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1. Introduction

A manifold, with some fixed foliation on it, is called a foliated manifold.
Theory of foliated manifolds is one of new fields of mathematics. It appeared
in the intersection of Differential Equations, Differential Geometry and Dif-
ferential Topology in the second part of 20th century.

In formation and development of the theory of foliations the big contribu-
tion was made by famous mathematicians such as C. Ehresmann [1], G. Reeb
[15], A. Haefliger [3], R. Langevin [8], C. Lamoureux [7].

Further development of the geometrical theory of foliations is connected
with known works of R. Hermann [4, 5], P. Molino [9], B.L. Reinhart [16], Ph.
Tondeur [17].

At present, the theory of foliations (the theory of foliated manifolds) is
intensively developing and has wide applications in many fields of science and
technique. In the theory of foliations, it is possible to get acquainted with
the latest scientific works in work Ph. Tondeur [18], where the bibliography
consisting of more than 2500 works on the theory of foliations is provided. In
work [10] applications of the theory of foliations in the qualitative theory of
optimal control are discussed.

In this paper some results of the authors on geometry of foliated mani-
folds are stated and results on geometry of Riemannian (metric) foliations are
discussed.
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At first we will give some necessary definitions and examples.
Let (M, g) be a smooth Riemannian manifold of dimension n, where g is

a Riemannian metric and 0 < k < n.

Definition 1. A family F = {Lα ⊂ M : α ∈ B} of pathwise connected
subsets M is called a k-dimensional smooth foliation if it satisfies the following
three conditions:

(F1):
∪

α∈B
Lα = M ;

(F2): for all α, β ∈ B if α ̸= β, then Lα ∩ Lβ = ∅ ;
(F3): for any point p ∈ M there is a neighborhood Up and a coordinate chart(

x1, x2, . . . , xn
)
such that if Up

∩
Lα ̸= ∅ for some α ∈ B, then pathwise

connected components of the set Up ∩ Lα are given by the equations:
xk+1 = ck+1, xk+2 = ck+2, . . . , xn = cn, where numbers ck+1, ck+2, . . . ,
cn are constant on components of pathwise connectedness.

The set Lα is called a leaf of a foliation F . In the described situation a k-
dimensional Cr-foliation is also called Cr-foliation of codimension q = n− k.

Existence of a foliation F in a manifoldM is expressed by a symbol (M,F ).
Conditions (F1), (F2) mean that M consists of mutually disjoint leaves. The
condition (F3) means that locally leaves are arranged as the parallel planes.
The neighborhood U in the definition is called a foliated neighborhood.

The simplest foliations from the point of view of geometry are the folia-
tions generated by submersions, in particular the family of level surfaces of
differentiable functions.

Definition 2. A differentiable mapping f : M → B of maximal rank,
where M,B are smooth manifolds of dimension n,m respectively, and n > m,
is called a submersion.

For submersions the following theorem holds.

Theorem 1. Let f : M → B be a submersion, where M is a smooth
manifold of dimension m, n > m. Then for each point q ∈ B the set Lq =
{p ∈ M : f (p) = q} is a manifold of dimension (n − m) and partition of M
into connected components of the fibers is k = (n−m)-dimensional foliations.

Thus, the submersion f : M → B generates a foliation F of dimension on
k = (n − m) on the manifold M , leaves of which are connected components
of fibers Lq = f−1 (q), q ∈ B.
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Numerous researches [10-14], [17] are devoted to studying of geometry and
topology of foliations generated by submersions.

Let F be a smooth foliation of dimension k on M . By L(p) denote the
leaf of the foliation F passing through a point p, TpL is a tangent space
of the leaf L(p) at the point p, H(p) is an orthogonal complement of TpL
in TpM , p ∈ M .

We get two sub-bundles TF = {TpL : p ∈ M}, H = {H (p) : p ∈ M} of
a tangent bundle TM such that TM = TF ⊕ H, where H is an orthogonal
complement of TF . In this case each vector field X ∈ V (M) can be repre-
sented in the form X = Xv +Xh, where Xv, Xh are orthogonal projections of
X on TF , H respectively.

If X ∈ V (F ) (i.e., Xh = 0), then X is called a vertical field. If X ∈ V (H)
(Xν = 0), then X is a horizontal field.

Definition 3. A submersion f : M → B is Riemannian, if the differential
of a mapping df preserves the length of horizontal vectors.

Definition 4. A foliation on a Riemannian manifold is called Riemannian
if every geodesic, orthogonal to a leaf of the foliation F remains orthogonal
to all leaves in all its points.

