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Abstract : The objective of this paper is to establish initial coefficient inequalities, Upper bounds

to the Hankel and Toeplitz determinants for certain normalized univalent functions defined on the

open unit disk D in the complex plane related to the analytic function ϕ4L(z) = 1 + 5
6
z + 1

6
z5 that

maps the open unit disk in the complex plane onto the interior of four leaf shaped domain in the

right half of the complex plane.
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1. Introduction

Let A be the family of analytic functions f defined on the open unit disk
D = {z ∈ C : |z| < 1} in the complex plane C with the normalization f(0) = 0
and f ′(0) = 1. The Taylor series expansion of f ∈ A is

(1.1) f(z) = z +
∞∑
n=2

anz
n for all z ∈ D, where an =

f (n)(0)

n!
.

The collection of univalent functions (that are one-to-one) f ∈ A is denoted
by S. Unless otherwise stated throughout this paper, we assume the series
representation of f ∈ S is of the form (1.1).
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The classes of starlike, convex and bounded turning functions denoted by
S∗, C and R respectively are well recognised subclasses of S. Let B be the
family of analytic functions w(z) in D with w(0) = 0 and |w(z)| < 1 for all z ∈
D. The members of B are called the Schwarz functions and w(z) = z, w(z) =
z2 are a couple of examples of members in B. A function f ∈ A is said to be
subordinate to g ∈ A if there exists a w ∈ B such that f(z) = g(w(z)) for all
z ∈ D. In this case, we write f ≺ g. If g is univalent, then f ≺ g if, and only
if, g(0) = f(0) and f(D) ⊂ g(D). For basic information on univalent function
theory, we refer to [7] and [24].

For f ∈ A with series expansion (1.1),The qth Hankel determinant of index
n, denoted by Hq,n(f) ( or simply Hq(n)), is defined as

Hq(n) =

∣∣∣∣∣∣∣∣∣
an an+1 . . . an+q−1

an+1 an+2 . . . an+q
...

...
. . .

...
an+q−1 an+q . . . an+2q−2

∣∣∣∣∣∣∣∣∣
for q ≥ 2 and n ≥ 1 with a1 = 1 (see [23], [22]), whereas qth Symmetric
Toeplitz determinant of index n, denoted by Tq(n), is defined as

Tq(n) =

∣∣∣∣∣∣∣∣∣
an an+1 . . . an+q−1

an+1 an . . . an+q−2
...

...
. . .

...
an+q−1 an+q−2 . . . an

∣∣∣∣∣∣∣∣∣
for q ≥ 2 and n ≥ 1 with a1 = 1 (see [33]).

The classes S∗ and C were further generalized to the classes S∗(ϕ) and
C(ϕ) by Ma and Minda [18] and studied growth, distortion results associated
with these classes, which are defined as

S∗(ϕ) =
{
f ∈ S :

zf ′(z)

f(z)
≺ ϕ(z)

}
,

C(ϕ) =
{
f ∈ S : 1 +

zf ′′(z)

f ′(z)
≺ ϕ(z)

}
,

where ϕ ∈ A such that <{ϕ(z)} > 0, ϕ′(0) > 0, ϕ(D) is symmetric with
respect to real axis and starlike with respect to ϕ(0) = 1. If we choose
ϕ(z) = 1+z

1−z for z ∈ D then it is evident that S∗(ϕ) = S∗ and C(ϕ) = C.
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Zalcman conjecture: In 1960, Lawrence Zalcman conjectured that
the coefficients of f ∈ S with series representation (1.1) satisfy the inequality

|a2
n − a2n−1| ≤ (n− 1)2, for n ≥ 2.

Ma [17] proposed generalized Zalcman conjecture for f ∈ S of the form (1.1)
that

|anam − an+m−1| ≤ (n− 1)(m− 1), for n,m ≥ 2

and proved this conjecture is true for starlike functions and univalent function
with real coefficients.

