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universidad de extremadura

EXTRACTA MATHEMATICAE
Article in press

Available online September 29, 2025

Algebraic realization of chain maps in differential graded
algebras over a principal ideal domain

M. Benkhalifa

Department of Mathematics, College of Sciences, University of Sharjah, UAE

mbenkhalifa@sharjah.ac.ae

Received June 26, 2025 Presented by A. Cegarra
Accepted September 2, 2025

Abstract : Let R be a principal ideal domain, and let (T (V ), ∂) and (T (W ), δ) be two free differential

graded R-algebras. Let (V, d) and (W,d′) denote the chain complexes of the indecomposables of
(T (V ), ∂) and (T (W ), δ), respectively. Given a chain map ξ∗ : (V, d)→ (W,d′), this paper addresses

the problem of determining whether there exists a DGA-map α : (T (V ), ∂) → (T (W ), δ) such that
H∗(α) = H∗(ξ∗).
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1. Introduction

Let R be a principal ideal domain (PID), and let (T (V ), ∂) and (T (W ), δ)
be two free differential graded R-algebras (DGAs for short), with V0 = W0 =
0. Let (V, d) and (W,d′) denote the chain complexes of the indecomposables
of (T (V ), ∂) and (T (W ), δ), respectively. This paper addresses the following
realization problem:

Problem. Find the necessary and sufficient conditions for a given chain
map ξ∗ : (V, d) → (W,d′) to admit an algebraic realization. That is, deter-
mine when there exists a DGA-map α : (T (V ), ∂) → (T (W ), δ) such that
H∗(α) = H∗(ξ∗).

Our approach to this problem is inductive. Assume that a DGA-map
ω : (T (V≤n), ∂)→ (T (W≤n), δ) has already been constructed, satisfying ω̃≤n =
ξ≤n, where ω̃≤n : (V≤n, d)→ (W≤n, d

′) is the chain map induced by α. Draw-
ing inspiration from the methods outlined in [2, 3, 4, 5], we proceed to extend ω
by associating two elements with the DGAs (T (V ), ∂) and (T (W ), δ), namely:

[θT (V )] ∈ Ext(Hn(T (V )),Λn(T (V ))), [θT (W )] ∈ Ext(Hn(T (W )),Λn(T (W ))),
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where the R-modules Λn(T (V )) and Λn(T (W )) are given by the relation (2.4).
We refer to these as the n-characteristic extensions of (T (V ), ∂) and (T (W ), δ),
respectively. These extensions support two key concepts introduced in this pa-
per: an n-coherent morphism and a coherent morphism, both of which involve
a chain map ξ∗ : (V, d) → (W,d′), subject to certain algebraic conditions (see
Definitions 3.1 and 4.3).

The main result of this paper is summarized in the following two theorems.

Theorem 1.1. Let (T (V ), ∂) and (T (W ), δ) be two DGAs. If

ξ∗ : (V, d) −→ (W,d′)

is an n-coherent morphism, there exists a DGA-map

χ : (T (V≤n+1), ∂) −→ (T (W≤n+1), δ)

such that χ̃≤n+1 = ξ≤n+1, where χ̃≤n+1 : (V≤n+1, d) → (W≤n+1, d
′) is the

chain map induced by χ.

Theorem 1.2. Let (T (V ), ∂) and (T (W ), δ) be two DGAs, and let

ξ∗ : (V, d) −→ (W,d′)

be a chain map. If ξ∗ is a coherent morphism, then ξ∗ admits an algebraic
realization.

As a topological application of our results, we present the following corol-
lary concerning the Adams-Hilton model of a simply connected CW-complex
X. Recall that this model is the DGA (T (V∗(X)), δ), where the free graded
R-module V∗(X) satisfies the following relation:

Vn(X) = Hn+1(Xn+1, Xn), ∀n ≥ 1.

Here Hn+1(Xn+1, Xn) denotes the (cellular) homology module of the pair
(Xn+1, Xn), which can be described as the free R-module generated by the
(n+ 1)-cells of X, where Xn is the n-skeleton of X.

