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Abstract: It is known that Einstein manifolds form a natural subclass of the class of quasi-
Einstein manifolds and plays an important role in geometry as well as in general theory
of relativity. In this work, we investigate conformal mapping of mixed generalized quasi-
Einstein manifolds, considering a conformal mapping between two mixed generalized quasi-
Einstein manifolds V;, and V;,. We also find some properties of this transformation from V;,
to V,, and some theorems are proved. Considering this mapping, we peruse some properties
of these manifolds. Later, we also study some special vector fields under these mapping on
this manifolds and some theorems about them are proved.
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1. INTRODUCTION
The notion of quasi-Einstein manifold was introduced by M.C. Chaki and
R.K. Maity [5]. A non-flat Riemannian manifold (M", g), (n > 3) is a quasi-
FEinstein manifold if its Ricci tensor S satisfies the condition

S(X,Y) = ag(X,Y) + bp(X)o(Y)

and is not identically zero, where a,b are scalars, b # 0 and ¢ is a non-zero
1-form such that

9(X,U) =o(X), for all X € x(M),

U being a unit vector field.

* First author supported by DST/INSPIRE Fellowship/2013/1041, Government of India.
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Here a and b are called the associated scalars, ¢ is called the associated
1-form and U is called the generator of the manifold. Such an n-dimensional
manifold denoted by (QE),,.

As a generalization of quasi-Einstein manifold in [7], U.C. De and G.C.
Ghosh defined the generalized quasi-FEinstein manifold. A non-flat Rieman-
nian manifold is called generalized quasi-Einstein manifold if its Ricci-tensor
is non-zero and satisfies the condition

S(X,Y) =ag(X,Y) +bp(X)(Y) + ctp(X)p(Y),
where a,b and ¢ are non-zero scalars and ¢, ¥ are two 1-forms such that
9(X,U)=¢(X)  and  g(X,V)=y(X),
U and V being unit vectors which are orthogonal, i.e.,
g(U,V)=0.

The vector fields U and V are called the generators of the manifold. This type
of manifold will be denoted by G(QE),.

The notion of mixed generalized quasi Einstein manifold was introduced
by A. Bhattacharya, T. De and D. Debnath in their paper [2]. A non-flat
Riemannian manifold is called mixed generalized quasi-FEinstein manifold if
its Ricci-tensor is non-zero and satisfies the condition

S(X,Y) =ag(X,Y) +bp(X)(Y) 4 cp(X)p(Y)
+d[p(X)p(Y) + o(Y)p(X)], (1.1)

where a, b, c and d are non-zero scalars and ¢, ¥ are two 1-forms such that
g(X,U) =¢(X)  and  g(X,V)=9(X), (1.2)
U and V being unit vectors which are orthogonal, i.e.,
g(U,V)=0.

The vector fields U and V are called the generators of the manifold. This type
of manifold will be denoted by MG(QE),.
Putting X =Y =¢; in (1.1), we get

r=mna-+b+c. (1.3)
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Here 7 is the scalar curvature of MG(QE), where {e;}, i =1,2,...,n is an
orthonormal basis of the tangent space at each point of the manifold.

Quasi-Einstein manifolds arose during the study of exact solutions of the
FEinstein field equations as well as during considerations of quasi-umbilical
hypersurfaces of semi Euclidean spaces. For instance, the Robertson-Walker
spacetimes are quasi-Einstein manifolds. So quasi-Einstein manifolds have
some importance in the general theory of relativity.

One of the important concepts of Riemannian Geometry is conformal map-
ping. Conformal mappings of Riemannian manifolds (or semi-Riemannian
manifolds) have been investigated by many authors. In general relativity,
conformal mappings are important since they preserve the causal structure up
to time orientation and light-like geodesics up to parametrization [13]. The
existence of conformal mappings of Riemannian manifolds onto Einstein man-
ifolds have been studied by Brinkmann [3], Mikes, Gavrilchenko, Gladysheva
[14] and others. Also, conformal mappings between two Einstein manifolds
have been examined by Brinkmann. What is more, the problem of finding
the invariants under a particular type of mapping is an important and active
research topic. In particular, Gover and Nurowski [9] obtained the polynomial
conformal invariants, the vanishing of which is a necessary and sufficient for an
n-dimensional suitably generic (pseudo-)Riemannian manifold to be confor-
mal to an Einstein manifold, and some of the invariants have certain practical
significance in physics, such as quantum field theory [4], general relativity [1].

