Thus X a(,41) € CGuaicc. However, if (2,)5 is w®(n + 1)-
weakly null, then by Theorem every subsequence of (z,,)72 ; has a further
subsequence which is dominated by a subsequence of the X, basis. This
means (z,)22; is w*n + l-weakly null. Since w®n +1 < w*n + p = ¢ and
(H+w*= wa(n + 1)7 Xwa(nJrl) < GC+wa,C~
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Our next goal will be to prove a fact regarding the distinctness of the space
ideals M¢ ¢ analogous to those proved above for the classes Gg .

Remark 4.12. If £, are ordinals such that wé® +1 < n < w*t!, then there
exist ordinals o,y < 7 such that v > 1 and a 4+ v = n. This is obvious if
¢ = 0, since since n > 2 is finite and we may take n = 1+ (n — 1) in this case.
Assume 0 < £. Then there exist n € N and § < w¢ such that n = wén + 6. If
n > 1, we may take o = w®(n — 1) and v = w®. Now if n = 1, then § > 1, and
we may take o = wé and v = 6.

THEOREM 4.13. Fix 0 < £ < wy and 0 < v < wy. Let X be a Banach
space.

(i) X is hereditarily M,,,, for some w® < p < w1 if and only if X is
hereditarily M,, ,, for every w® < p < w®TL.

ii) X is hereditarily M, for some w® < p < w&t' if and only if X is
y H
hereditarily M,,,, for every w® < pu < wétL.

Proof. (i) Seeking a contradiction, suppose that X is hereditarily M,, ,
for some but not all y1 € (w¢,wt*t!). Let 1 be the minimum ordinal z such that
X is not hereditarily M, ,,. Note that, since the classes M, , are decreasing
with ¢ and X is hereditarily M, , for some wé < p < WL it follows that
wé 41 < n. We can write n = a ++ for some a,~y < 1 with v > 1. Since X is
not hereditarily M, ,, there exists a seminormalized, n-weakly null sequence
(xr,)0%; in X which has no subsequence which is a ¢fj-spreading model. Since
a+1 < a+ v, the minimality of n implies that X is hereditarily Mq41,,,
which means (z,,)2%; has a subsequence which is an ¢! -spreading model.
By Corollary [2.12[(i), there exists a convex block sequence (yn )52, of (z,)52,
which is an ¢}-spreading model and which is y-weakly null. But since ()5,
is an E%—spreading model, it can have no subsequence which is a cj-spreading
model. Since v < 1, (yn)52; witnesses that X is not hereditarily M, ,, con-
tradicting the minimality of 7.

(ii) Arguing as in (i), let us suppose we have wé + 1 < n < w®*! such
that X is hereditarily M, , for every p < n but X is not hereditarily M, ,,.
Then there exists a v-weakly null (z,)52; C X which has no subsequence
which is a ¢/-spreading model. Write n = a + v, a,y <17, v > 1. By passing
to a subsequence, we may assume (z,)>2, is a cg‘+1—spreading model. By
Corollary (ii), there exists a blocking (y,)%; of (z,)%; which is a c}-
spreading model and has no subsequence which is a ¢j-spreading model. Since
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(Yn) is a cj-spreading model, it is 1-weakly null, and therefore v-weakly
null. But (y,)2; has no subsequence which is a cg-spreading model. Since
~v < n, this contradicts the minimality of . 1

Remark 4.14. The previous theorem yields that for a fixed 0 < ¢ < wy and
0 <& < wi, a given Banach space X may lie in El\/lw% N ﬂn<w5 M, ¢. That is,
the first ordinal 1 for which X fails to lie in M, ¢ is of the form ws, 0 <€ <wy.
But it also allows for X to lie in M ¢ - and fail to lie in M, .. Let us make
this precise: For 1 < ¢ < wy, let m¢(X) = wy if X € M,,, ¢ and otherwise let
m¢(X) be the minimum 7 such that X € CM,, (. Let mi(X) = wi if X € M,
and otherwise let mZi(X ) be the minimum 7 such that X € CM¢,,. Then the
preceding theorem yields that for any 1 < ( < w; and any Banach space X,
there exists 0 < ¢ < wy such that either m¢(X) = w® or m¢(X) = w® + 1, and
a similar statement holds for mz.

