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1. Introduction

Geometric control theory began in the late 1960s with the study of (nonlin-
ear) control systems by using concepts and methods from differential geometry
(cf. [9,50,73]). A smooth control system may be viewed as a family of vector
fields (or dynamical systems) on a manifold, smoothly parametrized by a set
of controls. An integral curve corresponding to some admissible control func-
tion (from some time interval to the set of controls) is called a trajectory of
the system. The first basic question one asks of a control system is whether
or not any two points can be connected by a trajectory: this is known as
the controllability problem. Once one has established that two points can be
connected by a trajectory, one may wish to find a trajectory that minimizes
some (practical) cost function: this is known as the optimality problem.

The research leading to these results has received funding from the European Union’s
Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 317721. Also,
the first author would like to acknowledge the financial support of the Claude Leon Foun-
dation towards this research.

213



214 r. biggs, c. c. remsing

A significant subclass of control systems rich in symmetry are those evolv-
ing on Lie groups and invariant under left translations; for such a system
the left translation of any trajectory is a trajectory. This class of systems
was first considered in 1972 by Brockett [35] and by Jurdjevic and Sussmann
[53]; it forms a natural geometric framework for various (variational) prob-
lems in mathematical physics, mechanics, elasticity, and dynamical systems
(cf. [9,33,50,51]). In the last few decades substantial work on applied nonlin-
ear control has drawn attention to invariant control affine systems evolving on
matrix Lie groups of low dimension (see, e.g., [52,67,69,70] and the references
therein).

This paper serves as a short survey of our recent research on (the equiv-
alence of) left-invariant control systems and the associated optimal control
problems. Ideas and key results from several papers published over the last
couple of years are reexamined and restructured; some elements are also rein-
terpreted. The first aspect we address is the equivalence of control systems.
Both state space and (detached) feedback equivalence are characterized in
simple algebraic terms. The classification problem in three dimensions is re-
visited. The second aspect we address is the equivalence of invariant optimal
control problems, or rather, their associated cost-extended systems. One asso-
ciates to each cost-extended system, via the Pontryagin Maximum Principle,
a quadratic Hamilton–Poisson system on the associated Lie–Poisson space.
Equivalence of cost-extended systems implies equivalence of the associated
Hamilton–Poisson systems. Additionally, the subclass of drift-free systems
with homogeneous cost are reinterpreted as invariant sub-Riemannian struc-
tures. An extended version of this survey will appear in [32].

Throughout, we make use of the classification of three-dimensional Lie
groups and Lie algebras; relevant details are given in the appendix.

2. Invariant control systems and their equivalence

2.1. Invariant control affine systems. A ℓ-input left-invariant
control affine system Σ on a (real, finite-dimensional, connected) Lie group
G consists of a family of left-invariant vector fields Ξu on G, affinely parame-
trized by controls u ∈ Rℓ. Such a system is written as

ġ = Ξu(g) = Ξ(g, u) = g(A+ u1B1 + · · ·+ uℓBℓ), g ∈ G, u ∈ Rℓ.

Here A,B1, . . . , Bℓ are elements of the Lie algebra g with B1, . . . , Bℓ linearly
independent. The “product” gA denotes the left translation T1Lg · A of
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A ∈ g by the tangent map of Lg : G → G, h 7→ gh. (When G is a matrix Lie
group, this product is simply a matrix multiplication.) Note that the dynamics
Ξ : G×Rℓ → TG are invariant under left translations, i.e., Ξ (g, u) = g Ξ (1, u).
Σ is completely determined by the specification of its state space G and its
parametrization map Ξ (1, ·). When G is fixed, we specify Σ by simply
writing

Σ : A+ u1B1 + · · ·+ uℓBℓ.

The trace Γ of a system Σ is the affine subspace Γ = A + Γ0 = A +
⟨B1, . . . , Bℓ⟩ of g. (Here Γ0 = ⟨B1, . . . , Bℓ⟩ is the subspace of g spanned by
B1, . . . , Bℓ.) A system Σ is called homogeneous if A ∈ Γ0, and inhomoge-
neous otherwise; Σ is said to be drift free if A = 0. Also, Σ is said to have
full rank if its trace generates the whole Lie algebra, i.e., Lie(Γ) = g.

The admissible controls are piecewise continuous maps u(·) : [0, T ] → Rℓ.
A trajectory for an admissible control u(·) is an absolutely continuous curve
g(·) : [0, T ] → G such that ġ(t) = g(t) Ξ (1, u(t)) for almost every t ∈ [0, T ].
We say that a system Σ is controllable if for any g0, g1 ∈ G, there exists a
trajectory g(·) : [0, T ] → G such that g(0) = g0 and g(T ) = g1. If Σ is
controllable, then it has full rank. For more details about invariant control
systems see, e.g., [9, 50,53,71].

2.2. Equivalence of systems. The most natural equivalence relation
for control systems is equivalence up to coordinate changes in the state space.
This is called state space equivalence (see [47]). State space equivalence is
well understood. It establishes a one-to-one correspondence between the tra-
jectories of the equivalent systems. However, this equivalence relation is very
strong. In the (general) analytic case, Krener characterized local state space
equivalence in terms of the existence of a linear isomorphism preserving iter-
ated Lie brackets of the system’s vector fields ([58], see also [9, 72,73]).

Another fundamental equivalence relation for control systems is that of
feedback equivalence. Two feedback equivalent control systems have the same
set of trajectories (up to a diffeomorphism in the state space) which are
parametrized differently by admissible controls. Feedback equivalence has
been extensively studied in the last few decades (see [68] and the references
therein). There are a few basic methods used in the study of feedback equiv-
alence. These methods are based either on (studying invariant properties of)
associated distributions or on Cartan’s method of equivalence ([41]) or in-
spired by the Hamiltonian formalism ([47]); also, another fruitful approach is
closely related to Poincaré’s technique for linearization of dynamical systems.
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Feedback transformations play a crucial role in control theory, particularly in
the important problem of feedback linearization ([48]). The study of feedback
equivalence of general control systems can be reduced, by a simple trick, to the
case of control affine systems ([47]). For a thorough study of the equivalence
and classification of (general) control affine systems, see [39].

We consider state space equivalence and feedback equivalence in the con-
text of left-invariant control affine systems ([29], see also [18]). Character-
izations of state space equivalence and (detached) feedback equivalence are
obtained in terms of Lie group isomorphisms. Furthermore, the classification
of systems on the three-dimensional Lie groups is treated.

