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Abstract : Heinrich, Mankiewicz, Sims, and Yost proved that every separable subspace of a
Banach space Y is contained in a separable ideal in Y . We improve this result by replacing
the term “ideal” with the term “almost isometric ideal”. As a consequence of this we obtain,
in terms of subspaces, characterizations of diameter 2 properties, the Daugavet property
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1. Introduction

Let Y be a Banach space and X a subspace of Y . Recall that X is an ideal
in Y if X⊥, the annihilator of X, is the kernel of a contractive projection on
the dual Y ∗ of Y . A linear operator φ from X∗ to Y ∗ is called a Hahn-Banach
extension operator if φ(x∗)(x) = x∗(x) and ∥φ(x∗)∥ = ∥x∗∥ for all x ∈ X
and x∗ ∈ X∗. We denote by HB(X,Y ) the set of all Hahn-Banach extension
operators from X∗ to Y ∗. We say that X is locally 1-complemented in Y if for
every ε > 0 and every finite dimensional subspace E of Y there exists a linear
operator T : E → X such that Te = e for all e ∈ E ∩X and ∥T∥ ≤ 1+ ε. The
fact that a Banach space is locally 1-complemented in its bidual is commonly
referred to as the Principle of Local Reflexivity (PLR).

The following theorem is a collection of known results.

Theorem 1.1. Let X be a subspace of a Banach space Y . The following
statements are equivalent.

(a) X is an ideal in Y .

(b) There exists φ ∈ HB(X,Y ).
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(c) Y is locally 1-complemented in X.

(d) There exists φ ∈ HB(X,Y ) such that for every ε > 0, every finite dimen-
sional subspace E of Y and every finite dimensional subspace F of X∗

there exists a linear operator T : E → X such that

(d1) Te = e for all e ∈ E ∩X,

(d2) ∥Te∥ ≤ (1 + ε)∥e∥ for every e ∈ E, and

(d3) φf(e) = f(Te) for every e ∈ E, f ∈ F .

Equivalence of (a), (b), and (c) was independently discovered by Fakhoury
[10] and Kalton [21]. Later Oja and Põldvere [28] showed that these in turn
are equivalent to statement (d).

The following result appears for the first time in [31, Proposition 2] by
Sims and Yost. Earlier Heinrich and Mankiewicz had proved in [16, Proposi-
tion 3.4] a version of Theorem 1.2 for arbitrary subspaces X of Y (but which
did not say anything about subspaces in the dual) using some of the deeper
results in Model Theory. Sims and Yost’s proof, however, does not use Model
Theory, but rests instead upon a finite dimensional lemma and a compactness
argument due to Lindenstrauss [25]. Using the latter results Sims and Yost
gave in [32, Theorem] also a proof of [16, Proposition 3.4].

Theorem 1.2. Let Y be a Banach space, X a separable subspace of Y ,
and W a separable subspace of Y ∗. Then there exists a separable subspace Z
of Y containing X and φ ∈ HB(Z, Y ) such that φ(Z∗) ⊃ W .

In the language of ideals Theorem 1.2 says that every separable subspace
of a Banach space Y is contained in a separable ideal in Y . Thus every non-
separable Banach space contains an infinite number of ideals. Looked upon
in this way ideals seems to occur quite frequently.

The following stronger form of an ideal was introduced and studied in [5].

Definition 1.3. A subspace X of a Banach space Y is said to be an
almost isometric ideal (ai-ideal) if for every ε > 0 and every finite dimensional
subspace E of Y , there exists a linear operator T : E → X which satisfies
(d1) in Theorem 1.1 as well as

(d2’) (1− ε)∥e∥ ≤ ∥Te∥ ≤ (1 + ε)∥e∥ for e ∈ E.

In [5] the following was shown.
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Theorem 1.4. Let X be a subspace of a Banach space Y . The following
statements are equivalent.

(a) X is an ai-ideal in Y .

(b) There exists φ ∈ HB(X,Y ) such that for every ε > 0, every finite dimen-
sional subspace E of Y , and every finite dimensional subspace F of X∗

there exists a linear operator T : E → X which satisfies (d1) and (d3)
in Theorem 1.1 and (d2’) in Definition 1.3.

The φ in Theorem 1.4 is called an almost isometric Hahn-Banach extension
operator associated with the ai-ideal X in Y . We denote by HBai(X,Y ) the
set of such operators.