For the first time a Riemannian foliation was entered in work [16] and was
shown that Riemannian submersions generate Riemannian foliations.

This class of foliations plays very important role in the theory of foliations
and is substantial from the point of view of geometry. There is a large number
of works devoted to geometry of Riemannian foliations.

A Riemannian foliations with singularity were introduced by P. Molino [9],
and studied in A. Narmanov’s works [10], [14] and other authors.

2. Previous results

An important class of foliations of codimension one are the foliations gen-
erated by level surfaces of differentiable functions without critical points.

Function f : Mn → R1 on a riemannian manifold Mn, whose length
of a gradient vector is constant on each level surface (i.e., for each vertical

vector field X it holds X
(
|gradf |2

)
= 0), is called metric. For the first

time the geometry of foliations generated by surfaces of metric functions is
studied in work [17].
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The following theorem shows that metric functions are included into a
class of Riemannian submersions.

Theorem 2. Let f : M → R1 be a metric function. Then on R1 there is
a Riemannian metric such that f : M → R1 is a Riemannian submersion.

Therefore, level surfaces of metric function generate a Riemannian
foliation.

Riemannian foliations generated by metric functions are studied in works
of A.Ya. Narmanov, A.M. Bayturayev [11], A.Ya. Narmanov, G.Kh. Kaipna-
zarova [12], Ph. Tondeur [17].

We remind that by definition the gradient vectorX = gradf of the function
f given on Riemannian manifold depends not only on the function f , but also
on a Riemannian metric. The integral curve of the gradient vector field is
called the gradient line of function f .

By A.Ya. Narmanov and G.Kh. Kaipnazarova in work [12] it is shown that

if for each vertical vector field the equality X
(
|gradf |2

)
= 0 holds, then each

gradient line is the geodesic line of Riemannian manifold.

In work [12] geometry of foliations is studied generated by level surfaces
of metric functions and the whole classification appears in the next form:

Theorem 3. Let f metric function is defined inRn. Then the level surface
of function makes F surface that has one of these types of n:

1) foliations F consists of parallel hyperplanes;

2) foliations F consists of concentric hyperspheres and a point (that is the
center of spheres);

3) foliations F consists of concentric cylinders in the form Sn−k−1 × Rk

and singular foliation Rk (that occurs when sphere Sn−k−1 shrinks and
becomes a point), where k is minimal dimension of critical level surfaces
and 1 ≤ k ≤ n− 2.

In work [11] the following theorem is proved.

Theorem 4. Let M be a smooth complete and connected Riemannian
manifold of constant non-negative section curvature, f : M → R1 metric
function without critical points. Then, level surfaces of function f generate
completely geodesic foliation F on M , whose leaves are mutually isometric.
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3. Main part

Before formulating the following theorem about curvature of leaves, we
will recall the Gaussian curvature of a submanifold.

The Riemannian metric on the manifold M induces a Riemannian metric
g̃ on a leaf Lp. The canonical injection i : Lp → M is an isometric im-
mersion with respect to this metric. Connection ∇ induces a connection ∇̃
on Lp which coincides with the connection determined by the Riemannian
metric ∇̃ [6].

Let Z be a horizontal vector field. For each vertical vector field we will
define a vector field

S (X,Z) = (∇XZ)v,

where ∇ is the Levi-Civita connection defined by the Riemannian metric g.
At the fixed horizontal field we obtain a tensor field of type (1,1)

SZX = S (X,Z) .

With the help of this tensor field the bilinear form

lZ (X,Y ) = g (SZX,Y )

is defined, where g(X,Y ) is the scalar product defined by the Riemannian
metric g.

The defined tensor field SZ is called the second main tensor, and a form
lZ (X,Y ) is called the second main form with respect to a horizontal field Z.

The mapping SZ : TqF → TqF determined by the formula Xq → S (X,Z)q
is a self-conjugate endomorphism with respect to a scalar product, determined
by a Riemannian metric g̃.

If the vector field Z is a field of unit vectors, then eigenvalues of this
endomorphism are called the main curvatures of the manifold Lp at a point
q, and the corresponding eigenvectors are called the main directions. By the
main curvatures the Gaussian curvature KZ = detSZ is defined.

We will prove that level surfaces of Riemannian submersions are surfaces
of constant Gaussian curvature.

Theorem 5. Let M be a Riemannian manifold of constant non-negative
curvature, f : M → R1 a Riemannian submersion. Then each leaf of a foliation
F generated by Riemannian submersion (connected components of the level
surfaces of the function f) is a manifold of constant Gaussian curvature.
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Proof. As is known the Hessian is given by

hf (X,Y ) = lZ (X,Y ) = ⟨∇XZ, Y ⟩

where Z = gradf , ∇- the Levi-Civita connection defined by Riemannian
metric g.