Contrary to the G¢ ¢ case, both alternatives can occur for both m: and m¢.
For example, for 0 < £ < wq, our spaces Z¢(co) lie in ﬂn <wt Vi, and therefore

lie in
() Myer €[] [ Maec

n<wé (Swi n<ws

However, the basis of this space is wé-weakly null, and the dual basis is 1-
weakly null, so
Zg(Co) € EngJ C ﬂ MUJ&,C'
1<¢<wy

Thus for every 1 < ¢ < wiy, m¢(Ze(cp)) = wb. Since these spaces have a
shrinking, asymptotic £; basis, they are reflexive. From this it follows that for
all 1 < ¢ <wi, mE(Ze(c)*) = wt. For the £ = 0 case, m¢(f2) = mi(l) =1 =
WO for every 1 < ¢ < wy.

However, as we have already seen, for any 0 < & < wi, m¢(Xe) =
mZ(X:ﬁ) = w& + 1. This completely elucidates the examples with & < w;.

For the £ = w; case, we note that m¢(X) = w; if and only if X €
(My<wy Min¢ = My, ¢, and a similar statement holds for m¢.

THREE-SPACE PROPERTIES.  In [I9], a Banach space X with subspace Y’
was exhibited such that Y, X/Y have the weak Banach-Saks property, while
X does not. In [7], it was shown that Y, X/Y have the hereditary Dunford-
Pettis property, while X does not. In [9], it was shown that any Banach space
is a complemented subspace of a twisted sum of two Banach spaces with the
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Dunford-Pettis property. Therefore there exists a Banach space X containing
a complemented copy of {2 and a subspace Y of X such that Y and X/Y both
lie in My, o,. Since f3 € BMM and X contains a complemented copy of /s,
X e BMM. Thus Y, X/Y € My, «,, while X € CI\/IM. This implies that for
any 1 < &, ¢ < wi, the property Z € M¢ ¢ is not a three space property.

We modify Ostrovskii’s example to provide a sharp solution to the three
space properties of the classes wBSe.

THEOREM 4.15. For any 0 < (,¢ < wi, any Banach space X, and any
subspace Y such that Y € wBS¢, and X/Y € wBS;, X € wBS¢ .

For any 0 < (,& < wi, there exist a Banach space X with a subspace Y
such that Y € wBS¢, X/Y € wBS¢, and X € ﬁv<g+5EwBSW.

Proof. Assume Y € wBS; and X/Y € wBS;. Fix a weakly null sequence
(xn)52; C X and, seeking a contradiction, assume

0<e=inf{|z|| : F €S8cye,x €co(zn:neF)}
By passing to a subsequence, we may assume
e <inf{||z]| : F € &S],z €co(z,:neF)}

Since (zp, +Y)22, is weakly null in X/Y, it is (-weakly null. Thus there
exist F1 < Fy < ..., F; € &, and positive scalars (ai)ieuﬁf’:an such that
Yier, @ =1land || Y cp az; + Y| <min{e/2,1/n}. For each n € N, we fix
Yn € Y such that |y, — > ;cp aizil| < min{e/2,1/n}. Since (z,);2; is weakly
null, so are (3 ;cp aiTi)pey and (yn)p;. Since Y € wBSg, there exist G € S¢
and positive scalars (b, )neq such that >° b, = 1Land || >, cqbnynll < €/2.
Since UpeaFrn € Se[S¢l,

e < Z Z bnaixi
neGiekl,
< anyn +an yn—Zaiwi <eg/2+¢/2 = ¢,

neG neG ieFy,

and this contradiction finishes the first statement.

Now if { =0 =€, let X be any finite dimensional space and let Y = X.
If ( =0and £ > 0, let (£,)22, be any sequence such that sup,, &, + 1 = &.
Let X = (@521 X¢,)e; and let Y = X. If £ =0 and ¢ > 0, let ((,)p2; be any
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sequence such that sup, ¢, +1 = (. Let X = (&2, X¢, ), and let Y = {0}.
Each of these choices is easily seen to be the example we seek in these trivial
cases.
We now turn to the non-trivial case, ,{ > 0. Fix (§,)52; such that if £ is
a successor, &, +1 = ¢ for all n € N. Otherwise let (§,)5°; be the sequence
such that
S={Ee N :Im<EeS,}

Let (¢n)s2, be chosen similarly. Let I, ,Xcye,, — X¢, be the canonical
inclusion, which is bounded, since ¢ + &, > ¢ > (,. Let apmyn = HIm,n”fl-
For each m € N, let Z,, = (®52,X¢,)e, and let Z = (®99_1Zm)e,. Define
Im + Xeve, = Zm by Im(w) = 27" ampIlmaw)ne;. Note that || J,|| < 1.
Now let W = (©5_1 X¢ ¢, )e, and define S : W — Z by letting S|x.,,, = Jm.
Note that ||S|| < 1. Let ¢ : /1 — Z be a quotient map. Let X = ¢; &; W and
define T': X — Z by T'(z,w) = gz + Sw. Then T is also a quotient map, and,
with Y =ker(T), X/Y = Z. Since ¢, < (, X¢, € wBS¢. Since wBS¢ is closed
under /1 sums, Z,, and Z lie in wBS;. Fix v < (+¢ and note that there exists
m € N such that v < ¢ + §,,. Since X contains an isomorph of X ¢, , the
basis of which is not ¢ + &,-weakly null, X inCwBS.,. It remains to show that
Y € wBS¢. To that end, fix a weakly null sequence ((,wn))nZ; C Bier(1)-
Then x, — 0, and Tz, — 0. From this it follows that Sw, — 0. Seeking a
contradiction, assume that