The main result of this paper is an improvement of Theorem 1.2 in which
the Hahn-Banach extension operator is replaced by an almost isometric one.

Theorem 1.5. (Main Theorem) Let Y be a Banach space, X a separable
subspace of Y , and W a separable subspace of Y ∗. Then there exists a sepa-
rable subspace Z of Y containingX and φ ∈ HBai(Z, Y ) such that φ(Z∗) ⊃ W .

So every separable subspace of a Banach space is contained in a separable
ai-ideal. Thus ai-ideals seems to occur just as frequently as ideals. Never-
theless, being an ai-ideal is strictly stronger than being an ideal. This can
e.g. be seen from Theorem 1.6 below and the two paragraphs that follow.
Theorem 1.6 is a combination of [10, Proposition 3.4] and [5, Theorem 4.3].

Theorem 1.6. For a Banach space X the following statements are equiv-
alent:

(i) X is a Lindenstrauss (resp. Gurarĭı) space.

(ii) X is an ideal (resp. ai-ideal) in every superspace.

Recall that a Lindenstrauss space is a Banach space with a dual isometric
to L1(µ) for some positive measure µ. A Banach space X is called a Gurarĭı
space if it has the property that whenever ε > 0, E is a finite-dimensional
Banach space, TE : E → X is isometric and F is a finite-dimensional Banach
space with E ⊂ F , then there exists a linear operator TF : F → X such that

(i) TF (f) = TE(f) for all f ∈ E, and

(ii) (1− ε)∥f∥ ≤ ∥TF f∥ ≤ (1 + ε)∥f∥ for all f ∈ F .
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The class of Gurarĭı spaces is a subclass of the class of Lindenstrauss spaces
[22]. In [15] Gurarĭı showed that this subclass is non-empty as he constructed
the first separable Gurarĭı space. Later Lusky [27] proved that all separable
Gurarĭı spaces are in fact linearly isometric. Also non-separable Gurarĭı spaces
exist (see e.g. [11]). But, no Gurarĭı space is a dual space as e.g. the unit
ball of such a space contains no extreme points [3, Proposition 3.3]. The
bidual of a Lindenstrauss space is, however, again a Lindenstrauss space [24].
Thus we see that the classes of separable and non-separable Gurarĭı spaces
are non-empty proper subclasses of respectively the classes of separable and
non-separable Lindenstrauss spaces.

Let us now relate the notion of an ai-ideal to the well established notion of a
strict ideal (see e.g. [13], [23], [29], and [1]). We say thatX is a strict ideal in Y
ifX is an ideal in Y with an associated φ ∈ HB(X,Y ) whose range is 1-norming
for Y , i.e. for every y ∈ Y we have ∥y∥ = sup{y∗(y) : y∗ ∈ φ(X∗)∩SY ∗} where
SY ∗ is the unit sphere of Y ∗. Let HBs(X,Y ) = {φ ∈ HB(X,Y ) : φ is strict}.
Using the PLR it is straightforward to show that every strict ideal is an ai-
ideal. However, the converse it not true (see e.g. [5, Example 1] and [3,
Remark 3.2]). We can sum up the last paragraphs by

HB(X,Y ) ⊃ HBai(X,Y ) ⊃ HBs(X,Y ),

where the containment may be proper.

The paper is organized as follows: In Section 2 we give a proof of The-
orem 1.5. In Section 3 we use this theorem to obtain characterizations of
diameter 2 properties, the Daugavet property as well as the properties of
being an almost square space and an octahedral space.

We will consider real Banach spaces only (though many of the results are
true in the complex case as well). The notation used is mostly standard and
is, if considered necessary, explained as the text proceeds.

2. The main theorem

The proof of Theorem 1.5 depends on Lemma 2.1 below. This lemma is a
strengthening of [31, Lemma 1]. (A detailed proof of this lemma along with a
proof of [31, Proposition 2] are given in [19, III.Lemma 4.2 and III.Lemma 4.3].
For this reason, it will be referred to [19, III.Lemma 4.2 and III.Lemma 4.3]
rather than [31, Lemma 1 and Proposition 2] below.) The roots of [19,
III.Lemma 4.2] goes back to [24]. Lemma 2.1 differs from [19, III. Lemma 4.2]
simply by the fact that the partial conclusion
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ii) ∥Tx∥ ≤ (1 + ε)∥x∥ for every x ∈ E,

in [19, III.Lemma 4.2] is replaced by the stronger partial conclusion ii’) in
Lemma 2.1. The proof of Lemma 2.1 is interestingly enough already contained
in the proof of [19, III.Lemma 4.2]. This is perhaps not so easy to spot at first
glance. So to make this clearer, we present a complete proof here.