Motivated by the above studies the present paper provides conformal map-
ping on MG(QE), admitting special vector fields. In the second section, we
study conformal mapping of two mixed generalized quasi-Einstein manifolds
V,, and V,,. We also find some properties of these transformation from V,, to
V,, and some theorems are proved. Third section deals with conformal map-
ping on M G(QE), admitting special vectors fields and in the final section we
give an example of MG(QE),.

2. CONFORMAL MAPPING OF TWO MIXED GENERALIZED
QUASI-EINSTEIN MANIFOLDS

In this section, we suppose that V,, and V,,, (n > 3) are two mixed gener-
alized quasi-Einstein manifolds with metrics g and g , respectively.

DEFINITION 1. A conformal mapping is a diffeomorphism of V;, onto V,,
such that

g= eQUg, (2.1)
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where ¢ is a function on V,,. If ¢ is constant, then it is called a homothetic
mapping.

In local coordinates, (2.1) is written as
gij(w) = ¥ (2)gij(z),  §7(x) =€ (2)g" (), (2.2)

Besides those equations, we have the Christoffel symbols, the components of
the curvature tensor, the Ricci tensor, and the scalar curvature, respectively

f?j = F?j +(5£LO']‘ +5§l(7i — O’hgij,

Rl = Rl + 0poi; — 00 ou, + 6" (0argij — 0ajgin + L10(Sgi5 — 07 gik)

Sz'j = Sij + (n — Q)Jij + (AQJ + (n — Q)Ala)gij , (2.3)
F=e2(r4+2(n—1)A0 + (n—1)(n —2)A10), (2.4)
where
Sij = R = S0pg™, 0= 27—V, 0" = gug™ 2.5
ij = Ljas T = PaBgd " UZ_@ZL‘i_ i0, O =0ag ()
and
O35 = Vjvi(‘f - ViUVjO'. (2.6)

V1o and Voo are the first and the second Beltrami’s symbols which are de-
termined by

Mo = gVaoVso,  Doo =g VVa0, (27)

where V is the covariant derivative according to the Riemannian connection
in V,,. We denote the objects of space conformally corresponding to V;, by a
bar, i.e., V. If V,, is a MG(QE),, then, from (1.1), (2.2) and (2.3), we have

boid; + Chib; + d|gih; + ;| = boig; + cbib; + d|dinhj + i)
+ (n — 2)(72']' + {AQU + (n — 2)&1(7
+a— ZL@QU}gZ’j . (2.8)

DEFINITION 2. A vector field £ in a Riemannian manifold M is called
torse-forming if it satisfies the condition

V€ = pX + MX)E,
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where £ € x(M), A(X) is a linear form and p is a function, [16]. In the local
transcription, this reads
Vig" = poy +€"i (2.9)

¢" and \; are the components of ¢ and ¢, (5? is the Kronecker symbol. A
torse-forming vector field £ is called recurrent if p = 0; concircular if the form
A; is a gradient covector, i.e., there is a function ¥(z) such that A = dd(x);
convergent, if it is concircular and p = const. exp(¥}).

Therefore, recurrent vector fields are characterized by the following equa-
tion from (2.9)

Vil = Ni&j .

Also, from Definition 2., for a concircular vector field &, we get

Vi&j = pigij (2.10)

for all X,Y € x(M). A Riemannian space with a concircular vector field is
called equidistant, [15, 16]. Conformal mappings of Riemannian spaces (or
semi-Riemannian spaces) have been studied by many authors, [3, 6, 8, 14].
In this section, we investigate the conformal mappings of mixed generalized
quasi-Einstein manifolds preserving the associated 1-forms ¢(X) and ¥(X).

THEOREM 1. If V,, admits a conformal mapping preserving the associated
1-forms ¢(X) and ¥(X) and the associated scalars b and ¢, then V,, is an
equidistant manifold.