Corollary 1.3. Let X,Y be two simply connected CW-complexes. If
ξ∗ : V∗(X)→ V∗(Y ) is a coherent isomorphism, then the Adams-Hilton models
of X and Y are quasi-isomorphic.
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2. The n-characteristic extensions

Let R be a PID and let V = (Vi)i>0 be a graded R-module. The tensor
algebra T (V ) of V is defined as:

T (V ) = R⊕ V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V )⊕ · · ·

This algebra consists of all finite tensor products of elements from V . Let
Tn(V ) denote the module of the elements of graduation degree n.

A free differential graded algebra is a tensor algebra T (V ) equipped with
a differential ∂ that satisfies:

• ∂ decreases the degree by 1: ∂ : Tn(V )→ Tn−1(V ),

• ∂2 = 0 (the differential is nilpotent),

• The Leibniz rule holds: for a, b ∈ Tn(V ) and b ∈ Tm(V ),

∂(a⊗ b) = ∂(a)⊗ b+ (−1)deg(a)a⊗ ∂(b).

The linear component of the differential, d : Vn → Vn−1, is defined by the
relation:

∂(v)− d(v) ∈ (V ⊗ V )⊕ (V ⊗ V ⊗ V )⊕ · · ·

indicating that the non-linear terms of the differential ∂ involve higher-order
tensor products. The map d itself forms a differential, and the pair (V, d) is
referred to as the chain complex of the indecomposables of (T (V ), ∂).

Now let (T (V ), ∂) be a DGA. Let us consider the following long sequence:

· · · → Vn+1
βn+1−→ Hn(T (V≤n))

jn−→ Vn
βn−→ Hn−1(T (V≤n−1))

jn−1−→ Vn−1 → · · ·

in which, for all n ≥ 2, we have im jn = kerβn. The homomorphism jn is
defined by setting:

jn(vn + y + im ∂≤n) = vn. (2.1)

Recall that a homology class in Hn(T (V≤n)) can be represented as vn + y +
im ∂≤n, where vn ∈ Vn, y ∈ Tn(V≤n−1) and ∂(vn + y) = 0. Here ∂≤n denotes
the restriction of the differential ∂ to Tn(V≤n). We define the homomorphism
βn+1 by:

βn+1(vn+1) = ∂(vn+1) + im ∂≤n. (2.2)

Note that the cycle ∂(vn+1) needs not to be a boundary in the DGA Tn(V≤n)
equipped with the differential ∂≤n.
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Recall that the linear part d of the differential ∂, which appears in the
chain complex of the indecomposables (V, d), satisfies the relation:

dn = jn−1 ◦ βn. (2.3)

For every n ≥ 2, we define the R-module Λn(T (V )) by setting:

Λn(T (V )) = ker jn. (2.4)

The homomorphism jn, defined in (2.1), gives rise to the short exact sequence:

Λn(T (V )) � Hn(T (V≤n))
jn
� kerβn.

As Vn is a free abelian group, kerβn ⊂ Vn is also free and the later short exact
sequence splits. So we can choose a section σn : kerβn → Hn(T (V≤n)) of jn,
i.e.,

jn ◦ σn = id, (2.5)

and a splitting:

µn : Hn(T (V≤n))
∼=−→ Λn(T (V ))⊕ kerβn,

µn(x) = (x− σn ◦ jn(x))⊕ jn(x).
(2.6)

Remark 2.1. From the formula (2.6), it follows that if x ∈ Λn(T (V )), then
µn(x) = x i.e., the map µn is the inclusion Λn(T (V )) ⊂ Hn(T (V≤n)).

Consider the differential of the cellular complex dn+1 : Vn+1 → Vn. If
(im dn+1)′ ⊂ Vn+1 denotes a copy isomorphic to the free abelian subgroup
im dn+1 ⊂ Vn, then we get the following direct sum:

Vn+1 = ker dn+1 ⊕ (im dn+1)′. (2.7)

Then notice that

(im dn+1)′
dn+1

� ker dn � Hn(V, d), (2.8)

can be chosen as a free resolution of Hn(V, d), where (V, d) is the chain complex
of the indecomposables of (T (V ), ∂).