2.2.1. State space equivalence. Two systems Σ and Σ′ are called
state space equivalent if there exists a diffeomorphism ϕ : G → G′ such that,
for each control value u ∈ Rℓ, the vector fields Ξu and Ξ′

u are ϕ-related, i.e.,
Tgϕ · Ξ (g, u) = Ξ′ (ϕ(g), u) for g ∈ G and u ∈ Rℓ. We have the following
simple algebraic characterization of this equivalence.

Theorem 2.1. ([29], see also [58]) Two full-rank systems Σ and Σ′ are
state space equivalent if and only if there exists a Lie group isomorphism
ϕ : G → G′ such that T1ϕ · Ξ (1, u) = Ξ′ (1, u) for all u ∈ Rℓ.

Proof sketch. Suppose that Σ and Σ′ are state space equivalent. By
composition with a left translation, we may assume ϕ(1) = 1. As the elements
Ξu(1), u ∈ Rℓ generate g and the push-forward ϕ∗Ξu of the left-invariant
vector fields Ξu are left invariant, it follows that ϕ is a Lie group isomorphism
satisfying the requisite property (cf. [18]). Conversely, suppose that ϕ :
G → G′ is a Lie group isomorphism as prescribed. Then Tgϕ · Ξ(g, u) =
T1(ϕ ◦ Lg) · Ξ(1, u) = T1(Lϕ(g) ◦ ϕ) · Ξ(1, u) = Ξ′(ϕ(g), u).

Remark. If ϕ is defined only between some neighbourhoods of identity of
G and G′, then Σ and Σ′ are said to be locally state space equivalence. A
characterization similar to that given in Theorem 2.1, in terms of Lie algebra
automorphisms, holds ([29]). In the case of simply connected Lie groups, local
and global equivalence are the same (as dAut(G) = Aut(g)).

State space equivalence is quite a strong equivalence relation. Hence, there
are so many equivalence classes that any general classification appears to be
very difficult if not impossible. However, there is a chance for some reasonable
classification in low dimensions. We give an example to illustrate this point.
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Example 2.1. ([1]) Any two-input inhomogeneous full-rank control affine
system on the Euclidean group SE (2) is state space equivalent to exactly one
of the following systems

Σ1,αβγ : αE3 + u1(E1 + γ1E2) + u2(βE2)

Σ2,αβγ : βE1 + γ1E2 + γ2E3 + u1(αE3) + u2E2

Σ3,αβγ : βE1 + γ1E2 + γ2E3 + u1(E2 + γ3E3) + u2(αE3).

Here α > 0, β ̸= 0 and γ1, γ2, γ3 ∈ R, with different values of these parameters
yielding distinct (non-equivalent) class representatives.

Note. A full classification (under state space equivalence) of systems on
SE (2) appears in [1], whereas a classification of systems on SE (1, 1) appears
in [11]. For a classification of systems on SO (2, 1)0, see [30].

2.2.2. Detached feedback equivalence. We specialize feedback
equivalence in the context of invariant systems by requiring that the feed-
back transformations are compatible with the Lie group structure (cf. [18]).
Two systems Σ and Σ′ are called detached feedback equivalent if there ex-
ist diffeomorphisms ϕ : G → G′ and φ : Rℓ → Rℓ such that, for each
control value u ∈ Rℓ, the vector fields Ξu and Ξ′

φ(u) are ϕ-related, i.e.,

Tgϕ · Ξ (g, u) = Ξ′ (ϕ(g), φ(u)) for g ∈ G and u ∈ Rℓ. We have the following
simple algebraic characterization of this equivalence in terms of the traces
Γ = imΞ(1, ·) and Γ′ = imΞ′(1, ·) of Σ and Σ′.

Theorem 2.2. ([29]) Two full-rank systems Σ and Σ′ are detached feed-
back equivalent if and only if there exists a Lie group isomorphism ϕ : G → G′

such that T1ϕ · Γ = Γ′.

Proof sketch. Suppose Σ and Σ′ are detached feedback equivalent. By
composing ϕ with an appropriate left translation, we may assume ϕ(1) = 1′.
Hence T1ϕ · Ξ(1, u) = Ξ′(1′, φ(u)) and so T1ϕ · Γ = Γ′. Moreover, as the
elements Ξu(1), u ∈ Rℓ generate g and the push-forward of the left-invariant
vector fields Ξu are left invariant, it follows that ϕ is a group isomorphism
(cf. [18]). On the other hand, suppose there exists a group isomorphism
ϕ : G → G′ such that T1ϕ · Γ = Γ′. Then there exists a unique affine
isomorphism φ : Rℓ → Rℓ′ such that T1ϕ · Ξ(1, u) = Ξ′(1′, φ(u)). As with
state space equivalence, by left-invariance and the fact that ϕ is a Lie group
isomorphism, it then follows that Tgϕ · Ξ(g, u) = Ξ′(ϕ(g), φ(u)).
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Remark. If ϕ is defined only between some neighbourhoods of identity of
G and G′, then Σ and Σ′ are said to be locally detached feedback equivalent.
A characterization similar to that given in Theorem 2.2, in terms of Lie algebra
automorphisms, holds. As for state space equivalence, in the case of simply
connected Lie groups local and global equivalence are the same (as dAut(G) =
Aut(g)).

Detached feedback equivalence is notably weaker than state space equiva-
lence. To illustrate this point, we give a classification, under detached feedback
equivalence, of the same class of systems considered in Example 2.1.

Example 2.2. ([23]) Any two-input inhomogeneous full-rank control affi-
ne system on SE (2) is detached feedback equivalent to exactly one of the
following systems

Σ1 : E1 + u1E2 + u2E3

Σ2,α : αE3 + u1E1 + u2E2.

Here α > 0 parametrizes a family of class representatives, each different value
corresponding to a distinct non-equivalent representative.

2.2.3. Classification in three dimensions. We exhibit a classifica-
tion, under detached feedback equivalence, of the full-rank systems evolving on
unimodular three-dimensional Lie groups (i.e., the classical Abelian, Heisen-
berg, Euclidean, semi-Euclidean, pseudo-orthogonal and orthogonal groups).
We shall restrict our discussion to the simply connected groups. A represen-
tative is identified for each equivalence class. Systems on the Euclidean group
and the orthogonal group are discussed as typical examples. Details on the
classification of three-dimensional Lie groups and their Lie algebras (along
with standard ordered bases), as well as the corresponding automorphisms
groups, can be found in Appendix A.