Proof. Suppose that V,, admits a conformal mapping preserving the as-
sociated 1-forms ¢(X) and ¢ (X) and the associated scalars b and c¢. Using
(2.8), we obtain

(n — 2)Jij + (5 +a— EL62U)gij = 07
where
B = N0+ (n—2) Ao +a—ae* .
In this case, we get
045 = QGij (2.11)

where

1 = 20
a—m(ae —a—f)

is a function. Putting £ = —exp(—o) and using (2.5), (2.6), (2.10) and (2.11),
we get that V}, is an equidistant manifold. Hence, the proof is complete. |
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THEOREM 2. An equidistant manifold V,, admits a conformal mapping
preserving the associated 1-forms ¢(X) and ¢ (X) if the associated scalars a,
b and ¢ satisfy both of the conditions

d=d,
c=c,
b=,
a=e(a+),

where
(n—1) 220 + (n — 2)Aq0].

’7:

Proof. Suppose that V,, is an equidistant manifold. Then, there exists a
concircular vector field ¢ satisfying the condition (2.10), that is, we have

V& = pgij » (2.12)

where & = V;£. Putting 0 = —In({(X)) and using the condition (2.3), we
obtain

Sij = Sij +VGij s

where

[2AQO' + (n — 2)&.10] .

Y= (nnl)

Considering (1.1) in (2.12) and using (2.2), we get
ae® gij + bdid; + by + d[dib; + dj5] = (a+7)gij + bdid;

+ ctithj + d[i; + o] - (2.13)
If we take d =d, ¢ =c, b="band @ = e~2?(a + ), then from (2.13) we get
Gidj = bid;
Pihy = Piry

by = dib;  and @i = ¢
These completes the proof. 1

The conharmonic transformation is a conformal transformation preserv-
ing the harmonicity of a certain function. If the conformal mapping is also
conharmonic, then we have [11],

1 A
Vio" + §(n —2)o'o; =0. (2.14)
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THEOREM 3. Let V,, be a conformal mapping with preservation of the
associated 1-forms ¢(X) and ¥(X) and the associated scalars b and c.
A necessary and sufficient condition for this conformal mapping to be conhar-

monic is that the associated scalar @ be transformed by @ = e~ *%a, b = e~ 27b,

¢=e"29¢,

Proof. We consider a conformal mapping of quasi-Einstein manifolds V,
and V,,. Then, we have from (1.1) and (2.3), we have

boid; + et + d[dith; + djb5] = boid; + ety + d[dit; + P
+ (n — 2)0’@' + {AQO’ + (n — 2)A10’
+a—ae* }g;;. (2.15)

Multiplying (2.15) by g%/ and using (1.2), (2.1), (2.6) and (2.7), it can be seen
that the following relation is satisfied

na+b+cé=ena+b+c+2n—1) A0
+(n—1)(n—2)A0]. (2.16)

If the conformal mapping is also conharmonic, then we have from (2.7) and
(2.14)

290 + (n—2)A1 = 0. (2.17)
Considering (2.17) in (2.16), it is found that
na+ b+ ¢ = nae 27 4+ be 27 + ce %7 . (2.18)

From the equation (2.18), it can be seen that the associated scalars are trans-
formed by

a=e %a, b=e 2%, c=e c. (2.19)

Conversely, if the associated scalars of the manifolds are transformed by (2.19),
then we have from (2.16),

2(n—1)A2c+(n—1)(n—2)A1o0 =0

and so, we get the relation (2.14). Thus, the conformal mapping is also con-
harmonic. This completes the proof. I
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DEFINITION 3. A ¢(Ric)-vector field is a vector field on an n-dimensional
Riemannian manifold (M, ¢g) and Levi-Civita connection V, which satisfies the
condition

Ve = pRic, (2.20)

where 1 is a constant and Ric is the Ricci tensor [10]. When (M, g) is an
Einstein space, the vector field ¢ is concircular. Moreover, when p = 0, the
vector field ¢ is covariantly constant. In local coordinates, (2.17) can be
written as

Vjpi = pSij ,
where S;; denote the components of the Ricci tensor and ¢; = ¢*giq-

Suppose that V;, admits a o(Ric)-vector field. Then, we have
VjUZ' = /LSij s (2.21)
where 4 is a constant. Now, we can state the following theorem:

THEOREM 4. Let us consider the conformal mapping (2.1) of a MG(QE)y,
V,, with constant associated scalars being also conharmonic with the o(Ric)-
vector field. A necessary and sufficient condition for the length of o to be
constant is that the sum of the associated scalars b and ¢ of V,, be constant.