Now, let us consider the homomorphism

µn ◦ βn+1 : Vn+1 = ker dn+1 ⊕ (im dn+1)′→Hn(T (V≤n))
∼=→ Λn(T (V ))⊕ kerβn.
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Due to (2.6), it follows that for every z + l ∈ ker dn+1 ⊕ (im dn+1)′, we have

µn ◦ βn+1(z + l) =
(
βn+1(z + l)− σn ◦ jn ◦ βn+1(z + l)

)
⊕ jn ◦ βn+1(z + l)

=
(
βn+1(z + l)− σn ◦ dn+1(z + l)

)
⊕ dn+1(z + l)

=
(
βn+1(z) + βn+1(l)− σn ◦ dn+1(l)

)
⊕ dn+1(l).

Here we use that z ∈ ker dn+1 and apply the relation (2.3). As a result, for
every z ∈ ker dn+1 we obtain:

µn ◦ βn+1(z) = βn+1(z),

and since we have:

jn ◦ µn ◦ βn+1(z) = jn ◦ βn+1(z) = dn+1(z) = 0,

we deduce that:

µn ◦ βn+1 = βn+1 : ker dn+1 −→ Λn(T (V )) = ker jn. (2.9)

Likewise, using (2.3) and (2.5), we deduce that:

jn ◦ (βn+1(l)− σn ◦ dn+1(l)) = jn ◦ βn+1(l)− jn ◦ σn ◦ dn+1(l)

= dn+1(l)− dn+1(l) = 0,

it follows that βn+1 − σn ◦ dn+1 is a homomorphism from (im dn+1)′ to
Λn(T (V )).

Thus, we define the homomorphism θT (V ) : (im dn+1)′ → Λn(T (V )) by:

θT (V ) = βn+1 − σn ◦ dn+1. (2.10)

Hence, taking into account the resolution (2.8), we obtain the extension class:

[θT (V )] ∈ Ext(Hn(V, d),Λn(T (V ))).

Definition 2.2. We refer to the class [θT (V )] as the characteristic exten-
sion of (T (V ), ∂).

Remark 2.3. The following facts are well-known:
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1. Let ω : (T (V ), ∂) → (T (W ), δ) a DGA-map. This induces a chain map
ω̃ : (V, d) → (W,d′), on the modules of the indecomposables. In turn,
this chain map induces a graded homomorphism:

H∗(ω̃) : H∗(V, d) −→ H∗(W,d
′).

Additionally, this induces the following homomorphism:

(Hn(ω̃))∗ : Ext(Hn(W ),Λn(T (W ))) −→ Ext(Hn(V ),Λn(T (W ))). (2.11)

2. Moore’s Theorem [6] asserts that ω is a quasi-isomorphism if and only
the chain map ω̃ is a quasi-isomorphism.

3. Furthermore, the DGA-map ω induces a homomorphism:

Λ(ω) : Λ(T (V )) −→ Λ(T (W )), (2.12)

where Λ(ω) is the restriction of homomorphism:

Hn(ω) : Hn(T (V≤n)) −→ Hn(T (W≤n)).

Here the DGA-map ω : T (V≤n)→ T (W≤n) is the restriction of ω.

4. The DGA-map ω : T (V≤n) → T (W≤n) implies the following commuta-
tive diagram:

Hn(T (V≤n)) Vn
jn

Hn(T (W≤n)) Wn

j′n

Hn(ω) ω̃n

(2.13)

where jn (respect. j′n) is defined in (2.1).

