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Abstract : Our aim in this paper is to extend a symmetrical property of the trace by M.
Kennedy and H. Radjavi for bounded operators on a Banach space to the more general
situation of Banach algebras. The main ingredients are Vesentini’s result on subharmonicity
of the spectral radius and the new spectral rank and trace defined on the socle of a Banach
algebra by B. Aupetit and H. du T. Mouton.
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1. Preliminaries

In [5], the authors investigate the properties of bounded operators which
satisfy a certain spectral additivity condition and use their results to study
Lie and Jordan algebras of compact operators. As a first result, they obtain
a symmetric trace condition on bounded operators (see [5, Lemma 3.12]). B.
Aupetit and H. du T. Mouton proved that the spectral rank and trace as
defined in [3] coincide with the classical notion of trace and rank in the case
where U = L(X), the Banach algebra of bounded linear operators on a Banach
space X.

It is our aim to extend some results obtained in [5] to the general situation
of Banach algebras, by replacing the classical trace by the spectral one defined
in [3].

Let U be a semi-simple complex unital Banach algebra and Ω(U) its set
of invertible elements. For x ∈ U we denote Sp(x) = {λ : λ1 − x /∈ Ω(U)}
and ρU (x) = sup{|λ| : λ ∈ Sp(x)} the spectrum and spectral radius of x. We

denote by Ŝp(x) the full spectrum of x, i.e., the polynomially convex hull of
Sp(x), that is the set obtained by filling the holes in Sp(x).
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Let α ∈ C and γ a small curve isolating α from the rest of the spectrum
of a. By definition, the Riesz projection associated to a and α is given by

p(α, a) =
1

2πi

∫
γ
(λ− a)−1dλ .

Using the identity

(λ− a)−1 =
1

λ
+

1

λ
a(λ− a)−1

we obtain by integration

p(α, a) =
1

2πi

∫
γ

1

λ
(λ− a)−1dλ =

a

2πi

∫
γ

1

λ
(λ− a)−1dλ . (∗)

Obviously p(α, a) = 0 if α /∈ Sp(a). The Holomorphic Functional Calculus
yields that the p(α, a) corresponding to different values of α are orthogonal
projections (have zero product) and their sum is 1.

The next result is well known, we include it to illustrate the previous
definition of Riesz projections and a kind of spectral additivity in a particular
situation.

Proposition 1. Let a, b be two elements of a Banach algebra U such that
ab = ba = 0. Then

Sp(a+ b) \ {0} = (Sp(a)) ∪ (Sp(b)) \ {0} .

Moreover, if λ0 ̸= 0 is isolated in Sp(a+b) then the Riesz projection associated
with a+ b, a and b respectively satisfy the identity

p(λ0, a+ b) = p(λ0, a) + p(λ0, b) .

Proof. For λ ̸= 0 it is easy to see from the identity,

λ− (a+ b) =
1

λ
(λ− a)(λ− b) =

1

λ
(λ− b)(λ− a)

that λ− (a+ b) is invertible if and only if both λ− a and λ− b are invertible.
Let γ be a circle centered at λ0 which separates λ0 from 0 and the rest of the
spectrum of a+ b. If λ ∈ γ, by the previous identity we have λ ̸= 0, λ− a and
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λ−b invertible. Since b = (λ−a)
b

λ
we obtain (λ−a)−1b =

b

λ
on γ. Moreover,

we have

(λ− (a+ b))−1 = λ(λ− b)−1(λ− a)−1

= (λ− a)−1 + [λ(λ− b)−1 − 1](λ− a)−1

= (λ− a)−1 + b(λ− b)−1(λ− a)−1

= (λ− a)−1 + (λ− b)−1(λ− a)−1b

= (λ− a)−1 +
b

λ
(λ− b)−1.

Now, integrating this quantity on γ and multiplying by
1

2πi
, we get

p(λ0, a+ b) = p(λ0, a) +
b

2πi

∫
γ

1

λ
(λ− b)−1dλ = p(λ0, a) + p(λ0, b)

by formula (*) applied to b.

2. Trace and rank in Banach algebras

For each nonnegative integer m, let

Fm = {a ∈ U : #(Sp(xa) \ {0}) ≤ m for all x ∈ U} ,

where the symbol #K denotes the number of distinct elements in a setK ⊂ C.
Following [3], we define the rank of an element a of U as the smallest integer
m such that a ∈ Fm, if it exists; otherwise the rank is infinite. In other words,

rank(a) = sup
x∈U

#(Sp(xa) \ {0}) ≤ ∞ .

Of course,
rank(a) = sup

x∈U
#(Sp(ax) \ {0}) .