Lemma 2.1. Let Y be a Banach space, B a finite dimensional subspace of
Y , k ∈ N, ε > 0, and C a finite subset in Y ∗. Then there is a finite dimensional
subspace Z containing B such that for every subspace E of Y containing B
and satisfying dimE/B ≤ k one can find a linear operator T : E → Z such
that

i) Ty = y for every y ∈ B,

ii’) (1− ε)∥y∥ ≤ ∥Ty∥ ≤ (1 + ε)∥y∥ for every y ∈ E,

iii) |f(Ty)− f(y)| ≤ ε∥y∥ for every y ∈ E and f ∈ C.

Proof. Choose δ > 0 such that δ < ε and (1 + δ)−1 > 1 − ε. Let C =
{f1, . . . , fm} ⊂ Y ∗ and P a projection on Y onto B. Put U = kerP , the
kernel of P . Then we can write Y = B ⊕ U . Choose M so large that

M >
5k∥I − P∥

δ
and

M + 1

M − 1
< 1 + δ.

Let (bρ)ρ≤r and (λσ)σ≤s be finite 1/M -nets for {b ∈ B : ∥b∥ ≤ M} and Sℓ1(k)

respectively (ℓ1(k) denotes the k-dimensional ℓ1 space). Let BU be the unit
ball of U and define ϕ : (BU )

k → Rrs × Rmk = Rrs+mk, by

ϕ(u1, . . . , uk) =

((∥∥∥bρ + k∑
κ=1

λκ,σuκ

∥∥∥)
ρ≤r,σ≤s

,
(
fµ(uκ)

)
µ≤m,κ≤k

)
.

Since ϕ(BU )
k is totally bounded, we can find (uν)ν≤n ⊂ (BU )

k such that
(ϕuν)ν≤n is a finite 1/M -net for ϕ(BU )

k where we may take any norm on
Rrs+mk for which the coefficient functionals have norm ≤ 1. Put

Z = B ⊕ span{uκ,ν : κ ≤ k, ν ≤ n}.

Now, given a subspace E ⊃ B with dimE/B = k, there are u1, . . . , uk ∈ U
such that E = B ⊕ span{uκ : κ ≤ k}. By Auerbach’s lemma we can choose
u = (u1, . . . , uk) such that

∥uκ∥ = 1, 1 ≤ κ ≤ k and
∥∥∥ k∑
κ=1

λκuκ
∥∥ ≥ 1

k

k∑
κ=1

|λκ| for all (λκ) ∈ Rk. (1)
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Indeed, find u∗κ ∈ Sspan{uκ:1,...k}∗ with u∗κ(uj) = 0 if κ ̸= j and sign(λκ)

otherwise. Then the norm of u∗ = 1/k
∑k

κ=1 u
∗
κ is ≤ 1 and we have

∥∥∥ k∑
κ=1

λκuκ

∥∥∥ ≥ u∗
( k∑

κ=1

λκuκ

)
=

1

k

k∑
κ=1

|λκ|.

This means that there is ν ≤ n such that

∥ϕu− ϕuν∥ <
1

M
,

i.e. with λu =
∑k

κ=1 λκuκ where λ = (λ1, . . . , λk) ∈ Rk we have∣∣∣∣∥bρ + λσu∥ − ∥bρ + λσuν∥
∣∣∣∣ < 1

M
for all ρ ≤ r, σ ≤ s, (2)

and ∣∣∣∣fµ(uκ)− fµ(uκ,ν)

∣∣∣∣ < 1

M
for all µ ≤ m,κ ≤ k. (3)

Now, define T : E → Z by

T (b+ λu) = b+ λuν .