5. Using the splitting µn, given in (2.6), we obtain the following diagram:

Hn(T (V≤n)) Λn(T (V ))⊕ kerβn
µn

Hn(T (W≤n)) Λn(T (W ))⊕ kerβ′n
µ′n

Hn(ω) Λn(ω)⊕ ω̃n
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where σ′n : kerβ′n → Hn(T (W≤n)) is a section of the homomorphism of
j′n : Hn(T (W≤n))→ Wn (see (2.8)). Taking into account the commuta-
tivity of the diagram (2.13), It is easy to check that:

(Λn(ω)⊕ω̃n)◦µn−µ′n◦Hn(ω) = Hn(ω)◦σn◦jn−σ′n◦j′n◦Hn(ω). (2.14)

The following lemma will be needed subsequently.

Lemma 2.4. Let (T (V ), ∂) and (T (W ), δ) be two DGAs and let

ω : T (V≤n) −→ T (W≤n)

be a DGA-map. If g ∈ Hom
(
Vn,Λn(T (W ))

)
, then there exists a DGA-map

η : T (V≤n) → T (W≤n) such that Hn(η) = Hn(ω) + g ◦ jn. Moreover, η̃∗ =
ω̃∗ : (V≤n, d)→ (W≤n, d

′).

Proof. First, let Zn(T (W≤n)) be the R-submodule of n-cycles of T (W≤n).
Since Vn is a free abelian group, there exists a homomorphism g̃ making the
following diagram commute:

Hn(T (V≤n))Zn(T (W≤n)) Vn
g̃

Hn(T (W≤n)) ⊃ Λn(T (W ))

pr

jn

g

(2.15)

Next, the homomorphism g̃ allows us to define a map η : T (V≤n)→ T (W≤n),
by setting:

η(v) =

{
ω(v) + g̃(v) if v ∈ V,
ω(v) if v ∈ V≤n−1.

(2.16)

The map η is a DGA-map. To see this and for v ∈ Vn, we compute:

δ ◦ η(v) = δ(ω(v)) + δ(g̃(v)) = δ ◦ ω(v) = ω ◦ ∂(v) = η ◦ ∂(v).

Here we use the fact that g̃(v) ∈ Zn(T (W≤n)), which indicates that it is
indeed a cycle. Additionally, η and ω coincide on V≤n−1. Observe that ∂(v)
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lies T (V≤n−1). Now, let x+im ∂ ∈ Hn(T (V≤n)), write x = v+y, where v ∈ Vn
and y ∈ T (V≤n−1). Using the relations (2.16), we get:

Hn(η)(v + y + im ∂) = η(v + y) + im δ = η(v) + η(y) + im δ

= ω(v) + g̃(v) + ω(y) + im δ

= (ω(v + y) + im δ) + (g̃(v) + im δ),

(2.17)

and by virtue of the formula (2.1), we can write g̃(v) = g̃ ◦ jn(v + y + im ∂).
Consequently, taking into consideration the commutativity of the diagram
(2.15), the relation (2.17) becomes:

Hn(η)(v + y + im ∂) = (ω(v + y) + im δ) + g̃ ◦ jn(v + y + im ∂) + im δ

= Hn(ω)(v + y) + im ∂) + pr ◦ g̃ ◦ jn(v + y + im ∂)

= Hn(ω)(v + y + im ∂) + g ◦ jn(v + y + im ∂),

as desired. Finally, since pr ◦ g̃ = g and im g ⊂ Λn(T (W )), it follows that g̃(v)
is a decomposable cycle in Zn(T (W≤n)). Therefore, the chain map η̃∗ induced
by the DGA-map η∗ on the decomposables satisfies η̃∗ = ω̃∗.

3. The n-coherent morphisms

With the necessary groundwork in place, we are now ready to introduce the
concept of n-coherent morphisms. This notion extends classical conditions,
ensuring extending DGA-maps at higher homological levels and offering a
more refined understanding of maps between DGAs. With this framework
established, we can now proceed to formally define n-coherent morphisms.

Definition 3.1. Let (T (V ), ∂) and (T (W ), δ) be two DGAs. We say that
a chain map ξ∗ : (V, d) → (W,d′) is an n-coherent morphism if there exists a
DGA-map ω : (T (V≤n), ∂) → (T (W≤n), δ) such that the following conditions
are satisfied:

1. ξ≤n = ω̃≤n, where ω̃≤n : (V≤n, d)→ (W≤n, d
′) is the chain map induced

by ω on the indecomposables.