A few elementary properties of the rank taken from [3], where more details
and proofs are given, are listed below:

(a) #(Sp(a) \ {0}) ≤ rank(a) for a in U .
(b) rank(xa) ≤ rank(a) and rank(ax) ≤ rank(a) for a, x ∈ U ; moreover,

rank(ua) = rank(au) = rank(a) if u is invertible.



166 a. maouche

(c) If a ∈ U is a finite-rank element, then

E(a) = {x ∈ U : #(Sp(xa) \ {0}) = rank(a)}

is a dense open subset of U (see [3, Theorem 2.2]).

It is known that the socle, denoted Soc(U), of a semisimple Banach algebra U
coincides with the collection ∪∞

m=0Fm of finite-rank elements.
Following [3], if a ∈ Soc(U) we define the trace of a by

Tr(a) =
∑

λ∈Sp(a)

λ ·m(λ, a)

where m(λ, a) is the multiplicity of the spectral value λ.
More details on the trace and rank in Banach algebras are contained in

[3], from which we recall the following results on the trace that will be used
in the proof of our main result. For instance, it is shown in [3], formula (3)
page 130, that the trace and rank satisfy

|Tr(a)| ≤ ρ(a) · rank(a)

where ρ(a) is the usual spectral radius of a.

Proposition 2. (i) Let a ∈ Soc(U), b, x, y ∈ (U). Then we have

Tr(aLxLyb+ bLxLya) = Tr(aLyLxb+ bLyLxa) .

In particular Tr(x(ya)) = Tr(y(xa)).

(ii) Let a ∈ Soc((U)) be such that Tr(au) = 0, for every u ∈ Soc(U). Then
a = 0.

(iii) If a ∈ Soc(U), then ϕ(x) = Tr(ax) is a bounded linear functional on (U).

Proof. For properties (i) and (ii), see [2, Corollary 1.2 and Corollary 1.3,
p. 181]. For property (iii) see of [3, Theorem 3.3].

Theorem 1. ([3, Theorem 2.6]) Let a ∈ U have finite rank and λ1, . . . ,
λn be non-zero distinct elements of its spectrum with multiplicity m(λi, a).
If p denotes the Riesz projection associated with a and λ1, . . . , λn that is,
p = p(λ1, a) + · · ·+ p(λn, a), then rank(p) = m(λ1, a) + · · ·+m(λn, a).

Another important result that we shall use in the proof of our main result
is the following theorem.



spectral additivity 167

Theorem 2. ([3, Theorem 3.1]) Let f be an analytic function from a
domain D of C into the socle of a semisimple Banach algebra U . Then
Tr(f(λ)) is holomorphic on D.

In what follows, an important tool will be the theory of subharmonic func-
tions, based essentially on the celebrated result of E. Vesentini: if f is an
analytic function from a domain D of the complex plane into a Banach al-
gebra, then the functions λ 7→ ρ(f(λ)) and λ 7→ log ρ(f(λ)) are subharmonic
(see [1, Theorem 3.4.7]). We will require the following two fundamental re-
sults from the theory of subharmonic functions from ([1, Theorem A.1.3 and
Theorem A.1.29]).

Theorem 3. (Maximum Principle for Subharmonic Functions)
Let f be a subharmonic function on a domain D of C. If there exists λ0 ∈ D
such that f(λ) ≤ f(λ0) for all λ ∈ D, then f(λ) = f(λ0) for all λ in D.

We state here a special case of H. Cartan’s Theorem (see [5] and the
references given there).

Theorem 4. (H. Cartan’s Theorem) Let f be a subharmonic func-
tion on a domain D of C. If f(λ) = −∞ on an open disc in D, then
f(λ) = −∞ for all λ in D.

To apply later H. Cartan’s theorem, we shall need the maximum princi-
ple theorem for the full spectrum due to E. Vesentini, where ∂K means the
boundary of the compact set K.

Theorem 5. (Spectrum Maximum Principle) Let f be a an analytic
function on a domain D of C into a Banach algebra A. Suppose that there
exists λ0 of D such that Spf(λ) ⊂ Spf(λ0), for all λ ∈ D. Then ∂Spf(λ0) ⊂
∂Spf(λ) and ̂Spf(λ0) = Ŝpf(λ), for all λ ∈ D. In particular, if Spf(λ0) has
no interior points or if Spf(λ) does not separate the plane for all λ ∈ D, then
Spf(λ) is constant on D.