Note. A classification, under detached feedback equivalence, of all (full-
rank) control systems on three-dimensional Lie groups appears in [27] (see
also [19,21–23] and [24,26]). On higher dimensional Lie groups, a classification
of control systems on the orthogonal group SO (4) was obtained in [4] (see
also [2]). Controllability of the respective systems is also addressed in these
papers.
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We start with the solvable groups; the classification procedure is as fol-
lows. Firstly, the group of automorphisms is determined (see Appendix A).
Equivalence class representatives are then constructed by considering the ac-
tion of an automorphism on the trace of a typical system. Lastly, one verifies
that none of the representatives are equivalent.

Theorem 2.3. ([22,23]) Suppose Σ is a full-rank system evolving on a
simply connected unimodular solvable Lie group G. Then G is isomorphic
to one of the groups listed below and Σ is detached feedback equivalent to
exactly one of accompanying (full-rank) systems on that group.

1. On R3, we have the systems

Σ(2,1) : E1 + u1E2 + u2E3 Σ(3,0) : u1E1 + u2E2 + u3E3.

2. On H3, we have the systems

Σ(1,1) : E2 + uE3 Σ(2,0) : u1E2 + u2E3

Σ
(2,1)
1 : E1 + u1E2 + u2E3 Σ

(2,1)
2 : E3 + u1E1 + u2E2

Σ(3,0) : u1E1 + u2E2 + u3E3.

3. On SE (1, 1), we have the systems

Σ
(1,1)
1 : E2 + uE3 Σ

(1,1)
2,α : αE3 + uE2

Σ(2,0) : u1E2 + u2E3 Σ
(2,1)
1 : E1 + u1E2 + u2E3

Σ
(2,1)
2 : E1 + u1(E1 + E2) + u2E3 Σ

(2,1)
3,α : αE3 + u1E1 + u2E2

Σ(3,0) : u1E1 + u2E2 + u3E3.

4. On S̃E (2), we have the systems

Σ
(1,1)
1 : E2 + uE3 Σ

(1,1)
2,α : αE3 + uE2

Σ(2,0) : u1E2 + u2E3 Σ
(2,1)
1 : E1 + u1E2 + u2E3

Σ
(2,1)
2,α : αE3 + u1E1 + u2E2 Σ(3,0) : u1E1 + u2E2 + u3E3.

Here α > 0 parametrizes families of distinct (non-equivalent) class represen-
tatives.
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Proof. We treat, as typical case, only item (4). The group of linearized

automorphisms of S̃E (2) is given by

dAut(S̃E (2)) =


 x y u
−σy σx v
0 0 σ

 : x, y, u, v ∈ R, x2 + y2 ̸= 0, σ = ±1

 .

Let Σ be a single-input inhomogeneous system with trace Γ = A+ Γ0 ⊂
s̃e (2). Suppose E∗

3(Γ
0) ̸= {0}. (Here E∗

3 is the corresponding element of the
dual basis.) Then Γ = a1E1 + a2E2 + ⟨b1E1 + b2E2 + E3⟩. Thus

ψ =

 a1 a1 b1
−a1 a2 b2
0 0 1


is an automorphism such that ψ · Γ(1,1)

1 = Γ. So Σ is equivalent to Σ
(1,1)
1 .

On the other hand, suppose E∗
3(Γ

0) = {0}. Then Γ = a1E1 + a2E2 + a3E3 +
⟨b1E1 + b2E2⟩ with a3 ̸= 0 (as Lie(Γ) = s̃e(2)). Hence

ψ =

 b2 sgn(a3) b1
a1

a3 sgn(a3)

−b1 sgn(a3) b2
a2

a3 sgn(a3)

0 0 sgn(a3)


is an automorphism such that ψ · Γ(1,1)

2,α = Γ, where α = a3 sgn(a3).
Let Σ be a two-input homogeneous system with trace Γ = ⟨B1, B2⟩. Then

Σ̂ : B1+ ⟨B2⟩ is a (full-rank) single-input inhomogeneous system. Therefore,
there exists an automorphism ψ such that ψ · (B1 + ⟨B2⟩) equals either
E2+⟨E3⟩ or αE3+⟨E2⟩. Hence, in either case, we get ψ ·⟨B1, B2⟩ = ⟨E2, E3⟩.
Thus Σ is equivalent to Σ(2,0).

The classification for the two-input inhomogeneous systems follows simi-
larly. If Σ is a three-input system, then clearly it is equivalent to Σ(3,0).

Most pairs of systems cannot be equivalent due to different homogeneities
or different number of inputs. As the subspace ⟨E1, E2⟩ is invariant (under

the action of automorphisms), Σ
(1,1)
1 is not equivalent to any system Σ

(1,1)
2,α .

For A ∈ s̃e (2) and ψ ∈ dAut(SE) (2), we have that E∗
3(ψ · αE3) = ±α.

Thus Σ
(1,1)
2,α and Σ

(1,1)
2,α′ are equivalent only if α = α′. For the two-input

inhomogeneous systems, similar arguments hold.

We now proceed to the semisimple Lie groups; the procedure for classifi-
cation is similar to that of the solvable groups. However, here we employ an
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invariant bilinear product ω (the Lorentzian product and the dot product,
respectively); the inhomogeneous systems are (partially) characterized by the
level set {A ∈ g : ω(A,A) = α} that their trace is tangent to.

Theorem 2.4. ([21]) Suppose Σ is a full-rank system evolving on a sim-
ply connected semisimple Lie group G. Then G is isomorphic to one of the
groups listed below and Σ is detached feedback equivalent to exactly one of
accompanying (full-rank) systems on that group.

1. On Ã = S̃L (2,R), we have the systems

Σ
(1,1)
1 : E3 + u(E2 +E3) Σ

(1,1)
2,α : αE2 + uE3

Σ
(1,1)
3,α : αE1 + uE2 Σ

(1,1)
4,α : αE3 + uE2

Σ
(2,0)
1 : u1E1 + u2E2 Σ

(2,0)
2 : u1E2 + u2E3

Σ
(2,1)
1 : E3 + u1E1 + u2(E2 + E3) Σ

(2,1)
2,α : αE1 + u1E2 + u2E3

Σ
(2,1)
3,α : αE3 + u1E1 + u2E2 Σ(3,0) : u1E1 + u2E2 + u3E3.