2. The following two diagrams commute:

ker dn+1 ker d′n+1

ξn+1

Λn(T (V )) Λn(T (W ))
Λn(ω)

βn+1 β′n+1

kerβn+1 kerβ′n+1

Hn(T (V≤n)) Hn(T (W≤n))

ω̃

Hn(ω)

σn σ′n

(3.1)
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where Λn(ω) is the homomorphism given in (2.12) and where σn and σ′n
are the sections given in (2.5).

3. If [θT (V )] (respect. [θT (W )]) is the n-characteristic extension of (T (V ), ∂)
(respect. of (T (W ), δ)), then we have:

(Hn(ω̃))∗([θT (W )]) = (Λn(ω))∗([θT (V )]), (3.2)

where the homomorphisms (Hn(ω̃))∗ and (Λn(ω))∗ are given in (2.11)
and (2.12) respectively.

Remark 3.2. Since ξ∗ : (V, d) → (W,d′) is a chain map, it follows that
ξn+1(ker dn+1) ⊂ ker d′n+1. Moreover, the condition (1) implies that the fol-
lowing diagram commutes:

Vn+1 Wn+1
ξn+1

Vn Wn
ξn = ω̃n

Vn−1 Wn−1
ξn−1 = ω̃n−1

dn+1 d′n+1

dn d′n

(3.3)

which leads us to define the homomorphism Hn(ω̃) : Hn(V )→ Hn(W ).

Remark 3.3. It is essential to highlight that the formula (3.2) means the

following. From (2.8), we know that (im dn+1)′
dn+1

� ker dn � Hn(V ) is a free
resolution of Hn(V ). Moreover, to the extensions [θT (V )], [θT (W )] and to the
homomorphisms (Hn(ω̃))∗, (Λn(ω))∗ correspond the following two diagrams:

?

(im dn+1)′
dn+1

� ker dn � Hn(V )

Λn(T (V ))

θT (V )

Λn(T (W ))
?

? ?

Hn(ω̃)

(im dn+1)′
dn+1

� ker dn � Hn(V )

Λn(ω)

ξn+1

Λn(T (W ))
?

(im d′n+1)′
dn+1

� ker d′n � Hn(W )
?

θT (W )
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where (Hn(ω̃))∗([θT (W )]) = [θT (W ) ◦ ξn+1] and (Λn(ω))∗([θT (V )]) = [Λn(ω) ◦
θT (V )] which implies that:

(Hn(ω̃))∗([θT (W )])− (Λn(ω))∗([θT (V )]) = [θT (W ) ◦ ξn+1 − Λn(ω) ◦ θT (V )].

Hence, the relation (3.2) is equivalent to the existence of a homomorphism g,

ker dn
g−→ Λn(T (W )),

satisfying the relation:

θT (W ) ◦ ξn+1 − Λn(ω) ◦ θT (V ) = g ◦ dn+1. (3.4)

Note that, since Vn = ker dn ⊕ (im dn)′ (see (2.7)), we can extend the homo-
morphism g : ker dn → Λn(T (W )) to a homomorphism (also denoted by g):

g : Vn −→ Λn(T (W )), (3.5)

by requiring that g is zero on (im dn)′.

Example 3.4. If α : (T (V ), ∂)→ (T (W ), δ) is a DGA-map, then the chain
map α̃∗ : (V, d)→ (W,d′), induced by α on the indecomposables (see Remark
2.3) is an n-coherent morphism for every n ≥ 1, as the conditions of Definition
3.1 are clearly satisfied in this case.

Example 3.5. Let (T (V ), ∂) and (T (W ), δ) be two DGAs such that the
graded module Hn(V ) and Hn(W ) are R-free. In this case the condition 3 in
Definition 3.1 is trivially satisfied, as we have:

Ext(Hn(V ),Λn(T (V ))) = Ext(Hn(W ),Λn(T (W ))) = 0.