3. Elements with stable spectrum

L. Harris and R. Kadison define spectrally additive elements in a C*-
algebra as follows.

Definition 1. An element a of a C*-algebra U is said to be spectrally
additive (in U) when Sp(a+ b) ⊆ Sp(a) + Sp(b) for each b in U .
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This same definition may be made for elements of a (unital) Banach algebra
U (over C). The concept of spectral additivity was studied in the context of
Banach algebras with the aid of (purely algebraic) commutator results for
‘Schurian algebras’ by L. Harris and R. Kadison. It is proved there that a is
spectrally additive in U if and only if au−ua lies in the radical of U for each u
in U . In particular, if U is semi-simple, as is the case when U is a C*-algebra,
then a is spectrally additive if and only if it lies in the center of U .

Following [5], we introduce the notion of stable spectrum in a Banach
algebra.

Definition 2. Let u be an element of a Banach algebra U . We say that
an element a has u-stable spectrum if ρ(a + λu) ≤ ρ(a) for every complex
number λ. A family of elements of U is said to have u-stable spectrum if each
of its elements has u-stable spectrum.

Remark 1. (a) For elements a and u of a complex Banach algebra U ,
the function λ 7→ a + λu is analytic, so by Vesentini’s result, the functions
λ 7→ ρ(a+ λu) and λ 7→ log ρ(a+ λu) are subharmonic.

(b) If a has u-stable spectrum, the Maximum Principle for subharmonic
functions immediately implies that ρ(a+λu) = ρ(a) for all complex numbers.

(c) If a and u have sublinear spectrum, that is, Sp(a + λu) ⊆ Sp(a) +
λSp(u) for every complex number λ and u is quasi-nilpotent (ρ(u) = 0), then
a has u-stable spectrum.

Lemma 1. Let a and u be elements of a semi-simple complex Banach
algebra U . If a has u-stable spectrum, then u is quasi-nilpotent.

Proof. By the above remark, ρ(a+ λu) = ρ(a) for all λ in C, so

ρ
(
λ−1a+ u

)
= |λ|−1ρ(a)

for all non zero λ in C. Thus, by subharmonicity of ρ(λ−1a+ u), we get

ρ(u) = lim sup
λ→∞

ρ
(
λ−1a+ u

)
= 0 .

Theorem 6. Let a and u be elements of a semi-simple complex Banach
algebra U . Then a has u-stable spectrum if and only if (µ − a)−1u is quasi-

nilpotent for all µ /∈ Ŝp(a).
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Proof. By Remark 1, ρ(a + λu) = ρ(a) for all λ in C, so for µ in C with
|µ| > ρ(a), both µ− a and µ− a− λu are invertible. Therefore,

λ−1(µ− a)−1(µ− a− λu) = λ−1 − (µ− a)−1u

is invertible for all non-zero λ in C. This means that the values of the analytic
function µ 7→ (µ − a)−1u for µ /∈ Sp(a), are quasi-nilpotent whenever |µ| >
ρ(a). Consider the subharmonic function µ 7→ log(ρ(µ − a)−1u) defined for
µ /∈ Sp(a). Since log(ρ(µ−a)−1u) = −∞ whenever |µ| > ρ(a), by H. Cartan’s

Theorem, log(ρ(µ − a)−1u) = −∞ for all µ /∈ [Ŝp(a)]. In other words, (µ −
a)−1u is quasi-nilpotent for all µ /∈ [Ŝp(a)].

Corollary 1. Let a and u be elements of a semi-simple complex Banach
algebra U , with Sp(a) without holes. Then a has u-stable spectrum if and
only if Sp(a+ λu) ⊆ Sp(a) + λSp(u) for every λ in C.

Proof. (⇐) Clear.

(⇒) Suppose µ ∈ Sp(a + λu), but that µ /∈ Sp(a). Then obviously λ is
non-zero, and

λ−1(µ− a)−1(µ− a− λu) = λ−1 − (µ− a)−1u

is not invertible. By Theorem 6, we get (µ − a)−1u is quasi-nilpotent for all

µ /∈ Ŝp(a); so it also holds for µ /∈ Sp(a) which yields a contradiction.

The next result follows from [1, Theorem 3.4.14], as we can see in the
following proof.

Lemma 2. Let a and u be elements of a semi-simple complex Banach
algebra U . If a has u-stable spectrum and Sp(a) has no interior points, then
Sp(a+ λu) = Sp(a) for all λ in C.

Proof. (⇐) Clear by Corollary 1.

(⇒) By Remark 1, ρ(a + λu) = ρ(a) for all λ in C, so the analytic mul-
tifunction λ → Sp(a + λu) is bounded, and consequently by Liouville’s the-
orem for analytic multivalued functions, (see [1, Theorem 3.4.14]), we have

̂Sp(a+ λu) = Ŝp(a), where Ŝp(x) denotes the full spectrum of x. Since Sp(a)
has no interior points, the result follows from Theorem 5 (see the proof in [1,
Theorem 3.4.13]).
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Theorem 7. Let a and u be elements of a semi-simple complex Banach
algebra U . If a has u-stable spectrum and Sp(a) has no interior points, then
Sp

(
(1− νu)−1a

)
= Sp(a) for all ν in C.