Proof. We consider that the conformal mapping (2.1) of a MG(QFE), V,
admitting a o(Ric)-vector field is also conharmonic. In this case, comparing

(2.14) and (2.21), we get
9 _ ,
r= 2=n) o'oj, (2.22)
20
where r is the scalar curvature of V,,. If V,, is of the constant associated
scalars, from (1.1) and (2.22), we find

b+c=

If the length of ¢ is constant, then aiaj = c¢1, where ¢ is a constant. Thus,
we can see that b+ ¢ is constant. The converse is also true. Hence, the proof
is complete. i

In [10], it was shown that Riemannian manifolds with a ¢(Ric)-vector
field of constant length have constant scalar curvature. The converse of this
theorem is also true. We need the following theorem [12], for later use.
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THEOREM 5. Let V,, be a Riemannian manifold with constant scalar cur-
vature. If V,, admits a p(Ric)-vector field, then the length of ¢ is constant.

Now, we consider a MG(QFE), admitting the generator vector field U as
a ¢(Ric)-vector field. Then we have from (2.20)

Vi =pSi;  and Vb = uS;j, (2.23)
where p is a constant. Then, we give the following theorem:

THEOREM 6. In a MG(QE),, if the vector fields U and V' corresponding
to the 1-forms ¢ and 1) are ¢(Ric)-vector field and 1 (Ric)-vector field , then
U and V are covariantly constant.

Proof. We consider a MG(QE),, whose generator vector field is a ¢(Ric)-
vector field. Putting (1.1) in (2.23), we obtain

Vi = uSij = plagi; + boid; + cihj + d{dib; + di}] - (2.24)

Multiplying (2.24) by ¢ and using the condition ¢(U,U) = 1, it can be seen
that '
(Sij¢" = p(a +b)d; + pdip; = 0. (2.25)

Now multiplying (2.25) by ¢/, we get
pla+b)=0. (2.26)
As p is non-zero, so from (2.26), we get
a=-b. (2.27)
Similarly putting (1.1) in (2.23), we obtain
1Sij = Vi = plagi; + b, + ey + d{givj + ¢} . (2.28)
Again multiplying (2.28) by ¥?, it can be seen that
pSi" = p(a + ¢)¢j + dpd; = 0. (2:29)
Now multiplying (2.29) by ¥/, we get

pla+c¢)=0. (2.30)
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Similarly from (2.30), we obtain
a=—c. (2.31)
By the aid of (1.1), (2.27) and (2.31), we obtain

Sij = algij — (Pidj + ivj)] + d{di; + b} . (2.32)

Otherwise taking the covariant derivative of the expression S;;¢' and using
(2.24), we obtain
(VkSij)¢Z + MSijS}lg =0. (2.33)

Multiplying (2.33) by ¢’*, we obtain
(ViSE)! + 1Si;87 =0, (2.34)

where §% = gij,i.

It was shown, [10], that Riemannian manifolds with a ¢(Ric) vector field
of constant length have constant scalar curvature. Since the generator U is
a unit vector field and it is also a ¢(Ric) vector field, the scalar curvature of
the manifold is constant. In this case, using the contracted second Bianchi
identity and considering that the scalar curvature of the manifold is constant,
it is obtained that

ViSE = %Vﬂ" =0. (2.35)
Using (2.34) and (2.35) and assuming that p is a non-zero constant, we obtain
S;;8 =0. (2.36)

By the aid of (2.32) and (2.36) it follows that
(n —2)a*+2d*> = 0. (2.37)

Since n > 2, from (2.37), it is seen that a and d must be zero, that is,
a =c =0 =d. But, in this case, from (2.32) we get that the Ricci tensor
vanishes which is a contradiction to the hypothesis. Therefore, the constant
4 must be zero and so, the generator vector field U is covariantly constant.
Similalry, if we take 1 (Ric)-vector field, then we can show that the generator
vector field V is also covariantly constant. This completes the proof. |

Now we prove the following theorem:
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THEOREM 7. In a MG(QE), admits a ¢(Ric)-vector field and v(Ric)-
vector field with constant length, then either ¢;, 1; and @; are coplanar or the
Ricci tensor of the manifold reduces to the following form

Sij = bpidj + cib; + d{dihj + j1bi}

if 1; and ' are orthogonal to each other and 1);, ¢; and v; are coplanar or
the Ricci tensor of the manifold reduces to the following form

Sij = bgigj + cvith; + d{pith; + ¢}
if ¢; and V' are orthogonal to each other.