2. Literature review

Geometric function theory relies heavily on the study of Hankel and
Toeplitz determinants related to the members of S.Many researchers were
inspired to study |H2(2)| and |H3(1)| for different subclasses of S by the
groundbreaking work of Pommerenke [22],[23] and Hayman [9] on Hankel de-
terminants for functions in the class S. For instance, Noonan and Thomas
[20] studied the second Hankel determinant of areally mean p-valent functions,
Noor [21] has investigated the Hankel determinant of close-to-convex univa-
lent functions. Babalola [4] estimated an upper bound of |H3,1(f)| for the
functions in the classes S∗, C, andR. Sharp estimates of |H3,1(f)| for these
three classes were obtained in the papers [15], [14] and [13] respectively.

In recent years, various geometric characteristics have been investigated
and considered by selecting a certain function ϕ that satisfies the conditions
proposed by Ma-Minda. For instance, the functions ϕ3L(z) = 1 + 4

5z + 1
5z

4,
ϕC(z) = 1 + 4

3z + 2
3z

2, ϕS(z) = 1 + sin z maps D onto three-leaf, cardioid,
and eight-shaped domains respectively (see [5], [28], and [3]) are a few notable
Ma-Minda-type functions that have been researched recently. The classes

S∗4L =

{
f ∈ S :

zf ′(z)

f(z)
≺ ϕ4L(z)

}
,

C4L =

{
f ∈ S : 1 +

zf ′′(z)

f ′(z)
≺ ϕ4L(z)

}
,

R4L =
{
f ∈ S : f ′(z) ≺ ϕ4L(z)

}
of starlike, convex and bounded turning functions are associated with
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ϕ4L(z) = 1 + 5
6z + 1

6z
5 that maps D onto four leaf shaped domain have been

introduced by Pongsakorn Sunthrayuth et al. [32].

2.1. Literature Review of Concerning Upper bound of |H4,1(f)|
for f ∈ S: Arif et al. [2] estimated an upper bound of |H4,1(f)| for f ∈ R
by proving |H4(1)| ≤ 73757

94500 . Later, an upper bound for |H4,1(f)| for f ∈ S
related to different geometric domains was obtained by few Âáresearchers. We
now list some of them.

An upper bound for |H4,1(f)| is obtained:

(1) for the class R1 = {f ∈ A : <{f ′(z) + zf ′′(z)} > 0} by Kaur et al. [10];

(2) for the class R(ϕC) = {f ∈ A : f ′(z) ≺ 1 + 4
3z + 2

3z
2} by Srivastava

et al. [30];

(3) for the class f ∈ Rsin = {f ∈ A : f ′(z) ≺ 1 + sin z} by Khan et al. [11];

(4) for the class RSG = {f ∈ A : f ′(z) ≺ 2
1+e−z for all z ∈ D} by Khan

et al. [12];

(5) for the class R1(cos z) = {f ∈ A : f ′(z) + zf ′′(z) ≺ cosz} by Yakaiah
and Bharavi Sharma [35];

(6) for the class R1(1 + sin z) = {f ∈ A : f ′(z) + zf ′′(z) ≺ 1 + sin z} by
Ganesh et al. [6].

(7) For recent investigations on Hankel determinents,we refer to the research
works of H.M. Srivatsava et al. [31]. They found upper bounds for the
third and fourth order Hankel determinants for the functions of new sub-
classes of analytic functions by making use of subordination involving the
sine function and the modified sigmoid activation function.

2.2. Literature Review on Toeplitz Determinants:

(1) The Hankel and Toeplitz determinants were closely related.Toeplitz de-
terminants contain constant entries along the principal diagonal, unlike
Hankel determinants.

(2) Thomas and Abdul Halim [33] initiated the concept of Toeplitz matrices
Tq(n), for the functions in S∗ and close to convex functions K.

(3) Zhang et al. [36] studied an upper bounds of the fourth Toeplitz deter-

minant for the class S∗s =
{
f ∈ S : zf ′(z)

f(z) ≺ 1 + sin(z)
}

.
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(4) Vijayalakshmi et al. [34] studied symmetric Toeplitz determinants for
classes defined by post quantum operators subordinated to the limacon
function.

(5) Srivastava et al. [29] studied Hankel and Toeplitz determinants for a
subclass of q-Starlike functions associated with a General Conic Domain.