Proof. First suppose λ is non-zero, and that λ /∈ Sp(a). By Lemma 2,
we have Sp

(
λ−1a + νu

)
= Sp

(
λ−1a

)
, and by Lemma 1, u is quasi-nilpotent.

These two facts imply that 1− νu and 1− λ−1a− νu are both invertible, and
hence that

λ(1− νu)−1
(
1− λ−1a− νu

)
= λ− (1− νu)−1a

is invertible for all ν in C. Therefore, λ /∈ Sp
(
(1−νu)−1a

)
for all ν in C. Now

suppose 0 /∈ Sp(a). Then a is invertible, implying (1 − νu)−1a is invertible,
and hence by quasi-nilpotence of u, that 0 /∈ Sp

(
(1 − νu)−1a

)
for all ν in C.

We have shown that Sp
(
(1− νu)−1a

)
⊆ Sp(a) for all ν in C. Since Sp(a) has

no interior points, the result follows from Theorem 5.

We arrive at our main result which gives a symmetric spectral trace con-
dition on stable elements, extending [5, Lemma 3.12] from the semi-simple
algebra of bounded operators B(X ) on a Banach space X to the more general
situation of a semi-simple complex Banach algebra U .

Theorem 8. Let a and b two elements of a semi-simple complex unital
Banach algebra U . If a is b-stable and one of a or b is of finite-rank, then
Tr(anb) = Tr(abn) = 0 for all n ≥ 1.

Proof. First suppose that a is of finite rank. Since b is quasi-nilpotent
by Lemma 1, the function ν 7→ ((1 − νb)−1a) is entire. Moreover, Sp

(
(1 −

νb)−1a
)
= Sp(a) for all ν in C by Theorem 7. Then, taking n-th powers, the

function

ν 7−→
(
(1− νb)−1a

)n
is also entire, and

Sp
(
(1− νb)−1a

)n
= Sp(an)

for all ν in C. Clearly,

rank
((
(1− νb)−1a

)n) ≤ rank(a) ,

so

Tr
((
(1− νb)−1a

)n)
= Tr(an)



spectral additivity 171

for all ν ∈ C by Theorem 2, property (3) of Proposition 2 and Liouville’s
theorem for entire functions.

For |ν| < ||b||−1, we may expand
(
(1− νb)−1a

)−1
as a power series in ν,

(1− νb)−1a =
∑
k≥0

bkaνk.

Hence (
(1− νb)−1a

)n
=

∑
k≥0

bkaνk

n

.

The coefficient of νk in the above expansion is bka, and for n ≥ 1, the coeffi-
cient of ν is ban + aban−1 + · · · + an−1ba. But we may expand the constant
function Tr

((
(1 − νb)−1a

)n)
as a power series in ν, and the linearity of the

trace implies that for n = 1, the coefficient of νk in this expansion is Tr(bka),
and for n ≥ 1, that the coefficient of ν is

Tr
(
ban + aban−1 + · · ·+ an−1ba

)
= nTr(anb) .

Comparing the coefficients on the left and right hand side of the equation

Tr
((
(1− νb)−1a

)n)
= Tr(an)

therefore gives Tr(anb) = 0 for all n ≥ 1 and Tr(abk) = 0 for all k ≥ 1.
Now suppose that b is of finite rank. The function (1− νa)−1b is analytic,

with quasi-nilpotent values by Theorem 6, for 1
ν /∈ Ŝp(a). Taking n-th powers,

the function ν 7→
(
(1− νa)−1b

)n
is also analytic for all 1

ν /∈ Sp(a). As above,
for |ν| < ||a||−1, we may expand ((1− νa)−1b)n as a power series in ν,

(
(1− νa)−1b

)n
=

∑
k≥0

akbνk

n

.

For n = 1, the coefficient of νk in the above expansion is akb, and for n ≥ 1,
the coefficient of ν is abn + babn−1 + · · · + bn−1a. Proceeding as before, we
may expand the constant function Tr

((
(1− νa)−1b

)n)
as a power series in ν,

and linearity of the trace implies that for n = 1, the coefficient of νk in this
expansion is Tr(akb), and for n ≥ 1, that coefficient of ν is

Tr
(
abn + babn−1 + · · ·+ bn−1ab

)
= nTr(abn) .

Comparing the coefficients of the left and right hand side of the equation

Tr
((
(1− νa)−1b

)n)
= 0

hence gives Tr(akb) = 0 for all k ≥ 1, and Tr(abn) = 0 for all n ≥ 1.
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