Proof. We assume that MG(QFE), admits a ¢(Ric)-vector field and
v(Ric)-vector field with constant length. Then, we have

gpicpi = p(say) and vVt = q(say), (2.38)

where ¢ is a constant. Taking the covariant derivative of the condition (2.38),
using the equation (2.23) and considering u as a non-zero constant (that is ¢
is proper ¢(Ric)-vector field), it follows that

St =0. (2.39)
By the aid of (1.1) and (2.39), we get
agr + b(0'di)dr + (Vi )r + d{ditbrp’ + drtpig’} = 0. (2.40)
Multiplying (2.40) by ¢* and using (1.2), it is obtained that
(a4 b)opd" + dipip’ = 0. (2.41)
If we take 1; and ' are orthogonal to each other, then from (2.41), we obtain
(a+b)ord* = 0.
So either ¢¢* = 0 which gives from (2.40) that
apr = 0.
So, we get a = 0 and so, the Ricci tensor of the manifold reduces to the form

Sij = boidj + cib; + d{dihj + i}
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or pd* # 0 which gives from (2.28) that
a=—b. (2.42)

Again taking the covariant derivative of the condition (2.38), using the equa-
tion (2.23) and considering p as a non-zero constant (that is v is proper
v(Ric)-vector field), it follows that

Syt =0. (2.43)
Using the equation (1.1) and (2.43), we get
avy, + b ¢i)or, + c(Wiv' i + d{pitbrr’ + ppoiv'} = 0. (2.44)
Multiplying (2.44) by ¥* and using (1.2), it is obtained that
(a + ) + dgi' = 0. (2.45)
If we take ¢; and ¢ are orthogonal to each other, then from (2.45), we obtain
(a+c)uy® =0.
So either vy* = 0 which gives from (2.44) that
avp = 0.

Thus, we get a=0. and so, the Ricci tensor of the manifold reduces to the
form

Sij = boid; + chnhy + d{dihj + P}
or vpp® # 0 which gives from (2.45) that
a=—c. (2.46)

Since b # 0 and ¢ # 0 then a # 0 and using the equation (2.40), (2.42) and
(2.46), we obtain that

o = (00 br + (Wi’ — depie" ) - (2.47)

So from (2.47) we say that ¢y, ¢ and 1y are coplanar.
Again from (2.44), we obtain

v = (V') + (Yir' — dpiv' )iy (2.48)

i.e., Vg, ¢r and ¥y are also coplanar. |
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COROLLARY 1. If a MG(QE), admits ¢(Ric)-vector field and v(Ric)-
vector field with constant length which is not orthogonal to the generators,
then the associated scalars of the manifold must be constants and the vector
fields ¢ and v are covariantly constant.

Proof. As it has been alluded before that a Riemannian manifold admitting
a ¢(Ric)-vector field and v(Ric)-vector field with constant length has constant
scalar curvature. Besides, under the assumptions and from Theorem 7., we
obtain that the associated scalars of M G(QE), are connected by a = —b and
a = —c, and from (1.3), we obtain

r=(n-2a. (2.49)

Since the scalar curvature of the manifold is constant, in this case, from (1.3)
and (2.49), we see that the associated scalars of the manifold are constants.

For the second part, multiplying the equation (2.47) by ©* and using
(2.38), it can be ocular that ¢'¢; is a constant as ;' is also constant. So,
(2.47) displays that the generator vector field U is also a ¢(Ric)-vector field. In
this case, U must be covariantly constant by Theorem 6. Again, multiplying
(2.48) by v* and using (2.38), it can be seen that ;1% is a constant as v'¢;
is also constant. Now due to the coplanarity of ¢, U and V, ¢ is covariantly
constant. Similarly, due to the coplanarity of v, U and V', v is also covariantly
constant. Hence the proof is completed. N

3. CONFORMAL MAPPING OF MG(QE), ADMITTING
SPECIAL VECTOR FIELDS

DEFINITION 4. A symmetric tensor field T of type (0,2) on a Riemannian
manifold (M, g) is said to be a Codazzi tensor if it satisfies the following
condition

(VxT)(Y,Z) = (VyT)(X, Z) (3.1)
for arbitrary vector fields X,Y and Z.