Clearly T is the identity on B. To show (1 − ε)∥y∥ ≤ ∥Ty∥ ≤ (1 + ε)∥y∥ for
all y ∈ E, it suffices to prove

(1− ε)∥b+ λu∥ ≤ ∥b+ λuν∥ ≤ (1 + ε)∥b+ λu∥ for ∥λ∥ℓ1(k) = 1. (4)

To this end assume first ∥b∥ ≤ M . Then ∥b − bρ∥ < 1
M for some ρ and

∥λ− λσ∥ < 1
M for some σ. Thus

∥b+ λuν∥ ≤ ∥bp + λσuν∥+ ∥b− bσ∥+ ∥λuν − λσuν∥ < ∥bp + λσuν∥+
2

M
(2)
< ∥bρ + λσu∥+

3

M
≤ ∥b+ λu∥+ ∥bρ − b∥+ ∥λσu− λu∥+ 3

M

< ∥b+ λu∥+ 5

M
.

Similarly we also get ∥b+ λu∥ < ∥b+ λuν∥+ 5
M , so we have

∥b+ λu∥ − 5

M
< ∥b+ λuν∥ < ∥b+ λu∥+ 5

M
.
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Also

∥b+ λu∥ ≥ 1

∥I − P∥
∥(I − P )(b+ λu)∥ =

1

∥I − P∥

∥∥∥ k∑
κ=1

λκuκ

∥∥∥
(1)

≥ 1

k∥I − P∥

k∑
κ=1

|λκ| =
1

k∥I − P∥
>

5

δM
,

so ε∥b+ λu∥ ≥ 5
M and thus (4) holds for ∥b∥ ≤ M .

For ∥b∥ > M we have

∥b∥ − 1 ≤ ∥b+ λuν∥ ≤ ∥b∥+ 1 and ∥b∥ − 1 ≤ ∥b+ λu∥ ≤ ∥b∥+ 1,

so both

∥b+ λu∥
∥b+ λuν∥

and
∥b+ λuν∥
∥b+ λu∥

are ≤ ∥b∥+ 1

∥b∥ − 1
<

M + 1

M − 1
< 1 + δ,

as y → y+1
y−1 is a positive and decreasing function for y > 1. Thus (4) holds

also for ∥b∥ > M .
Finally for any y = b+

∑k
κ=1 λκuκ ∈ E we have

|fµ(y)− fµ(Ty)| =
∣∣∣∣fµ( k∑

κ=1

λκ(uκ − uκ,ν)

)∣∣∣∣ ≤ k∑
κ=1

|λκ||fµ(uκ − uκ,ν)|

(3)

≤ 1

M

k∑
κ=1

|λκ|
(1)

≤ k

M

∥∥∥ k∑
κ=1

λκuκ

∥∥∥
≤ k∥I − P∥

M
∥y∥ <

ε

5
∥y∥.

By the proof of [5, Theorem 1.4] the following holds.

Lemma 2.2. Let X be an ideal in Y and let φ ∈ HB(X,Y ). Then the
following statements are equivalent.

(a) φ ∈ HBai(X,Y ).

(b) For every δ, ε > 0, for every finite dimensional subspace E of Y , and
every finite dimensional subspace F of X∗ there exists a linear operator
T : E → X which satisfies
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(d1’) ∥Te− e∥ ≤ ε∥e∥ for every e ∈ E ∩X,

(d2’) in Definition 1.3, and

(d3’) |φf(e)− f(Te)| < δ∥e∥ · ∥f∥ for every e ∈ E, f ∈ F .

Along with Lemma 2.1 we will use Lemma 2.2 to prove our Main Theorem.

Proof of Theorem 1.5. The first part of the proof is identical to that of [19,
III.Lemma 4.3] except at the crucial point where we use Lemma 2.1 in place
of [19, III.Lemma 4.2]. The reward for this is that we are able to prove the
existence of a Hahn-Banach extension operator φ for which statement (b) in
Lemma 2.2 holds.

Let (xn) be a sequence dense in X and (fn) a sequence dense in W .
Starting with M1 = {0} we inductively define subspaces Mn as follows: Put
Bn = span(Mn, xn), Cn = {f1, . . . , fn}, and let Mn+1 be the subspace Z given
by Lemma 2.1 when B = Bn, k = n, ε = 1

n , and C = Cn. Without loss of
generality assume dimMn+1/Bn ≥ n+1. Clearly M = ∪Mn is separable and
contains X. For n ∈ N define

In = {E ⊂ Y : Bn ⊂ E, dimE/Bn ≤ n}

and put
I = ∪In.