4. Main result

The following lemma is essential for establishing the main result of the
paper.

Lemma 4.1. Let (T (V ), ∂) and (T (W ), δ) be two DGAs and let

ω : T (V≤n) −→ T (W≤n)
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be a DGA-map. If ρ : Vn+1 →Wn+1 is a homomorphism making the following
diagram commute:

Vn+1 Wn+1
ρ

Hn(T (V≤n)) Hn(T (W≤n)).
Hn(ω)

βk+1 β′k+1

(4.1)

Then ω can be extended to a DGA-map χ : T (V≤n+1)→ T (W≤n+1) such that
the homomorphism χ̃n+1 : Vn+1 → Wn+1, induced by the DGA-map χ on
Vn+1, satisfies χ̃n+1 = ρ.

Proof. For every v ∈ Vn+1, using the formula (2.2), we get:

Hn(ω) ◦ βn+1(v)− β′n+1 ◦ ρ(v) = ω ◦ ∂(v)− δ ◦ ρ(v) + im δ≤n.

Since the diagram (4.1) commutes, the element ω ◦ ∂(v) − δ ◦ ρ(v) ∈ im δ≤n,
therefore there exists an element yv ∈ Tn+1(W≤n) such that:

ω ◦ ∂(v)− δ ◦ ρ(v) = δ(yv). (4.2)

Thus, we define χ : (T (V≤n+1), ∂)→ (T (W≤n+1), δ) by setting:

χ(v) =

{
ρ(v) + yv if v ∈ Vn+1,

ω(v) if v ∈ V≤n.

By (4.2), we have:

δ ◦ χ(v) = δ ◦ ρ(v) + δ(yv) = βn ◦ ϕn(vξ) = ω ◦ ∂(v) = χ ◦ ∂(v).

Here we use that ∂(v) ∈ Tn(W≤n) and χ = ω for every v ∈ V≤n. As a result,
χ is a DGA-map. Finally, since the element yv ∈ Tn+1(W≤n), it is clear that
χ satisfies χ̃n+1 = ρ.

We are now ready to present the main result of this paper.

Theorem 4.2. Let (T (V ), ∂) and (T (W ), δ) be two DGAs. If

ξ∗ : (V, d) −→ (W,d′)

is an n-coherent morphism, there exists a DGA-map

χ : (T (V≤n+1), ∂) −→ (T (W≤n+1), δ)

such that χ̃≤n+1 = ξ≤n+1.
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Proof. First, since ξ∗ : (V, d) → (W,d′) is an n-coherent morphism, there
exists a DGA-map ω : (T (V≤n), ∂)→ (T (W≤n), δ) such that the conditions of
Definition 3.1 are satisfied. Next, let us consider the following diagram:

Vn+1 Wn+1

Hn(T (V≤n)) Hn(T (W≤n))

Λn(T (V ))⊕ kerβn Λn(T (W ))⊕ kerβ′n

Vn ⊇ kerβn kerβ′n ⊆Wn

ξn+1

βn+1 β′n+1

µn

Hn(ω)

µ′n

Λn(ω)⊕ ξn

ξn

dn+1 d′n+1
jn j′n

σ′n

First, by (2.9) we have βn+1(ker dn+1) ⊂ Λn(T (V )). Thus, by applying dia-
gram (3.1), for every z ∈ ker dn+1, we deduce that:

Hn(ω) ◦ βn+1(z)− β′n+1 ◦ ξn+1(z)

= Λn(ω) ◦ βn+1(z)− β′n+1 ◦ ξn+1(z) = 0.
(4.3)

Next, on one hand, using (2.14), we get:

(Λn(ω)⊕ ξn) ◦ µn ◦ βn+1 − µ′n ◦Hn(ω) ◦ βn+1

= Hn(ω) ◦ σn ◦ jn ◦ βn+1 − σ′n ◦ j′n ◦Hn(ω) ◦ βn+1,

and taking into account the formula (2.3) and the diagram (2.13), it follows
that:

(Λn(ω)⊕ ξn) ◦ µn ◦ βn+1 − µ′n ◦Hn(ω) ◦ βn+1

= Hn(ω) ◦ σn ◦ dn+1 − σ′n ◦ ω̃n ◦ jn ◦ βn+1

= Hn(ω) ◦ σn ◦ dn+1 − σ′n ◦ ω̃n ◦ dn+1

= (Hn(ω) ◦ σn − σ′n ◦ ω̃n) ◦ dn+1.