Now, we assume that the Ricci tensors S” and S of the MG(QFE),, are Co-
dazzi tensors with respect to the Levi-Civita connections r’ and r, respectively.
Then, from (3.1), we have the following relations

ViSij = VS (3.2)

and

VkSZ‘j = VjSik . (3.3)



268 S. DEY, A. BHATTACHARYYA

On the other hand, if the Ricci tensor of the manifold is a Codazzi tensor, then
from the second Bianchi identity, it can be seen that the scalar curvature is
constant. According to our assumptions, the scalar curvatures r’ and r of the
quasi-Einstein manifolds are constants. So, we state and prove the following
theorems.

THEOREM 8. Let us consider a conformal mapping g = ge*° of MG(QE),,
whose Ricci tensors are Codazzi type. If the vector field generated by the
1-form o is a o(Ric)-vector field, then either this conformal mapping is homo-
thetic or the relation

(2=n)(n—1) —(na+b+c)
2(n—1)(na+b+c)

'LL:

is satisfied where ¢’ is the square of the length of o; = g; = 0;0 and and p

denotes the constant corresponding to the o(Ric)-vector field.

Proof. Suppose that the Ricci tensors of V;, and V,, are Codazzi tensors
and suppose that § = ge?? is a conformal mapping with a o(Ric)-vector field.
By using the second Bianchi identity, it can be seen that the scalar curvatures
r and 7 are constants. Since r is constant, then the length of o; is constant
by Theorem 5., (and r # 0 which can be seen from Theorem 7 and Corollary
2.1) and so we have the condition

UZ'Ji = C,, (3'4)

where ¢ is a constant. If we assume that the vector field generated by the
1-form o in the conformal mapping (2.1) is a o(Ric)-vector field, we get

Vjoi = nSij (3.5)

where p is a constant. Using (2.7), (3.4) and (3.5), we have the following
relations
Noo = pr, No=¢ (3.6)

and so, Ajo and Ago are constants. Using the relations (3.6) in (2.4), we find
F=e B, (3.7)

where r, 7 and B =1+ 2(n — 1)ur + (n — 1)(n — 2)c are constants. In this
case, if 7 is non-zero then we get from (3.7) that B is non-zero and so, e~ 27
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is constant. Thus, o is constant. Therefore, this mapping is homothetic. If 7
is zero then B must be zero. So we obtain using (1.3)
(2—=n)(n—1) — (na+b+c)

2(n—1)(na+b+c) '

:LL =
This completes the proof. |

Next we consider a conformal mapping between two M G(QFE),, admitting
a concircular vector field o;.

THEOREM 9. Let us consider a conformal mapping g = ge*° of MG(QE),,
whose Ricci tensors are Codazzi type. If o; is a concircular vector field, then
either

(i) oy is orthogonal to ¢l or

b*[ < +(n72)A10]

n—1

n—+ 2

(ii) the function p is found as p =

)

and

(iif) oy is orthogonal to 1}, or

c— [% + (n —2)Ao]
n+2

where ¢;, 1¥; denote the components of the vector field associated 1-form ¢

and v, o; = g;; = 0,0, b, ¢ are the associated scalar of V,, and p denotes the

function corresponding to the concircular vector field.

(iv) the function p is found as p =

)

Proof. Let the Ricci tensors of V,, and V,, be Codazzi tensors and o; be a
concircular vector field. In this case, we have from (2.10)

Vioi = pgij » (3.8)

where p is a function.
Taking the covariant derivative of S;; and using (2.4), it can be obtained
that

(?SZ]) = VSZ‘J' + (n — Q)VkO'ij + ak(AQO' + (n — Q)Ala)gij — QO'kSij
— O'iSj — 0iSik — Z(AQU + (n — Q)Alg)gij(fk
+ 0" (Singjk + Snigik + (n — 2)(c"on;jgi

+ UhUihgjk — 20kaij — 0i0kj — UjO'Z']g). (39)
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Changing the indices j and k in (3.9) and subtracting the last equation from
(3.8) and using (2.6), (3.2), (3.3) and (3.8), it can be seen that

2(n — 1)(prgij — pigix) + [(n — 2)Av0 + (n + 2)p)(0;9ik — TkYis)
+0;Sik — ok Sij + ahShjgik — UhShkgij =0. (3.10)
Multiplying (3.10) by g%, it is obtained that
2(n — 1)2pr + [(n — 2)(1 = n) Ao + (n +2)(1 — n)p — 7oy
+(2=n)o"Sp = 0. (3.11)
On the other hand, we have from the Ricci identity and the equation (3.8)
oo, = Prij — Pjgik » (3.12)

Rfjk denote the components of the curvature tensor.