2. On SU (2), we have the systems

Σ(1,1)
α : αE2 + uE3 Σ(2,0) : u1E2 + u2E3

Σ(2,1)
α : αE1 + u1E2 + u2E3 Σ(3,0) : u1E1 + u2E2 + u3E3.

Here α > 0 parametrizes families of distinct (non-equivalent) class represen-
tatives.

Proof. We consider only item (2), i.e., systems on the unitary group SU (2).
(The proof for item (1), although more involved, is similar.) The group of
linearized automorphisms of SU (2) is dAut(SU (2)) = SO (3) = {g ∈ R3×3 :
gg⊤ = 1, det g = 1}. The dot product • on su (2) is given by A • B =
a1b1 + a2b2 + a3b3. (Here A =

∑3
i=1 aiEi and B =

∑3
i=1 biEi.) The level

sets Sα = {A ∈ su (2) : A • A = α} are spheres of radius
√
α (and are

preserved by automorphisms). The group of automorphisms acts transitively
on each sphere Sα. The critical point C•(Γ) (at which an inhomogeneous
affine subspace is tangent to a sphere Sα) is given by

C•(Γ) = A− A •B
B •B

B

C•(Γ) = A−
[
B1 B2

] [B1 •B1 B1 •B2

B1 •B2 B2 •B2

]−1 [
A •B1

A •B2

]
.
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Critical points behave well under the action of automorphisms, i.e., ψ·C•(Γ) =
C•(ψ ·Γ) for any automorphism ψ. (The critical point of Γ is well defined as
it is independent of parametrization.)

Let Σ be a single-input inhomogeneous system with trace Γ. There exists
an automorphism ψ such that ψ · Γ = α sin θ E1 + α cos θ E2 + ⟨E3⟩, where
α =

√
C•(Γ) • C•(Γ). Hence

ψ′ =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1


is an automorphism such that ψ′ · ψ · Γ = Γ

(1,1)
α .

Let Σ be a two-input homogeneous system with trace Γ = ⟨B1, B2⟩. Then
Σ̂ : B1+ ⟨B2⟩ is a (full-rank) single-input inhomogeneous system. Therefore,
there exists an automorphism ψ such that ψ · (B1 + ⟨B2⟩) = αE2 + ⟨E3⟩.
Hence ψ · ⟨B1, B2⟩ = ⟨E2, E3⟩. Thus Σ is equivalent to Σ(2,0).

Let Σ be a two-input inhomogeneous system with trace Γ. We have
C•(Γ) •C•(Γ) = α2 for some α > 0. As C•(Γ1,α) •C•(Γ1,α) = α2, there exists
an automorphism ψ such that ψ · C•(Γ) = C•(Γ1,α). Hence ψ · Γ and Γ1,α

are both equal to the tangent plane of Sα2 at ψ · C•(Γ), and are therefore
identical.

If Σ is a three-input system, then it is equivalent to Σ(3,0).
Lastly, we note that none of the representatives obtained are equivalent.

(Again, we first distinguish representatives in terms of homogeneity and num-

ber of inputs.) As α2 = C•(Γ
(1,1)
α ) • C•(Γ

(1,1)
α ) (resp. α2 = C•(Γ

(2,1)
α ) •

C•(Γ
(2,1)
α )) is an invariant quantity, the systems Σ

(1,1)
α and Σ

(1,1)
α′ (resp. Σ

(2,1)
α

and Σ
(2,1)
α′ ) are equivalent only if α = α′.

3. Invariant optimal control

We consider the class of left-invariant optimal control problems on Lie
groups with fixed terminal time, affine dynamics, and affine quadratic cost.
Formally, such problems are given by

ġ = g (A+ u1B1 + · · ·+ uℓBℓ) , g ∈ G, u ∈ Rℓ (1)

g(0) = g0, g(T ) = g1 (2)

J =

∫ T

0
(u(t)− µ)⊤Q (u(t)− µ) dt −→ min. (3)
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Here G is a (real, finite-dimensional) connected Lie group with Lie alge-
bra g, A, B1, . . . , Bℓ ∈ g (with B1, . . . , Bℓ linearly independent), u =
(u1, . . . , uℓ) ∈ Rℓ, µ ∈ Rℓ, and Q is a positive definite ℓ × ℓ matrix. To
each such problem, we associate a cost-extended system (Σ, χ). Here Σ
is the control system (1) and the cost function χ : Rℓ → R has the form
χ(u) = (u− µ)⊤Q (u− µ). Each cost-extended system corresponds to a fam-
ily of invariant optimal control problems; by specification of the boundary
data (g0, g1, T ), the associated problem is uniquely determined.

Optimal control problems of this kind have received considerable attention
in the last few decades. Various physical problems have been modelled in
this manner, such as optimal path planning for airplanes, motion planning
for wheeled mobile robots, spacecraft attitude control, and the control of
underactuated underwater vehicles ([61,67,75]); also, the control of quantum
systems and the dynamic formation of DNA ([37,43]). Many problems (as well
as sub-Riemannian structures) on various low-dimensional matrix Lie groups
have been considered by a number of authors (see, e.g., [15, 16, 34, 49, 52, 54,
63,65,66,69,70]).

We introduce a form of equivalence for problems of the form (1)–(2)–(3),
or rather, the associated cost-extended systems (cf. [20, 28]). Cost equiva-
lence establishes a one-to-one correspondence between the associated optimal
trajectories, as well as the associated extremal curves. Via the Pontryagin
Maximum Principle, we associate to each cost-extended systems a quadratic
Hamilton–Poisson systems on the associated Lie–Poisson space. We show that
cost equivalence of cost-extended systems implies equivalence of the associ-
ated Hamiltonian systems. In addition, we reinterpret drift-free cost-extended
systems (with homogeneous cost) as invariant sub-Riemannian structures.