0<e=inf{|z] : F €8z € co((zn,wy) :n € F)}.
By passing to a subsequence, we may assume ||z,| < £/2 for all n, so that
e/2 <inf {|jw[| : F € S, w € co(w, :n € F)}.

Since (wp)22; C W is weakly null, there exists k € N such that for all n € N,

(e ¢]
Z [wnmllXere,, <€/4
m=k+1
where wy, = (wpm)oe_;. Since Sw, — 0, it follows that for all m € N,

JmWnm — 0. In particular, for every 8 < ¢ and m € N, lim,, ||[wy m|[g = 0.
n

By passing to a subsequence k times, once for each 1 < m < k, we may
assume (wy,;m)e, is dominated by a subsequence of the X basis. For this
we are using Proposition mm) Since &y, < &, (Wn,m)o2, is &-weakly null
for each 1 < m < k. From this it follows that there exist F' € S¢ and
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positive scalars (a,)ncr such that ) _pa, = 1 and for each 1 < m < k,
> ner anWmnllcte, < e/4k. Then

k o)
f2< || D anwn) <Y | D anwmanll D an Y [wmnlcre,
neF m=1!ner CHm  neF  m=k+1

<e/d+e/d =¢€/2,
a contradiction. |

5. PARTIAL UNCONDITIONALITY

In this section, we give the promised modification in the complex case of
the cited result of Elton required for our proof of Proposition

LEMMA 5.1. Fix k € N and suppose we have vectors (uy,...,ux_1,v1,
vg,...) C Sx forming a normalized, weakly null, monotone basic sequence.
For any C,e > 0, there exists a subsequence (w;)52; of (vj)52; such that for

any T C {1,...,k — 1}, any n € N, and mg < --- < m,, any functional
x* € Bx~ such that

() oo )oe

JET
there exists y* € Bx« such that

() (oo

JET

ly*(uj) — x*(uy)| < € for all j <k, and |y*(wm,)| < €.

Proof. We prove only the &k > 1 case, with the k¥ = 1 case following by
omitting superfluous parts of the k > 1 case.

For L € [N], U C By, T C {1,...,k—1}, and n € N, let A(T,U,n, L)
(resp. B(T,U,n, L)) denote the set of 2* € Bx+ such that, with L = (lp, 1,

o, ...),
() o0

JeT 7=1
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and (J;*(u]))f;l € U (resp.

x*(ZuJ> +x*<zn:vzj)’ > C,

jeT j=1

(m*(uj))k_l € U, and |z*(v,)| < €). Now for a fixed T C {1,...,k — 1} and
U C Byi-1, let Ay, denote the set of those L € [N] such that if A(T,U,n, L) #
z, then "B(T,U,n,L) # @. Let A, = NpenAn. We claim that for any N € [N],
there exists L € [N] such that [L] C .A. We prove this by contradiction. Note
that since membership in A, is determined by properties of the n + 1-element
subsets of a given set, A,, is closed. Since A is an intersection of closed sets,
it is also closed, and therefore Ramsey. Therefore if the claim were to fail,
there would exist some L € [N] such that [L]NA = @. Write L = (Iy,l2,...).
For 1 < ¢ < p, let L,y = (lg,lp+1,lp+2,...) and note that, since L,, €
[L] C [N]\ A, there exists n,, € N such that A(T Unpg, Lpq) # @ but
B(T,U,npq, Lpq) = . For each such p,q, fix z; , € A(T,U,npq, Lp,). Fix
np, = min{n,, : ¢ < p} and g, < p such that "p,qp = np. By monotonicity
of the basis, there exists zj, € Bx~ such that z}(u;) = x, , (u;) for all j <k,

Ps4qp

xp(v;) = x4, (v5) for all j <1, and 2;(vj) = 0 for all j > I,,. Note that

p

Np,qp
* * _ * .
a(Sw) 4o (Lo )| =|oma (T ) + o (X )| 2
JET Jj=1 jeT j=1

and 1 o
() ) = (g, (uy) ], €U.