The map X → hf (X) = ∇XZ (Hesse tensor) is a linear operator and is
given by a symmetric matrix A:

hf (X) = ∇XZ = AX.

We denote by χ(λ) the characteristic polynomial of the matrix A with a
free term (−1)n detA and define a new polynomial ρ(λ) by the equation

λρ(λ) = detA− (−1)nχ(λ) .

Since χ (A) = 0 we have that Aρ (A) = detA · E, where E is the identity
matrix. The elements of the matrix ρ (A) are cofactors of the matrix A. This
matrix is denoted by Hc

f .
It is well known that the Gaussian curvature of the surface is calculated

by the formula [2, p. 110]

K = detS =
1

|gradf |n+1

⟨
Hc

f (gradf) , gradf
⟩
.

To prove the theorem it suffices to show that X (K) = 0 for each vertical
vector field X at any point q of a leaf Lp.

By hypothesis of the theorem differential df preserves the length of |gradf |.
Therefore, we have

X
(
|gradf |2

)
= 0

and so

X

(
1

|gradf |n+1

)
= 0 .

Therefore we need to show that⟨
∇XHc

fZ,Z
⟩
+

⟨
Hc

fZ,∇XZ
⟩
= 0 .

We know that if X(|gradf |2) = 0 for each vertical vector field X, each
gradient line of f is a geodesic line of Riemannian manifold [12]. By definition,
the gradient line is a geodesic if and only if ∇NN = 0, where N = Z

|Z| .
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We calculate the covariant differential

∇NN =
1

|Z|
∇ZN =

1

|Z|

(
1

|Z|
∇ZZ + Z

(
1

|Z|

)
Z

)
= 0

and get ∇ZZ = λZ, where λ = −|Z|Z
(

1
|Z|

)
. This means that the gradient

vector Z is the eigenvector of matrix A.
Let X0

1 , X
0
2 , . . . , X

0
n−1, Z

0-be mutually orthogonal eigenvectors of A at the
point q ∈ Lp such that X0

1 , X
0
2 , . . . , X

0
n−1 the unit vectors, Z0 - the value of

the gradient field at a point q. Locally, they can be extended to the vector
fields X1, X2, . . . , Xn−1, Z to a neighborhood of (say U) point q so that they
formed at each point of an orthogonal basis consisting of eigenvectors. We
construct the Riemannian normal system of coordinates (x1, x2, . . . , xn) in a
neighborhood U via vectors X0

1 , X
0
2 , . . . , X

0
n−1, Z

0 [2, p. 112].
The components gij of the metric g and the connection components Γk

ij in
the normal coordinate system satisfies the conditions of [2, p. 132]:

gij(q) = δij , Γk
ij(q) = 0 .

We show that X(λ) = 0 for each vertical field X. From the equality

X (λ) = −X (|Z|)Z
(

1

|Z|

)
− |Z|X

(
Z

(
1

|Z|

))
and from the condition X(|Z|) = 0 follows equality

X

(
Z

(
1

|Z|

))
= X (Z (ϕ)) = [X,Z] (ϕ)− Z (X (ϕ)) ,

where ϕ = 1
|Z| , [X,Z]-Lie bracket of vector fields X,Z.

From the condition of the theorem follows X(ϕ) = 0. In [17] it is shown

thatX
(
|gradf |2

)
= 0 for each of the vertical vector fieldX if and only if [X,Z]

a vertical field. Therefore [X,Z] (ϕ) = 0. Thus, λ is a constant function on
the leaf L.

Now we denote by λ1, λ2, . . . , λn−1 the eigenvalues of the matrix A corre-
sponding to the eigenvectors X1, X2, . . . , Xn−1. Then in the basis X1, X2, . . . ,
Xn−1, Z matrix A has the form:

A =


λ1 0 . . . 0

0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λn
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By hypothesis of the theorem, the vector field ∇XZ is vertical field. It follows
Codazzi equations have the form [6, p. 29]

(∇XA)Y = (∇Y A)X.

From this equation we get

∇XiAXj = ∇XjAXi , ∇XiAZ = ∇ZAXi (1)

at any point of U for each vector field Xi. From first equation of (1) we take
following equality

Xi(λj)Xj + λj∇XiXj = Xj(λi)Xi + λi∇XjXi . (2)

Since ∇XiXj = Γk
ijXk = 0 at the point q by properties of normal coordi-

nate system, from (2) follows equality

Xi(λj)Xj = Xj(λi)Xi . (3)

By the linear independence X1, X2, · · · , Xn−1,we have that

Xi(λj) = 0 for i ̸= j .