3.1. Pontryagin Maximum Principle. The Pontryagin Maximum
Principle provides necessary conditions for optimality which are naturally ex-
pressed in the language of the geometry of the cotangent bundle T ∗G of G
(see [9, 40, 50]). The cotangent bundle T ∗G can be trivialized (from the left)
such that T ∗G = G× g∗; here g∗ is the dual of the Lie algebra g. To an op-
timal control problem (1)–(2)–(3) we associate, for each real number λ and
each control parameter u ∈ Rℓ a Hamiltonian function on T ∗G = G× g∗:

Hλ
u (ξ) = λχ(u) + ξ (Ξu(g))

= λχ(u) + p (Ξu(1)), ξ = (g, p) ∈ T ∗G.
(4)
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We denote by H⃗λ
u the corresponding Hamiltonian vector field (with respect

to the symplectic structure on T ∗G). In terms of the above Hamiltonians, the
Maximum Principle can be stated as follows.

Maximum Principle. Suppose the controlled trajectory (ḡ(·), ū(·)) de-
fined over the interval [0, T ] is a solution for the optimal control problem
(1)–(2)–(3). Then, there exists a curve ξ(·) : [0, T ] → T ∗G with ξ(t) ∈
T ∗
ḡ(t)G, t ∈ [0, T ], and a real number λ ≤ 0, such that the following conditions

hold for almost every t ∈ [0, T ] :

(λ, ξ(t)) ̸≡ (0, 0) (5)

ξ̇(t) = H⃗λ
ū(t)(ξ(t)) (6)

Hλ
ū(t) (ξ(t)) = max

u
Hλ

u (ξ(t)) = constant. (7)

An optimal trajectory, g(·) : [0, T ] → G is the projection of an integral curve
ξ(·) of the (time-varying) Hamiltonian vector field H⃗λ

ū(t). A trajectory-control

pair (ξ(·), u(·)) is said to be an extremal pair if ξ(·) satisfies the conditions
(5), (6), and (7). The projection ξ(·) of an extremal pair is called an extremal.
An extremal curve is called normal if λ < 0 and abnormal if λ = 0.

For the class of optimal control problems under consideration, the max-
imum condition (7) eliminates the parameter u from the family of Hamil-
tonians (Hu); as a result, we obtain a smooth G-invariant function H on
T ∗G = G × g∗. This Hamilton–Poisson system on T ∗G can be reduced to a
Hamilton–Poisson system on the (minus) Lie–Poisson space g∗−, with Poisson
bracket given by

{F,G} = −p([dF (p), dG(p)]).
Here F,G ∈ C∞(g∗) and dF (p), dG(p) are elements of the double dual g∗∗

which is canonically identified with the Lie algebra g.

3.2. Equivalence of cost-extended systems. Let (Σ, χ) and
(Σ′, χ′) be two cost-extended systems. (Σ, χ) and (Σ′, χ′) are said to be
cost equivalent if there exist a Lie group isomorphism ϕ : G → G′ and an
affine isomorphism φ : Rℓ → Rℓ such that

Tgϕ · Ξ(g, u) = Ξ′(ϕ(g), φ(u)) and χ′ ◦ φ = rχ

for g ∈ G, u ∈ Rℓ and some r > 0. Equivalently, (Σ, χ) and (Σ′, χ′) are cost
equivalent if and only if there exist a Lie group isomorphism ϕ : G → G′ and
an affine isomorphism φ : Rℓ → Rℓ such that T1ϕ ·Ξ(1, u) = Ξ′(1′, φ(u)) and
χ′ ◦ φ = rχ for some r > 0. Accordingly:
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• If (Σ, χ) and (Σ′, χ′) are cost equivalent, then Σ and Σ′ are detached
feedback equivalent.

• If two full-rank systems Σ and Σ′ are state space equivalent, then
(Σ, χ) and (Σ′, χ) are cost equivalent for any cost χ.

• If two full-rank systems Σ and Σ′ are detached feedback equivalent with
respect to a feedback transformation φ, then (Σ, χ◦φ) and (Σ′, χ) are
cost equivalent for any cost χ.

Remark. The cost-preserving condition χ′ ◦φ = rχ is partially motivated
by the following considerations. Each cost χ on Rℓ induces a strict partial
ordering u < v ⇐⇒ χ(u) < χ(v). It turns out that χ and χ′ induce the
same strict partial ordering on Rℓ if and only if χ = rχ′ for some r > 0.
The dynamics-preserving condition Tgϕ ·Ξ(g, u) = Ξ′(ϕ(g), φ(u)) is just that
of detached feedback equivalence (on full-rank systems).

Let (g(·), u(·)) be a controlled trajectory, defined over an interval [0, T ], of
a cost-extended system (Σ, χ). We say that (g(·), u(·)) is a virtually optimal
controlled trajectory (shortly VOCT) if it is a solution for the associated
optimal control problem with boundary data (g(0), g(T ), T ). Similarly, we
say that (g(·), u(·)) is an extremal controlled trajectory (shortly ECT) if
it satisfies the necessary conditions of the Pontryagin Maximum Principle
(with λ ≤ 0). Clearly, any VOCT is an ECT. A map ϕ × φ defining a
cost equivalence between two cost-extended systems establishes a one-to-one
correspondence between their respective VOCTs (and ECTs).

Proposition 3.1. ([20, 28]) Suppose ϕ×φ defines a cost equivalence be-
tween (Σ, χ) and (Σ′, χ′). Then

1. (g(·), u(·)) is a VOCT if and only if (ϕ ◦ g(·), φ ◦ u(·)) is a VOCT;

2. (g(·), u(·)) is an ECT if and only if (ϕ ◦ g(·), φ ◦ u(·)) is an ECT.

One can classify the cost-extended systems corresponding to a given in-
variant control system by use of the following result. (We denote by Aff (Rℓ)
the group of affine isomorphisms of Rℓ.)

Proposition 3.2. ([20, 28]) Let (Σ, χ) and (Σ, χ′) are two cost-extended
systems (with identical underlying control system Σ) and let

TΣ =
{
φ ∈ Aff (Rℓ) : ∃ψ ∈ dAut(G), ψ · Γ = Γ, ψ · Ξ(1, u) = Ξ(1, φ(u))

}
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be the group of feedback transformations leaving Σ invariant. (Σ, χ) and
(Σ, χ′) are cost equivalent if and only if there exists an element φ ∈ TΣ such
that χ′ = rχ ◦ φ for some r > 0.