But the diagram (3.1) implies that Hn(ω) ◦ σn − σ′n ◦ ω̃n = 0. As a result,
we get:

(Λn(ω)⊕ ξn) ◦ µn ◦ βn+1 = µ′n ◦Hn(ω) ◦ βn+1. (4.4)
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On the other hand, using (2.6) and (2.10), we get:

(Λn(ω)⊕ ξn) ◦ µn ◦ βn+1 = Λn(ω) ◦ (βn+1 − σn ◦ dn+1) = Λn(ω) ◦ θT (V ),

µ′n ◦ β′n+1 ◦ ξn+1 = (β′n+1 − σ′n ◦ d′n+1) ◦ ξn+1 = θT (W ) ◦ ξn+1,

and combining with the formula (4.4), we deduce that:

µ′n ◦ (β′n+1 ◦ ξn+1 −Hn(ω) ◦ βn+1) = θT (W ) ◦ ξn+1 − Λn(ω) ◦ θT (V ).

Next, using (3.4) we obtain:

µ′n ◦ (β′n+1 ◦ ξn+1 −Hn(ω) ◦ βn+1) = g ◦ dn+1, (4.5)

where the homomorphism g : Vn → Λn(T (W )) is given in (3.5).

By virtue of (2.13) and the formula (1) in Definition 3.1, we get:

j′n ◦ (β′n+1 ◦ ξn+1 −Hn(ω) ◦ βn+1) = j′n ◦ β′n+1 ◦ ξn+1 − j′n ◦Hn(ω) ◦ βn+1

= j′n ◦ β′n+1 ◦ ξn+1 − ω̃n ◦ jn ◦ βn+1

= d′n+1 ◦ ξn+1 − ξn ◦ dn+1 = 0,

it follows that im(β′n+1 ◦ ξn+1 − πn(ω) ◦ βn+1) ⊂ Λn(T (W )) and applying
Remark 2.1, we obtain:

µ′n ◦ (β′n+1 ◦ ξn+1 −Hn(ω) ◦ βn+1) = β′n+1 ◦ ξn+1 −Hn(ω) ◦ βn+1,

therefore, the relation (4.5) becomes:

β′n+1 ◦ ξn+1 −Hn(ω) ◦ βn+1 = g ◦ dn+1, (4.6)

in the other words, using again (2.3), it follows that:

β′n+1 ◦ ξn+1 − (Hn(ω) + g ◦ jn) ◦ βn+1 = 0. (4.7)

Now, according to Lemma 2.4, the map ω : (T (V≤n), ∂) → (T (W≤n), δ) and
the homomorphism g allow us to define a map η : (T (V≤n), ∂)→ (T (W≤n), δ)
such that:

Hn(η) = Hn(ω) + g ◦ jn and η̃∗ = ω̃∗. (4.8)

Here we invoke the relation (3.5) extending g. Consequently, the following
diagram commute:
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Vn+1 Wn+1

Hn(T (V≤n)) Hn(T (W≤n)).

ξn+1

βn+1 β′n+1

Hn(η)

Indeed, due to (4.7) and (4.8), an easy computation shows that:

Hn(η) ◦ βn+1 = (Hn(ω) + g ◦ jn) ◦ βn+1 = β′n+1 ◦ ξn+1.

Hence, applying Lemma 4.1, we can extend η to get a DGA-map:

χ : (T (V≤n+1), ∂) −→ (T (W≤n+1), δ),

such that χ̃n+1 = ξn+1. As χ is an extension of the map η to T (V≤n+1) and
taking into account (4.8), it follows that:

χ̃≤n = ω̃≤n : T (V≤n) −→ T (W≤n),

as we wanted.