(6) Yakaiah and Bharavi Sharma [35] estimated fourth Toeplitz determinants
for f ∈ R1(cos z)

(7) Yakaiah et al. [6] computed upper bounds for |T4(1)| and |T4(2)| for
f ∈ R1(1 + sin z).

(8) Recently, Mandal et al. [19] investigated Toeplitz determinants of log-
arithmic coefficients of inverse functions for certain classes of univalent
function.

(9) For similar type of studies concerning Toeplitz determinants for starlike,
convex and bounded boundary rotation functions we refer to [1] and [25].

3. Motivation and identification of research problem

(1) Gunasekar et al. [8] studied a new subclass Ar,s
4 of analytic functions

related to the four-leaf domain,where r ≥ 0, s ∈ [0, 1] and

Ar,s
4 =

{
f : (1−r)(1−s)f(z)

z
+(s+r(1+s))f ′(z)+rs(zf ′′(z)−2) ≺ ϕ4L(z)

}
.

(2) Shaba et al. [27] studied Fekete-Szegö problem and second Hankel deter-
minant for a subclass of bi-univalent functions associated with four leaf
domain.

Motivated by the works of Sunthrayuth et al., Gunasekar et al., Shaba et al.
and Yakaiah et al. [32], [8], [27], [35], in this paper, upper bounds of fourth
Hankel and Toeplitz determinants for the class

R1

(
ϕ4L

)
=
{
f ∈ S : f ′(z) + zf ′′(z) ≺ ϕ4L(z)

}
associated with four leaf function ϕ4L(z) = 1 + 5

6z + 1
6z

5 were computed.
The image of D under ϕ4L(z) can be seen as in Figure 1. The organization
of this paper is as follows. In Section 4, we state some lemmas to prove
our main results. The initial coefficient bounds, second order Hankel and
Toeplitz determinants bound estimates for functions in the class R1

(
ϕ4L

)
are



6 r. rudrani, r. bharavi sharma, s. sambasiva rao

presented in Section 5 and the third order Hankel and Toeplitz determinants
bound estimates in Section 6. Finally, Section 7 is dedicated to compute
upper bound estimates of fourth order Hankel and Toeplitz determinants for
f ∈ R1

(
ϕ4L

)
.

Figure 1: The Image of unit disk under the mapping ϕ4L

(Using Complex Tools)

4. A set of useful lemmas

The collection of analytic functions p(z) defined on the unit disk D with
p(0) = 1 and <{p(z)} > 0 is called the class of functions with positive real part,
and it is denoted by P. For p ∈ P, we have the following series representation

(4.1) p(z) = 1 +
∞∑
n=1

cnz
n, for z ∈ D.

Unless otherwise stated throughout this paper, we assume the series represen-
tation of p ∈ P is of the form (4.1).

Lemma 4.1. ([24]) If p ∈ P, then |cn| ≤ 2 for any positive integer n. The

inequality is sharp for p(z) =
1 + z

1− z
.

Lemma 4.2. ([18]) If p ∈ P and ρ ∈ C, then |c2 − ρc2
1| ≤ 2 max{1, |2ρ−

1|}. The inequality is sharp for p(z) = 1+z
1−z and p(z) =

1 + z2

1− z2
.
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Lemma 4.3. ([3]) If p ∈ P, then for any real numbers A, B and C,∣∣Ac3
1 −Bc1c2 + Cc3

∣∣ ≤ 2
(
|A|+ |B − 2A|+ |A−B + C|

)
.

Lemma 4.4. ([26]) If p ∈ P, then for all n,m ∈ N,

|ρcncm − cn+m| =

{
2 if 0 ≤ ρ ≤ 1,

2|2ρ− 1| otherwise.

This inequality is sharp.

Lemma 4.5. ([26]) If p ∈ P, l, m, n and r be real numbers and the
inequalities 0 < m < 1, 0 < r < 1,

8r(1− r)
(

(mn− 2l)2 + (m(r +m)− n)2
)

+m(1−m)(n− 2rm)2

≤ 4m2(1−m)2r(1− r)
(4.2)

hold, then ∣∣∣lc4
1 + rc2

2 + 2mc1c3 −
3n

2
c2

1c2 − c4

∣∣∣ ≤ 2.