Since

E ∈ In, F ∈ Im ⇒ E + F +BdimE+dimF ∈ IdimE+dimF , (5)

we have that I is a directed set. Moreover, it is clear that every finite dimen-
sional subspace F of Y is contained in some E ∈ I. Just take E = F +BdimF .
Then E ∈ IdimF .

Note that the condition dimMn+1/Bn ≥ n + 1 implies dimBn+1/Bn ≥
n + 1. This easily gives that for each E ∈ I there is a unique n ∈ N such
that E ∈ In. So by Lemma 2.1 there exists a linear operator TE : E →
Mn+1 ⊂ M such that TE |Bn = IBn , (1 − 1

n)∥y∥ ≤ ∥TEy∥ ≤ (1 + 1
n)∥y∥, and

|fi(TEy) − fi(y)| < 1
n∥y∥ · ∥fi∥ for every y ∈ E and 1 ≤ i ≤ n. Extend

TE (nonlinearly) to Y by setting SE(y) = TE(y) if y ∈ E and SE(y) = 0
otherwise. Since ∥SE(y)∥ ≤ 2∥y∥ and regarding SE(y) as an element in M∗∗

we can consider
(SE)E∈I ⊂ Πy∈Y BM∗∗(0, 2∥y∥).

By Tychonoff’s compactness theorem the net (SE)E∈I has a convergent subnet
(SEF

)F∈J in the product weak∗ topology with limit S say. This means that
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for every finite number of points (yj)j≤K ⊂ Y we have SEyj → Syj with
respect to the weak∗ topology on M∗∗. Using this it is easy to see that the
mapping S : Y → M∗∗ is linear, of norm 1, and the identity on M . Now, if
we define φ : M∗ → Y ∗ by

φm∗(y) = m∗(Sy),

it is straightforward to check that φ ∈ HB(M,Y ) with φ(M∗) ⊃ W .
Finally we check that condition (b) in Lemma 2.2 holds for φ. To this

end let H be a finite dimensional subspace of Y and G a finite dimensional
subspace of M∗. Let (gl)

m
l=1 be a δ-net for SG and choose n so big that SBn

contains a δ-net (hp)
q
p=1 for SH∩M where (hp)

r
p=1, r ≥ q, is a δ-net for SH .

Then choose H ′ ∈ J with EH′ ⊃ span(H,Bn) such that the linear operator
TE′

H
: EH′ → M satisfies |φgl(hp) − gl(TE′

H
hp)| < δ for every l ≤ m, p ≤ r.

Note that TE′
H
|BN

= IBN
and (1− 1

N )∥h∥ ≤ ∥TEH′h∥ ≤ (1 + 1
N )∥h∥ for every

h ∈ EH′ where N > n is the unique number such that EH′ ∈ IN . Now, for
h ∈ SH∩M we can find hp′ ∈ (hp)

q
p=1 such that ∥h− hp′∥ < δ. Thus we get

∥TEH′h− h∥ ≤ ∥TEH′h− TEH′hp′∥+ ∥TEH′hp′ − hp′∥+ ∥hp′ − h∥
≤ (2 + 1/N)δ.

For h ∈ SH , g ∈ SG find hp′′ ∈ (hp)
r
p=1 and gl′ ∈ (gl)

m
l=1 with ∥h−hp′′∥ < δ

and ∥g − gl′∥ < δ. We get

|φg(h)− g(TEH′h)| ≤ |φg(h)− φgl′(h)|+ |φgl′(h)− φgl′(hp′′ )|
+ |φgl′(hp′′ )− gl′(TEH′hp′′ )|
+ |gl′(TEH′hp′′ )− gl′(TEH′h)|
+ |gl′(TEH′h)− g(TEH′h)|

≤ ∥g − gl′∥+ ∥h− hp′′∥+ δ

+ ∥TEH′∥(∥hp′′ − h∥+ ∥gl′ − g∥)
≤ δ(5 + 2/N).

Now, as δ can be chosen arbitrary small, the operator TEH′ restricted to H
will do the work.

Remark 2.3. Note that Theorem 1.5 can by transfinite induction, just as
[19, III.Lemma 4.3], be extended to a non-separable version similar to [19,
III.Lemma 4.4] but with an almost isometric Hahn-Banach extension operator
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in place of a Hahn-Banach extension operator. The proof is like that of [19,
III.Lemma 4.4], but uses Theorem 1.5 instead of [19, III.Lemma 4.3], and with
a final part similar to the last part of the proof of Theorem 1.5.