Now note that since ny 4 > n, = ny 4, for all 1 < ¢ < p and x;(vlj) = 0 for

any j > n,, for each 1 < ¢q <p,
Tip
H(Zw) v (L) = e
; =

Np,q
() (5
JjeT

jeT j=1

and (m*(u]))ﬁ;i € U. Since B(T,U,npq, Ly 4) = @, it must be the case that
|z (v,)| > €. Now if 2* is any weak*-cluster point of (z})72,, [z*(v,)| > € for
all ¢ € N, contradicting the weak nullity of (’Uj)?iy This gives the claim.
Now let T1,...,T, be an enumeration of the subsets of {1,. — 1} and
let Uy,...,Us be a partition of B, k1 into sets of diameter not more than
e. By repeated applications of the “claim from the preceding paragraph, we
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may choose N = Lo D --- D Lys = L such that if j = (k —1)r + (i — 1)
with 1 < k < sand 1 < ¢ < r, then for any M € [L;], if for some n € N,
ATy, Uj,n, M) # @, then B(Ty,U;,n, M) # @. Then L has the property
that for any M € [L], if A(Ty,U;,n, M) # &, then B(Ty,U;,n, M). Write
L = ()52, and let w; = v;;. Now suppose T' C {1,...,k—1}, 2* € Bx~, and
mg < mq < --- <m, are such that

o (Su)+e (L, )| -

jer j=1

e(xu) e (S )|z

JET

Pick k such that T'= T} and i such that (x*(uj))f;ll € U;. Fix any mp41 <
Mpto < ... such that my,y1 > my, and let M = (lmj);?’;o € [L]. Then z* €
A(Ty,Uiy,n, M), so that B(Ty,U;,n, M) # &. Now fix y* € B(Ty,U;,n, M).
By definition of B(Ty,U;,n, M),

() e (m)|-

JET

() (S

JET =1

and |y (wm,)| = |y*(vy,,, )| > €. Since (y*(uj));‘f:ll, (x*(uj));tll € U, it follows
that

X k—1 k—1
e " (ug) — ()| = || (0" ()} = (2" ()} o
Since this holds for any n € N and mg < --- < m, were arbitrary, we

are done. |1

COROLLARY 5.2. Let (z;)72; be a normalized, weakly null, monotone
basic sequence.

(i) For any C,e > 0, there exists a subsequence (y;)3;2, of ()72, such that
for any pairwise disjoint, finite subsets G, H of N and scalars (a;)jcn
such that || 3;cq il > C,

Zyj + Z a;y;

jea jeH

> C — emax |a;].
jE€H

(ii) For any sequences (Cp)2 1, (€5)5 of positive numbers, there exists a

subsequence (?Jj)?il of (acj);-';l such that for any n € N, any pairwise
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disjoint subsets G, H of N such that || >_;cqynl = Cn + 2n, and any
scalars (a;)jcH,

Zyj+zaj

jeG jeH

>C, — il
= Un (n+5n)rj%3j§(|a]|

Proof. (i) Fix positive numbers (£;)52; such that 322, > .e < e.
Let Ly = N and apply the &k = 1 case of Lemma with (v;)52; = (25)32,,
C =C, and ¢ = €1 to find M; € |[N] satisfying the conclusions of Lemma
Let 71 = min My and Ly = M, \ {r1}. Now suppose that for some k > 1,
ry < -+ <rg_qpand Ly D -+ D Li_1 € [N] with min L1 > r,_; have been
chosen. Apply the k case of Lemma [5.1{ with u; = z,,, (v;)72; = ())jer,
C = C, and ¢ = ¢ to find My, € [Ly_1] satisfying the conclusions of Lemma
Let 1, = min My and Ly = My \ {rr}. This completes the recursive
construction of 11 < ro < ....

Let y; = x,;. Now fix a finite subset G of N such that || > ..yl = C.

Fix x, € Bx+ such that
(gp)lee

JEG

We may use the conclusions of Lemma[5.1]to find x}, 23, ... such that for each
k € N and for each j < k, |27 (y;) —25_1(yj)] < e, ‘azz (ZJEG y])‘ > C, and if
k€ N\G, |z} (yr)| < ex. We explain how to choose z}, assuming x} _, is chosen.
If k € G, we simply let x;, = 2;_;. If k =1+ max G, we use monotonicity to
deduce the existence of x7 .. g such that x7 . ~(y;) = 2}, g(y;) for all
J <maxGand 27, .. o(y;) = 0forall j > maxG. We then let z; = 27, .. ¢
for all £ > 1+ maxG. Now suppose that & ¢ G and k < maxG. Fixn € N