Example 3.1. ([20], cf. Theorem 2.3, item 4) On SE (2) , any full-rank
two-input drift-free cost-extended system (Σ, χ) with homogeneous cost (i.e.,
Ξ(1, 0) = 0 and χ(0) = 0) is cost equivalent to

(Σ(2,0), χ(2,0)) :

{
Σ : u1E2 + u2E3

χ(u) = u21 + u22.

Example 3.2. (cf. Theorem 2.3, item 2) Any controllable cost-extended
system on H3 is C-equivalent to exactly one of the cost-extended systems

(
Σ(2,0), χ

(2,0)
1

)
:

{
Σ(2,0) : u1E2 + u2E3

χ
(2,0)
1 (u) = u21 + u22(

Σ(2,0), χ
(2,0)
2

)
:

{
Σ(2,0) : u1E2 + u2E3

χ
(2,0)
2 (u) = (u1 − 1)2 + u22(

Σ(2,1), χ(2,1)
α

)
:

{
Σ(2,1) : E1 + u1E2 + u2E3

χ(2,1)
α (u) = (u1 − α)2 + u22(

Σ(3,0), χ
(3,0)
α

)
:

{
Σ(3,0) : u1E1 + u2E2 + u3E3,

χ
(3,0)
α (u) = (u1 − α1)

2 + (u2 − α2)
2 + u23.

Here α, α1, α2 ≥ 0 parametrize families of (non-equivalent) class representa-
tives.

Note. Several examples of classification under cost-equivalence can be
found in [12,14,17,28]

3.3. Pontryagin lift. To any cost-extended system (Σ, χ) on a Lie
group G we associate, via the Pontryagin Maximum Principle, a Hamilton–
Poisson system on the associated Lie–Poisson space g∗− (cf. [9, 50, 71]). We
show that equivalence of cost-extended systems implies equivalence of the
associated Hamilton–Poisson systems.
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Note. The Pontryagin lift may be realized as a contravariant functor be-
tween the category of cost-extended control systems and the category of
Hamilton–Poisson systems ([28], see also [40]).

A quadratic Hamilton–Poisson system (g∗−,HA,Q) is specified by

HA,Q : g∗ → R, p 7→ p(A) +Q(p).

Here A ∈ g and Q is a quadratic form on g∗. If A = 0, then the system
is called homogeneous; otherwise, it is called inhomogeneous. (When g∗− is
fixed, a system (g∗−,HA,Q) is identified with its Hamiltonian HA,Q.) To each

function H ∈ C∞(g∗), we associate a Hamiltonian vector field H⃗ on g∗

specified by H⃗[F ] = {F,H}. A function C ∈ C∞(g∗) is a Casimir function
if {C,F} = 0 for all F ∈ C∞(g∗), or equivalently C⃗ = 0. A linear map
ψ : g∗ → h∗ is a linear Poisson morphism if {F,G} ◦ ψ = {F ◦ ψ,G ◦ ψ} for
all F,G ∈ C∞(h∗). Linear Poisson morphisms are exactly the dual maps of
Lie algebra homomorphisms.

Let (E1, . . . , En) be an ordered basis for the Lie algebra g and let
(E∗

1 , . . . , E
∗
n) denote the corresponding dual basis for g∗. We write elements

B ∈ g as column vectors and elements p ∈ g∗ as row vectors. When-
ever convenient, linear maps will be identified with their matrices. If we
write elements u ∈ Rℓ as column vectors as well, then we can express
Ξu(1) = A+u1B1+· · ·+uℓBℓ as Ξu(1) = A+Bu, where B =

[
B1 · · · Bℓ

]
is a n× ℓ matrix. The equations of motion for the integral curve p(·) of the
Hamiltonian vector field H⃗ corresponding to H ∈ C∞(g∗) then take the form
ṗi = −p([Ei, dH(p)]).

Let (Σ, χ) be a cost-extended system with

Ξu(1) = A+Bu, χ(u) = (u− µ)⊤Q(u− µ).

By the Pontryagin Maximum Principle we have the following result.

Proposition 3.3. (cf. [20, 50,59]) Any normal ECT (g(·), u(·)) of (Σ, χ)
is given by

ġ(t) = Ξ(g(t), u(t)), u(t) = Q−1 B⊤ p(t)⊤ + µ

where p(·) : [0, T ] → g∗ is an integral curve for the Hamilton–Poisson system
on g∗− specified by

H(p) = p (A+Bµ) + 1
2 p B Q−1 B⊤ p⊤. (8)
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We say that two quadratic Hamilton–Poisson systems (g∗−, G) and (h∗−,H)
are linearly equivalent if there exists a linear isomorphism ψ : g∗ → h∗ such
that the Hamiltonian vector fields G⃗ and H⃗ are ψ-related, i.e., Tpψ · G⃗(p) =
H⃗(ψ(p)) for p ∈ g∗.

Proposition 3.4. The following pairs of Hamilton–Poisson systems (on
g∗−, specified by their Hamiltonians) are linearly equivalent:

1. HA,Q ◦ ψ and HA,Q, where ψ : g∗− → g∗− is a linear Lie–Poisson auto-
morphism;

2. HA,Q and HA,rQ, where r > 0;

3. HA,Q and HA,Q + C, where C is a Casimir function.

Theorem 3.1. ([28]) If two cost-extended systems are cost equivalent,
then their associated Hamilton–Poisson systems, given by (8), are linearly
equivalent.

Proof. Let (Σ, χ) and (Σ′, χ′) be cost-extended systems with Ξu(1) =
A + Bu and Ξ′

u(1) = A′ + B′ u′, respectively. The associated Hamilton–
Poisson systems (on g∗− and (g′)∗−, respectively) are given by

H(Σ,χ)(p) = p (A+Bµ) + 1
2 pBQ−1B⊤ p⊤

H(Σ′,χ′)(p) = p (A′ +B′ µ′) + 1
2 pB

′Q′−1B′⊤ p⊤.

Suppose ϕ×φ defines a cost equivalence between (Σ, χ) and (Σ′, χ′), where
φ(u) = Ru + φ0 and R ∈ Rℓ×ℓ. We have χ′ ◦ φ = rχ for some r > 0. A
simple calculation yields

T1ϕ·A = A′+B′ φ0, Rµ+φ0 = µ′, T1ϕ·B = B′R, RQ−1R⊤ = r (Q′)−1.