As pointed out in Section 1 examples of ideals which are not ai-ideals are
plentiful. Similarly examples of ai-ideals which are not strict ideals are also
plentiful. Indeed, take any non-separable space Y for which Y ∗ contains no
proper 1-norming subspace (e.g. the case for spaces being M-ideals in their
biduals [14] or more generally for strict u-ideals in their biduals [13]). Then
for every separable subspace X of Y there exists a separable ai-ideal Z in
Y containing X. This ai-ideal cannot be strict. Moreover, this reasoning
actually shows that one cannot extend the main theorem replacing “ai-ideal”
with “strict ideal”.

3. Characterizations in terms of subspaces

Let Y be a Banach space with unit ball BY . By a slice of BY we mean a
set S(y∗, ε) = {y ∈ BY : y∗(y) > 1− ε} where y∗ is in the unit sphere SY ∗ of
Y ∗ and ε > 0. A finite convex combination of slices of BY is a set of the form

S =

n∑
i=1

λiS(y
∗
i , εi)

where λi ≥ 0,
∑n

i=1 λi = 1, y∗i ∈ SY ∗ , and εi > 0 for i = 1, 2, . . . , n.
The relations between the following three successively stronger properties

were investigated in [4]:

Definition 3.1. A Banach space Y has the

(i) local diameter 2 property (LD2P) if every slice of BY has diameter 2.

(ii) diameter 2 property (D2P) if every non-empty relatively weakly open
subset in BY has diameter 2.

(iii) strong diameter 2 property (SD2P) if every finite convex combination
of slices of BY has diameter 2.

From [9, Theorem 2.4] it is known that LD2P ̸⇒ D2P and from [17, The-
orem 1] or [6, Theorem 3.2] that D2P ̸⇒ SD2P.

Using Theorem 1.5 we obtain in terms of subspaces characterizations of
the mentioned diameter 2 properties in the following way. (Recall from [5,
p. 404] that diameter 2 properties do not in general pass to ideals.)
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Proposition 3.2. Let Y be a Banach space. Then Y has the SD2P (resp.
the D2P, LD2P) if and only if every separable ai-ideal in Y does.

Proof. Necessity was established in [5, Propositions 3.2, 3.3 and Corol-
lary 3.4] where it was proved that every ai-ideal in Y has the SD2P (resp. the
D2P, LD2P) whenever Y has.

First let us prove the sufficiency for the SD2P. To this end let εk > 0
for k = 1, . . . , n and S =

∑n
k=1 λkSk a finite convex combination of slices

Sk = {y ∈ BY : y∗k(y) > 1 − εk} of the unit ball of Y . By Theorem 1.5
find a separable ai-ideal X in Y such that span(y∗k)

n
k=1 ⊂ φ(X∗) where φ ∈

HBai(X,Y ). For k = 1, . . . , n find x∗i ∈ SX∗ such that y∗k = φ(x∗k). Define the
slices S′

k = {x ∈ BX : x∗k(x) > 1 − εk} = {x ∈ BX : φx∗k(x) > 1 − εk} and
note that S′

k ⊂ Sk. Now the convex combination of slices S′ =
∑n

k=1 λkS
′
k has

diameter 2 by assumption. As S′ ⊂ S, we get that S has diameter 2 as well.

For the LD2P the result follows by taking k = 1 in the argument above.

For the D2P property let V be a relatively weakly open subset in BY .
Find y0 ∈ V and y∗i ∈ Y ∗ such that Vε = {y ∈ BY : |y∗i (y − y0)| < ε, i =
1, . . . , n} ⊂ V . By Theorem 1.5 find a separable ai-idealX in Y which contains
y0 and such that span(y∗k)

n
k=1 ⊂ φ(X∗) where φ ∈ HBai(X,Y ). Then a similar

argument as above will finish the proof.

Recall that a Banach space Y has the Daugavet property if for every rank
one operator T : Y → Y the equation ∥I + T∥ = 1 + ∥T∥ holds where I
is the identity operator on Y . One can show that the Daugavet property
is equivalent to the following statement (see [30]): For every ε > 0, every
y∗0 ∈ SY ∗ , and every y0 ∈ SY there exists a point y in the slice S(y∗0, ε0) such
that ∥y + y0∥ ≥ 2− ε.

Using Theorem 1.5 we get a similar characterization of the Daugavet prop-
erty as for the diameter 2 properties.