Multiplying (3.12) by g%, we obtain
0SSy = (n—1)pg. (3.13)
Substituting py obtained from (3.13) in (3.11), it can be obtained that
no""Spy 4 [(n — 2)(1 —n) Ao + (n +2)(1 —n)p — rloy, = 0. (3.14)
Considering (1.1) in (3.14) and using (1.3), we get

no® [bonor + cnby + d{gi; + o0it] + [(n —2)(1 — n) Ao
+(n+2)(1=n)p—b—clop=0. (3.15)

Multiplying (3.15) by ¢* and using (1.2), we obtain
[(n=1b—c+ (n—2)(1-n)Ao
+ (n+2)(1 —n)p|o* ey + ndoyp, = 0. (3.16)
Multiplying (3.16) by ¢", we obtain
[(n=1)b—c+ (n—2)(1 —n)A1o+ (n+2)(1 —n)ploFepr =0. (3.17)
Again multiplying (3.15) by ¥* and using (1.2), we obtain

[(n=1)c—b+(n—2)(1=n) Ao+ (n+2)(1—n)p|o*y,+ndo" ¢, = 0. (3.18)
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Multiplying (3.18) by 4", we obtain
[(n=1)c—b+(n—2)(1—n)Ao+ (n+2)(1—n)p| ok =0.  (3.19)
From (3.17), we see that either
ool =0

m=1b—c+(n—-2)(1—-n)Aic+(n+2)(1—n)p=0.

Thus, we obtain that either o is orthogonal to qﬁ’,;f or the function p is
found as

B b— [nil —|—(7”L—2)A10']
p= n+2 '

Similarly, from (3.19) we obtain either oy is orthogonal to ¥} or the func-
tion p is found as
c— [% + (n—2)A10]
n+2 '

p:

So the proof is completed. |

4. EXAMPLES

Let us consider a Riemannian metric g on the 4-dimensional real number
space M* by

ds? = gijda’dr? = (1 + 2p) [(d:pl)2 + (dz?)* + (dx3)2] + (dz)? (4.1)

er 4

where 7,7 = 1,2,3,4, p = T; and p is a non-zero constant and z',z2, 23, x
are the standard coordinates of M*. Then the only non-vanishing components
of the Christoffel symbols, the curvature tensor, the Ricci tensor and scalar
curvature are given by

p
F%Q = _ma F%s :Fﬁll4: _F%l = _F%Q = —]__‘:f3: —Fil4’
1220 = Rusat = ot = =55 n=3 o
Syp = Sa3 = Syy = — L TZGL;AO,

(1+2p)2’ (14 2p)3
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and the components which can be obtained from these by the symmetry prop-
erties. Therefore M* is a Riemannian manifold (M*, g) of non-vanishing scalar
curvature. We shall now show that M* is a MG(QE)y, i.e., it satisfies (1.1).
Let us now consider the associated scalars as follows:

7
4(1+42p) "

p 1 2
_ - - =—(14+2 = 4.2

In terms of local coordinate system, let us consider the 1-forms ¢ and ¢ as
follows:

VP(1+2p) fori=1,
(bl(x) = . (4.3)
0 for otherwise,
and )
iz fori=1,
Yi(z) = ¢ (14 2p) (4.4)
0 for otherwise,

at any point € M*?.
In terms of local coordinate system, the defining condition (1.1) of a
MG(QE)4 can be written as

Sii = agii + boid; + cih; + 2ddin); . (4.5)

By virtue of (4.2), (4.3) and (4.4), it can be easily shown that (4.5) holds for
i,j =1,2,3,4. Therefore (M?*, g) is a MG(QE)4, which is not quasi-Einstein.
Hence we can state the following:

Let (M*,g) be a Riemannian manifold endowed with the metric given in
(4.1). Then (M*,g) is a MG(QFE)4 with non-vanishing scalar curvature which
is not quasi-FEinstein.
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