Thus (H(Σ,χ)◦(T1ϕ)∗)(p) = p (A′+B′ µ′)+ r
2 pB

′ (Q′)−1B′⊤ p⊤. Here (T1ϕ)
∗ :

(g′)∗ → g∗ is the dual of the linear map T1ϕ. Hence, the vector fields associ-
ated with H(Σ′,χ′) and H(Σ,χ)◦(T1ϕ)∗, respectively, are related by the dilation

δ1/r : (g′)∗ → (g′)∗, p 7→ 1
rp (Proposition 3.4). Moreover, the vector fields

associated with H(Σ,χ) ◦ (T1ϕ)
∗ and H(Σ,χ), respectively, are related by the

linear Poisson isomorphism (T1ϕ)
∗ (Proposition 3.4). Consequently 1

r (T1ϕ)
∗

defines a linear equivalence between ((g′)∗−, H(Σ′,χ′)) and (g∗−, H(Σ,χ)).
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Remark. The converse of Theorem 3.1 is not true in general. In fact,
one can construct cost-extended systems with different number of inputs but
equivalent Hamiltonians (see, e.g., [28]).

In Example 3.2 we gave a classification of the cost extended systems on
H3. Each Hamiltonian system ((h3)

∗
−,H), where H is a positive definite

quadratic form, can be realized as the Hamiltonian system (8) associated to
some cost-extended system. Hence, by Theorem 3.1, we get the following
result.

Example 3.3. Any quadratic Hamilton–Poisson systems ((h3)
∗
−,H),

where H is a positive definite quadratic form, is linearly equivalent to the
system on (h3)

∗
− with Hamiltonian H ′(p) = 1

2(p
2
1 + p22 + p23).

3.4. Sub-Riemannian structures. Left-invariant sub-Riemannian
(and, in particular, Riemannian) structures on Lie groups can naturally be as-
sociated to drift-free cost-extended systems with homogeneous cost. We show
that if two cost-extended systems are cost equivalent, then the associated
sub-Riemannian structures are isometric up to rescaling.

A left-invariant sub-Riemannian manifold is a triplet (G,D,g), where G
is a (real, finite-dimensional) connected Lie group, D is a nonintegrable left-
invariant distribution on G, and g is a left-invariant Riemannian metric on
D. More precisely, D(1) is a linear subspace of the Lie algebra g of G and
D(g) = gD(1); the metric g1 is a positive definite symmetric bilinear from
on g and gg(gA, gB) = g1(A,B) for A,B ∈ g, g ∈ G. When D = TG (i.e.,
D(1) = g) then one has a left-invariant Riemannian structure. An absolutely
continuous curve g(·) : [0, T ] → G is called a horizontal curve if ġ(t) ∈
D(g(t)) for almost all t ∈ [0, T ]. We shall assume that D satisfies the bracket
generating condition, i.e., D(1) has full rank; this condition is necessary and
sufficient for any two points in G to be connected by a horizontal curve.

A standard argument shows that the length minimization problem

ġ(t) ∈ D(g(t)), g(0) = g0, g(T ) = g1,∫ T

0

√
g(ġ(t), ġ(t)) −→ min

is equivalent to the energy minimization problem, or invariant optimal control
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problem:
ġ = Ξu(g), u ∈ Rℓ g(0) = g0, g(T ) = g1∫ T

0
χ(u(t)) dt −→ min.

(9)

Here Ξu(1) = u1B1+ · · ·+uℓBℓ where B1, . . . , Bℓ are some linearly indepen-
dent elements of g such that ⟨B1, . . . , Bℓ⟩ = D(1); χ(u(t)) = u(t)⊤Qu(t) =
g1(Ξu(t)(1),Ξu(t)(1)) for some ℓ× ℓ positive definite (symmetric) matrix Q.
More precisely, energy minimizers are exactly those length minimizers which
have constant speed. In other words, the VOCTs of the cost-extended sys-
tem (Σ, χ) associated with (9) are exactly the (constant speed) minimizing
geodesics of the sub-Riemannian structure (G,D,g); the normal (resp. abnor-
mal) ECTs of (Σ, χ) are the normal (resp. abnormal) geodesics of (G,D,g).

Accordingly, to a (full-rank) cost-extended system (Σ, χ) on G of the form

Σ : u1B1 + · · ·+ uℓBℓ, χ(u) = u⊤Qu

we associate a sub-Riemannian structure (G,D,g) specified by

D(1) = Γ = ⟨B1, . . . , Bℓ⟩ , g1(u1B1+· · ·+uℓBℓ, u1B1+· · ·+uℓBℓ) = χ(u).

Let (G,D,g) and (G′,D′,g′) be two sub-Riemannian structures associated
to (Σ, χ) and (Σ′, χ′), respectively.

Theorem 3.2. (Σ, χ) and (Σ′, χ′) are cost equivalent if and only if there
exists a Lie group isomorphism ϕ : G → G′ such that ϕ∗D = D′ and g =
r ϕ∗g′ for some r > 0.

Proof. Suppose ϕ × φ defines a cost equivalence between (Σ, χ) and
(Σ′, χ′), i.e., ϕ∗Ξu = Ξ′

φ(u) and χ′ ◦φ = rχ for some r > 0. As T1ϕ ·Ξu(1) =

Ξφ(u)(1), it follows that T1ϕ · D(1) = D′(1). Hence, as ϕ is a Lie group
isomorphism, by left invariance we have ϕ∗D = D′. Furthermore

r χ(u) = χ′(φ(u))

⇐⇒ r g1(Ξu(1),Ξu(1)) = g′
1(Ξ

′
φ(u)(1),Ξ

′
φ(u)(1)) (10)

⇐⇒ r g1(Ξu(1),Ξu(1)) = g′
1(T1ϕ · Ξu(1), T1ϕ · Ξu(1)).

Hence, as ϕ is a Lie group isomorphism, by left invariance we have r g = ϕ∗g′.
Conversely, suppose ϕ∗D = D′ and g = r ϕ∗g′. We have T1ϕ · D(1) =

D′(1) and so T1ϕ·Γ = Γ′. Hence there exists a unique linear map φ : Rℓ → Rℓ



invariant control systems on lie groups 231

such that T1ϕ · Ξu(1) = Ξ′
φ(u)(1). Thus ϕ × φ defines a detached feedback

equivalence between Σ and Σ′. By (10), it follows that χ′ ◦ φ = rχ. Thus
(Σ, χ) and (Σ′, χ′) are cost equivalent.