Proposition 3.3. A Banach space Y has the Daugavet property if and
only if every separable ai-ideal in Y does.

Proof. That the Daugavet property is inherited by ai-ideals is proved in
[5, Proposition 3.8]. Let ε > 0 and choose positive δ < ε such that (1 −
δ)2 > 1 − ε. Let y∗0 ∈ SY ∗ and y0 ∈ SY . We must show that the slice
S(y∗0, ε) = {y ∈ BY : y∗0(y) > 1−ε}, contains y such that ∥y0+y∥ > 2−ε. To
this end, choose y1 ∈ S(y∗0, δ) and find a separable ai-ideal Z which contains
span{y0, y1}. By construction the slice S(y∗0|Z/∥y∗0|Z∥, δ) of BZ is non-empty
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and by assumption there exists y ∈ S(y∗0|Z/∥y∗0|Z∥, δ) with ∥y0 + y∥ > 2− δ.
Since y∗0(y) = ∥y∗0|Z∥ y∗0|Z(y)/∥y∗0|Z∥ > ∥y∗0|Z∥(1− δ) > (1− δ)(1− δ) > 1− ε,
we are done.

In [2] the notion of an almost square Banach space was introduced and
studied.

Definition 3.4. A Banach space Y is said to be almost square (ASQ) if
for every ε > 0 and every finite set (yn)

N
n=1 ⊂ SY , there exists y ∈ SY such

that

∥yn − y∥ ≤ 1 + ε for every 1 ≤ n ≤ N.

The notion of an ASQ space is in some sense, but not quite, dual to the well
established notion of an octahedral space (see Definition 3.8 and the paragraph
that follows) introduced by Godefroy in [12]. We will discuss octahedral spaces
briefly below.

Among the examples of ASQ spaces we find the much studied class of
(non-reflexive) M-embedded spaces [2, Corollary 4.3], i.e. spaces Y of the form
Y ∗∗∗ = Y ∗⊕1 Y

⊥ (cf. [19] for the theory of such spaces). It is not hard to see
from Theorem 3.5 below that ASQ spaces contain copies of c0. ASQ spaces
also possess the SD2P (see [2, Proposition 2.5] and [18, Theorem 2.4]), but not
all spaces with the SD2P are ASQ. Take e.g. C[0, 1] which is Lindenstrauss
and thus has the SD2P [5, Proposition 4.6]. Moreover, if we let y1 to be the
constant one function and y2 = −y1 one easily sees that C[0, 1] fails to be
ASQ.

The following characterization of ASQ spaces was obtained in [2, Theo-
rem 2.4].

Theorem 3.5. Let Y be a Banach space. If Y is ASQ then for every
finite dimensional subspace E ⊂ Y and ε > 0 there exists y ∈ SY such that

(1− ε)max(∥x∥, |λ|) ≤ ∥x+ λy∥ ≤ (1 + ε)max(∥x∥, |λ|) (6)

for all λ ∈ R and all x ∈ E.

We will use this result and Theorem 1.5 to obtain characterizations of an
ASQ space in terms of its subspaces.
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Theorem 3.6. Let Y be a Banach space. Then the following statements
are equivalent.

(a) Y is ASQ.

(b) Every separable ai-ideal in Y is ASQ.

(c) Every subspace X of Y for which Y/X does not contain a copy of c0 is
ASQ.

(d) Every subspace of finite codimension in Y is ASQ.

Proof. (a) ⇒ (b). This is proved in [2, Lemma 4.1].

(b) ⇒ (a). Let ε > 0 and (yn)
N
n=1 ⊂ SY , and find by Theorem 1.5 a

separable ai-ideal Z in Y containing (yn)
N
n=1. As Z is ASQ there exists z ∈ SZ

such that ∥yn − z∥ ≤ 1 + ε and we are done.

(c) ⇒ (d) is trivial and (d) ⇒ (a) is clear as every finite set of points is
contained in a subspace of finite codimension in Y .