and some m; < .-+ < m, such that G N (k,00) = {my,...,m,}. Fix any
My < Mpt1 < .... Now note that, since (7x, 7my, Tmy, - - - ) € [M] and
n
i (S|l X w) e Ta)|z0
JjeG JEGN[1,K] j=1

the properties of Mj, yield the existence of some x}, € Bx+ such that

(205 ) ()

jeG JEGN[1,K]

|27 (y;) — 23 (yj)| < e for all j <k, and |z} (yi)| < k-
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Now note that the previous recursion yields z* = 27, . o € Bx~» such

that
Agp)ee

jeG

Furthermore, for any j < max G such that j ¢ G,

14+max G 00
(i)l < 1)l + D loiy) — i)l <D ere
k=j+1 k=j

For j > max G, z*(y;) = 0. Now fix any set disjoint from H and any scalars
(aj)jeg. Then

oo o
Yoyt ay| > x*(ZyJ)‘ —mefg(!ajlzzek > O —emax|ay|.
j€G  jeH e ’ j=1k=j ’
(ii) Recursively select L1 D Ly D ... such that (z;)jer, is the sequence

obtained by applying (i) with C = C,, + nand ¢ = ¢,. Fix [ <ly < ...,
In € L, and L = (I);2,. Let y; = x;,. Suppose that n € N, G C N are such
that G is finite and || > cq y;ll = Cn + 2n. Fix H C N\ G finite and scalars
(a;)jen. Note that

n
>Cp+2n—=> |yl = Cn +n.
Jj=1

Yoy

jeGN(n,00)

By the properties of (yn+;)72; obtained from the conclusions of (i),

Yooyt Y a4y

> Cy +n — e, max |aj).
jeH

jeGN(n,00) jeHN(n,00)
Now
n n
Y oui+ Y ayil| > Cotn— €n MAx |a;] - >yl - max |aj| >yl
jeG jEH J j=1 J =1

>0 — .
>C, (n+sn)rjrg<lajl
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PROPOSITION 5.3. (JOHNSON) If (x,)0 is a normalized, weakly null se-
quence having no subsequence equivalent to the canonical cy basis, then there
exists a subsequence (y,)s>; of (x,)52; such that for any r <re < ...,

t
>
=1

sup = 00.
t

Since the complex version of the preceding result can be easily obtained
from the real part by splitting coefficients into real and imaginary parts, we
omit the proof.

COROLLARY 5.4. Let ()32, be a normalized, weakly null sequence with
no subsequence equivalent to the canonical cy basis. Then there exists a
subsequence (y;)32, of (z;)32, such that for any (b;)32; € leo \ co,

n
> by
j=1

sup = 00.
t

Proof. By passing to a subsequence and passing to an equivalent norm, we
may assume that (xj);";l is monotone basic. We may pass to subsequences
twice and assume that for any r1 <re < ...,

t
>
j=1

= 00,

sup
t

a property which is retained by all subsequences. We may also let C,, = n?

and €, = 1 and assume that for any n € N and pairwise disjoint, finite subsets
G, H of N such that || >_.cqy;ll = Cn + 2n and scalars (a;)jen,

Doyt Yy

jeG JEH

> Cp — (n+5n)1;rg}3<!aj\.

We prove that this sequence (yj)Jo-i1 has the desired property.

Fix (a;)72; € By \co. We may select 71 < rz <... and a non-zero number
a with |a] < 1 such that 3772, |a — a,;| < 1. By multiplying the sequence
(aj)72; by a unimodular scalar, we may assume a is a positive real number.

By monotonicity, sup, || 35—y ayjll = limy || 325 agy;|l = limg || 3252 ajy51)-
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In order to reach the conclusion, it is sufficient to define Gy = {r1,...,7} and
Hy ={1,...,r} \ G; and show that

ZyﬂrZ%yﬂ‘

JEG: jEH;

oo = lim
t

Indeed, from this it follows that

00 = —1+1111tn Z ay; + Z a;y;
JEG: JEH,
Tt t Tt
< -1 —Hi{n Z;ajyj —i—;\arj —a| < li{n z;ajyj .
j= j= Jj=

Note that for each ¢, max;cq, |%7| < 1/a. For each n € N, by the properties
of (yj);”;l, there exists tg so large that for all ¢ > tg,

Z yill > Cn +2n,
JjEGY
so that
a; n+1
Zyj+ Z E]?/j >Cn—(n+ep)/a=n’— —.
JEG: jEH:
Since this holds for any n € N and lim,, n? — "TH = 00, we are done. |
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