Remark. For (sub-Riemannian) Carnot groups and invariant Riemannian
structures on nilpotent Lie groups, any isometry is the composition of a left
translation and a Lie group isomorphism (see [36, 45, 55] and [60, 76], respec-
tively). Recently, this has been shown to generalize to any nilpotent metric
Lie group ([56]). Hence, at least for these classes, if (G,D,g) and (G′,D′,g′)
are isometric, then (Σ, χ) and (Σ′, χ′) are cost equivalent.

Analogous to Example 3.1, we have the following classification of sub-
Riemannian structures on the Euclidean group SE (2).

Example 3.4. On SE (2), any left-invariant sub-Riemannian structure
(D,g) isometric up to rescaling to the structure (D̄, ḡ) with orthonormal
frame (E2, E3); here E2 and E3 are viewed as left-invariant vector fields.

4. Final remarks

As already mentioned, a complete classification of the invariant control
affine systems in three dimensions was obtained in [27] (see also [21–23]).
There is no complete classification of the cost-extended systems in three di-
mensions. However, there are classifications of the invariant sub-Riemannian
structures ([8]) and invariant Riemannian structures ([44]). Classifications in
four dimensions (and beyond) are also topics for future research.

In order to find the extremal trajectories for a cost-extended system,
one needs to integrate the associated Hamilton–Poisson system (see Proposi-
tion 3.3). In the last decade or so several authors have considered quadratic
Hamilton–Poisson systems on low-dimensional Lie–Poisson spaces (see, e.g.,
[3,6,10,16,74]). To our knowledge there is currently no general classification of
the quadratic Hamilton–Poisson systems in three dimensions. A first attempt
towards such a classification appears in [31] (see also [5, 7, 13,25,38]).

A. Three-dimensional Lie algebras and groups

There are eleven types of three-dimensional real Lie algebras; in fact, nine
algebras and two parametrized infinite families of algebras (see, e.g., [57, 62,
64]). In terms of an (appropriate) ordered basis (E1, E2, E3), the commutation
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operation is given by

[E2, E3] = n1E1 − aE2

[E3, E1] = aE1 + n2E2

[E1, E2] = n3E3.

The structure parameters a, n1, n2, n3 for each type are given in Table 1.

a n1 n2 n3 U
n
im

o
d
u
la
r

N
il
p
ot
en
t

C
o
m
p
l.
S
o
lv
.

E
x
p
o
n
en
ti
al

S
ol
va
b
le

S
im

p
le

Connected Groups

3g1 0 0 0 0 • • • • • R3, R2 × T, R× T2, T3

g2.1 ⊕ g1 1 1 −1 0 • • • Aff (R)0 × R, Aff (R)0 × T

g3.1 0 1 0 0 • • • • • H3, H
∗
3

g3.2 1 1 0 0 • • • G3.2

g3.3 1 0 0 0 • • • G3.3

g03.4 0 1 −1 0 • • • • SE (1, 1)

ga3.4
a>0
a ̸=1 1 −1 0 • • • Ga

3.4

g03.5 0 1 1 0 • • S̃E (2), SEn(2), SE (2)

ga3.5 a>0 1 1 0 • • Ga
3.5

g3.6 0 1 1 −1 • • Ã, An, SL (2,R), SO (2, 1)0

g3.7 0 1 1 1 • • SU (2), SO (3)

Table 1: Three-dimensional Lie algebras

A classification of the three-dimensional (real, connected) Lie groups can
be found in [42]. Let G be a three-dimensional (real, connected) Lie group
with Lie algebra g.

1. If g is Abelian, i.e., g ∼= 3g1, then G is isomorphic to R3, R2 × T,
R× T, or T3.

2. If g ∼= g2.1 ⊕ g1, then G is isomorphic to Aff (R)0 ×R or Aff (R)0 × T.

3. If g ∼= g3.1, then G is isomorphic to the Heisenberg group H3 or the
Lie group H∗

3 = H3/Z(H3(Z)), where Z(H3(Z)) is the group of integer
points in the centre Z(H3) ∼= R of H3.
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4. If g ∼= g3.2, g3.3 , g03.4, ga3.4, or ga3.5, then G is isomorphic to the simply
connected Lie group G3.2, G3.3, G0

3.4 = SE (1, 1), Ga
3.4, or Ga

3.5, respec-
tively. (The centres of these groups are trivial.)

5. If g ∼= g03.5, then G is isomorphic to the Euclidean group SE (2), the
n-fold covering SEn(2) of SE1(2) = SE (2), or the universal covering

group S̃E (2).

6. If g ∼= g3.6, then G is isomorphic to the pseudo-orthogonal group
SO (2, 1)0, the n-fold covering An of SO (2, 1)0, or the universal covering
group Ã. Here A2

∼= SL (2,R).

7. If g ∼= g3.7, then G is isomorphic to either the unitary group SU (2) or
the orthogonal group SO (3).

Among these Lie groups, only H∗
3, An, n ≥ 3, and Ã are not matrix Lie

groups.

Automorphism groups. A standard computation yields the automor-
phism group for each three-dimensional Lie algebra (see, e.g., [46]). With
respect to the given ordered basis (E1, E2, E3) , the automorphism group of
each solvable Lie algebra has parametrization:

Aut(g3.1) :

yw − vz x u
0 y v
0 z w

 Aut(g2.1 ⊕ g1) :

x y u
y x v
0 0 1



Aut(g3.2) :

u x y
0 u z
0 0 1

 Aut(g3.3) :

x y z
u v w
0 0 1



Aut(g03.4) :

x y u
y x v
0 0 1

 ,
 x y u
−y −x v
0 0 −1

 Aut(ga3.4) :

x y u
y x v
0 0 1



Aut(g03.5) :

 x y u
−y x v
0 0 1

 ,
x y u
y −x v
0 0 −1

 Aut(ga3.5) :

 x y u
−y x v
0 0 1
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For the semisimple Lie algebras, we have

Aut(g3.6) = SO (2, 1) =
{
g ∈ R3×3 : g⊤ diag(1, 1,−1)g = diag(1, 1,−1),

det g = 1
}

Aut(g3.7) = SO (3) =
{
g ∈ R3×3 : gg⊤ = 1, det g = 1

}
.
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