(a)⇒ (c). Let (yn)
N
n=1 ⊂ SY , E = span(yn)

N
n=1, and ε, δ > 0 with 1+δ

1−δ+δ <
1 + ε. Choose a sequence (δk)

∞
k=0 of positive reals such that (δk) ↓ 0 and

Π∞
k=0(1− δk) > 1− δ and Π∞

k=0(1 + δk) < 1 + δ. (7)

Using Theorem 3.5 we can find a sequence (zk) ⊂ SY such that for every
y ∈ span(E ∪ {z1, . . . , zk}) and every λ ∈ R we have

(1− δk)max(∥y∥, |λ|) ≤ ∥y + λzk+1∥ ≤ (1 + δk)max(∥y∥, |λ|). (8)

Now, if z =
∑K

k=1 λkzk we get from (7) and (8) that

(1− δ)max
{
∥y∥, |λk|Kk=1

}
< ∥y + z∥
< (1 + δ)max

{
∥y∥, |λk|Kk=1

} (9)

for every y ∈ E. It is clear that the space span(zk)
∞
k=1 is isomorphic to c0. As

Y/X does not contain a copy of c0, the quotient map π : Y → Y/X fails to be
bounded below on span(zk)

∞
k=1. From this it follows that there exists a linear

combination
∑K1

k=1 λkzk whose norm is 1 and with ∥π(
∑K1

k=1 λkzk)∥ ≤ δ/4.

Thus there is f ∈ X with ∥f −
∑K1

k=1 λkzk∥ ≤ δ/2. Putting g = f/∥f∥ we get
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∥g −
∑K1

k=1 λkzk∥ ≤ δ. Hence using (9) we get for n = 1, . . . , N

∥yn − g∥ ≤
∥∥∥yn +

K1∑
k=1

λkzk

∥∥∥+ ∥∥∥g − K1∑
k=1

λkzk

∥∥∥
< (1 + δ)max

{
(∥yn∥, |λk|K1

k=1

}
+ δ

≤ 1 + δ

1− δ
+ δ < 1 + ε,

which is what we need.

Remark 3.7. From Theorem 1.5 and Theorem 3.6 (a) ⇒ (b) we get that
every separable subspace of an ASQ space Y is contained in a separable sub-
space Z in Y which is both ASQ and ai-ideal in Y . This improves [2, Propo-
sition 6.5] which says only that Z can be taken to be ASQ.

Let us end the paper with a result similar to Theorem 3.6 for octahedral
spaces.

Definition 3.8. A Banach space Y is said to be octahedral if for every
ε > 0 and every finite set (yn)

N
n=1 ⊂ SY , there exists y ∈ SY such that

∥yn − y∥ ≥ 2− ε for every 1 ≤ n ≤ N.

An easy consequence of the PLR is that spaces Y of the form Y ∗∗ = Y ⊕1X
where X is a subspace of Y ∗∗, i.e. the L-embedded spaces (cf. [19] for the
theory of such spaces) are octahedral. It is not so hard to see that octahedral
spaces contain ℓ1 [12]. Quite recently octahedral spaces were studied in [8]
and [18]. In [18, Theorem 3.3] it was proved that a space has the SD2P if and
only if its dual is octahedral . Characterizations of the D2P and the LD2P
in terms of weaker forms of octahedrality in the dual were also established in
this paper (see [18, Theorems 2.3 and 2.7]).

In [20] it was proved that spaces with the almost Daugavet property are
octahedral and that in the separable case the two properties are equivalent.
Recall that a Banach space is said to be an almost Daugavet space if there
exists a 1-norming subspace X of Y ∗ such that for every y∗0 ∈ SX , every
y0 ∈ SY , and every ε > 0 there exists a point y in the slice S(y∗0, ε) such that
∥y + y0∥ ≥ 2− ε.

Lücking in [26, Theorem 2.5] proved that each separable almost Daugavet
space satisfies statement (c) in Theorem 3.9 below. For non-separable spaces
it is as far as the author knows unknown whether octahedrality implies almost
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Daugavet. We obtain, in terms of subspaces, the following characterization of
octahedral spaces.

Theorem 3.9. Let Y be a Banach space. Then the following statements
are equivalent.

(a) Y is octahedral.

(b) Every separable ai-ideal in Y is octahedral.

(c) Every subspace X of Y for which Y/X does not contain a copy of ℓ1 is
octahedral.

(d) Every subspace of finite codimension in Y is octahedral.

The proof of this result follows along the same lines as the proof The-
orem 3.6 using [18, Proposition 2.4] instead of Theorem 3.5 and otherwise
adjusting to the ℓ1 setting. Therefore the proof will be omitted. Theorem 3.9
should be compared with [7, Proposition 2.2 and Theorem 2.6].
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