Definition 4.3. Let (T (V ), ∂) and (T (W ), δ) be two DGAs. We say that
a chain map ξ∗ : (V, d)→ (W,d′) is a coherent morphism if ξ∗ is an n-coherent
morphism for every n ≥ 1.

Theorem 4.4. Let (T (V ), ∂) and (T (W ), δ) be two DGAs, and let

ξ∗ : (V, d) −→ (W,d′)

be a chain map. If ξ∗ is a coherent morphism, then ξ∗ admits an algebraic
realization.

Proof. First, for a fixed n, as ξ∗ is an n-coherent morphism, there exists a
DGA-map ω : (T (V≤n), ∂) → (T (W≤n), δ) satisfying the conditions of Defini-
tion 3.1. Applying Theorem 4.2, we obtain a DGA-map χ : (T (V≤n+1), ∂) →
(T (W≤n+1), δ) such that χ̃≤n+1 = ξ≤n+1. Next, repeating this proceeds for
every n, we can construct a DGA-map α : (T (V ), ∂) → (T (W ), δ) satisfying
α̃∗ = ξ∗. Consequently, we get H∗(α) = H∗(ξ∗). Thus, ξ∗ admit an algebraic
realization.
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Corollary 4.5. Let (T (V ), ∂) and (T (W ), δ) be two DGAs and let

ξ∗ : (V, d) −→ (W,d′)

be a quasi-isomorphism. If ξ∗ is a coherent morphism, then (T (V ), ∂) and
(T (W ), δ) are quasi-isomorphic.

Proof. By virtue of Theorem 4.4, ξ∗ admit an algebraic realization. That
means a DGA-map α : (T (V ), ∂) → (T (W ), δ) satisfying H∗(α) = H∗(ξ∗).
Given that ξ∗ is a quasi-isomorphism, it implies that the induced homomor-
phism on homology, H∗(ξ∗) is an isomorphism. As a result, the DGA-map
α must also be a quasi-isomorphism. This conclusion follows from Moore’s
Theorem, as referenced in Remark 2.3.

5. Topological applications

Recall that the Adams-Hilton model [1] of a simply connected CW-complex
X is a quasi-isomorphism of algebras:

(T (V∗(X)), δX)
'−−→ C∗(ΩX), (5.1)

where C∗(ΩX) is the singular chain complex of the loop space of X and where
the free graded R-module V∗(X) satisfies the following relation:

Vn(X) = Hn+1(Xn+1, Xn) ∀n ≥ 1.

Here Hn+1(Xn+1, Xn) denotes the (cellular) homology module of the pair
(Xn+1, Xn), which can be described as the free module generated by the
(n + 1)-cells of X, where Xn is the k-skeleton of X. Recall that for a cell e
in the cellular complex of X, if ∂e denotes its boundary in the cellular chain
complex of X, then the differential δX on the generator e is defined by:

δX(e) = −(∂e).

From the quasi-isomorphism (5.1), it follows that:

H∗(T (V∗(X)), δX) ∼= H∗(ΩX,R), H∗(V∗(X), dX) ∼= H∗(X,R).

Here, (V∗(X), d) represents the chain complex of indecomposables of the DGA
(T (V∗(X)), δX), which can be identified with the cellular chain complex asso-
ciated with the CW-complex X.
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Corollary 5.1. Let X and Y be two simply connected CW-complexes
and let ξ∗ : (V∗(X), dX) → (V∗(Y ), dY ) is chain map. If ξ∗ is a coherent
morphism, then there exists a DGA-map α : (T (V∗(X)), δX)→ (T (V∗(Y )), δY )
such that H∗(α) = H∗(ξ∗). Moreover, if ξ∗ is a quasi-isomorphism, then
the Adams-Hilton models (T (V∗(X)), δX) and (T (V∗(Y )), δY ) of X and Y
respectively, are also quasi-isomorphic.
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