From second equation of (1) we take following

Xi(λ)Z + λ∇XiZ = Z(λi)Xi + λi∇ZXi . (4)

Since
∇XiZ = ∇ZXi = 0

at the point q from the linear independence of vectors Xi, Z we have that

Xi(λ) = 0 , Z(λi) = 0 for all i .

On the other hand

∇ZAXi = Z(λi)Xi + λi∇ZXi ,

∇XiAZ = ∇ZAXi , (5)

∇XiZ = λiXi .

From (5) we get that

λ2
iXi + Z(λi)Xi = Xi(λ)Z + λλiXi . (6)
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Since Z(λi) = 0, Xi(λ) = 0 from the (6) we get

λ2
iXi = λλiXi . (7)

Since Xi is nonzero vector, from the (7) follows that λ2
i = λλi. From this

equality follows if λ = 0, then λi = 0. If λi ̸= 0 then λi = λ and X(λi) =
X(λ) = 0, Z(λ) = Z(λi) = 0 for all i. Thus, in the neighborhood U of the
point q non-zero eigenvalues of the matrix A are constant and equal λ.

Given this fact we compute X(K). We denote by m the number of zero
eigenvalues of A. If m = 0, all the eigenvalues are equal to the number λ. In
this case, by the definition of the matrix Hc

f we get that Hc
fZ = λn−1Z and

∇XHc
fZ = X

(
λn−1

)
Z + λn−1∇XZ .

As mentioned above field ∇Xgradf is a vertical vector field for each ver-
tical vector field X (the field AX is vertical). From this equalities follows⟨
∇XHc

f (gradf), gradf
⟩
= 0 at the point q.

Consider the case when m > 0. If m > 1, then Hc
f = 0. If m = 1 than

λi = 0 for some i and AXi = ∇XiZ = 0. This means that the vector field
Z is parallel along the integral curve of a vector field Xi (along i-coordinate
line). If i = n we have λ = λi = 0 for all i and Hc

f = 0.
Without loss of generality we assume that i < n. In this case vector Hc

fZ

have only one nonzero component bi and Hc
fZ = bi

∂
∂xi

. In this case we get

∇XHc
fZ = X(bi)

∂

∂xi
+ bi∇X

∂

∂xi
.

As we know that Xi = ∂
∂xi

vertical and ∇X
∂
∂xi

= 0. Thus in the case

m = 1 we have
⟨
∇XHc

f (gradf), gradf
⟩
= 0. The Theorem 5 is proved.

Example 1. Let M = R3 \{(x, y, z) : x = 0, y = 0}, f(x, y, z) = x2+y2.
Level surfaces of this submersion are manifolds of zero Gaussian curvature.

Example 2. Let M = R3 \{(0, 0, 0)}, f(x, y, z) = x2+y2+z2. Level sur-
faces of this submersion are concentric spheres, Gaussian curvature of which
is positive.
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C. R. Acad. Sci. Paris 243 (1956), 344 – 346.

[2] D. Gromoll, W. Klingenberg, W. Meyer, “Riemannsche Geometrie
im Grossen ”, Lecture Notes in Mathematics, No. 55, Springer-Verlag, Berlin-
New York, 1968.

[3] A. Haefliger, Sur les feuilletages analytiques, C. R. Acad. Sci. Paris 242
(1956), 2908 – 2910.

[4] R. Hermann, A sufficient condition that a mapping of Riemannian manifolds
be a fibre bundle, Proc. Amer. Math. Soc. 11 (1960), 236 – 242.

[5] R. Hermann, The differential geometry of foliations, II, J. Math. Mech. 11
(1962), 305 – 315.

[6] Sh. Kobayashi, K. Nomizu, “Foundations of Differential Geometry, Vol.
II ”, Interscience Publishers John Wiley & Sons, Inc., New York-London-
Sydney, 1969.

[7] C. Lamoureux, Feuilletages de codimension 1. Transversales fermées, C. R.
Acad. Sci. Paris Sér. A-B 270 (1970), A1659 –A1662.

[8] R. Langevin, A list of questions about foliations, in “Differential Topology,
Foliations, and Group Actions ”, Contemporary Math., 161, Amer. Math.
Soc., Providence, RI, 1994, 59 – 80.

[9] P. Molino, “Riemannian Foliations ”, Progress in Mathematics, 73,
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