Lemma 4.6. ([16]) If p ∈ P and c1 ≥ 0, then

2c2 = c2
1 + x(4− c2

1),

4c3 = c3
1 + 2(4− c2

1)c1x− c1(4− c2
1)x2 + 2(4− c2

1)(1− | x |2)z

for some x, z with |x| ≤ 1 and |z| ≤ 1.

5. Initial coefficient inequalities, second Hankel
determinants for the class R1

(
ϕ4L

)
Let f ∈ R1

(
ϕ4L

)
. Then there exists w ∈ B such that

(5.1) f ′(z) + zf ′′(z) = ϕ4L(w(z)), for all z ∈ D.

If we take

p(z) =
1 + w(z)

1− w(z)
∈ P for all z ∈ D then w(z) =

p(z)− 1

p(z) + 1
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so that

(5.2) f ′(z) + zf ′′(z) = 1 +
5

6

(p(z)− 1

p(z) + 1

)
+

1

6

(p(z)− 1

p(z) + 1

)5
for all z ∈ D.

On substituting (1.1) and (4.1) in (5.2) and comparing like coefficients on
both the sides of (5.2), we obtain

a2 =
5

48
c1,(5.3)

a3 =
5

108

(
c2 −

1

2
c2

1

)
,(5.4)

a4 =
5

192

(1

4
c3

1 − c1c2 + c3

)
,(5.5)

a5 =
1

60

(
c4 − c1c3 −

1

2
c2

2 +
3

4
c2

1c2 −
1

8
c4

1

)
,(5.6)

a6 =
5

432

(
c5 − c1c4 − c2c3 +

3

4
c2

1c3 +
3

4
c1c

2
2 −

1

2
c3

1c2 +
3

40
c5

1

)
,(5.7)

a7 =
5

588

(
c6 − c1c5 − c2c4 −

1

2
c2

3 +
3

4
c2

1c4 +
3

2
c1c2c3 +

1

4
c3

2(5.8)

− 1

2
c3

1c3 −
3

4
c2

1c
2
2 +

3

8
c4

1c2 −
1

16
c6

1

)
.

Example 5.1. By taking the Schwarz functions w(z) = z, w(z) = z2,
w(z) = z3 and w(z) = z4 in (5.1) followed by integrating on both sides and
utilizing the fact f(0) = 0, f ′(0) = 1 we get respectively:

(1) f1(z) = z + 5
24z

2 + 1
216z

6,

(2) f2(z) = z + 5
54z

3 + 1
726z

11,

(3) f3(z) = z + 5
96z

4 + 1
1536z

16,

(4) f4(z) = z + 1
30z

5 + 1
2646z

21.

It is easy to see that fi ∈ R1

(
ϕ4L

)
for i = 1, 2, 3, 4.

We now estimate initial coefficient bounds for the functions in R1

(
ϕ4L

)
.

Theorem 5.1. If f ∈ R1

(
ϕ4L

)
is given by (1.1). Then |a2| ≤

5

24
,

|a3| ≤
5

54
, |a4| ≤

5

96
, |a5| ≤

1

30
, |a6| ≤

5

72
and |a7| ≤

235

1764
. The members

f1, f2, f3, f4 are extremal functions for first four inequalities respectively.
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Proof. Let f ∈ R1

(
ϕ4L

)
be given by (1.1). By applying Lemma 4.1,

Lemma 4.2 and Lemma 4.3 to (5.3), (5.4) and (5.5) respectively, we obtain

|a2| =
∣∣∣ 5

48
c1

∣∣∣ ≤ 5

24
,

|a3| =
∣∣∣∣ 5

108

(
c2 −

c2
1

8

)∣∣∣∣ ≤ 5

54
,

|a4| =
5

768

∣∣∣c3
1 − 4c1c2 + 4c3

∣∣∣ ≤ 5

768
[2(1 + 2 + 1)] =

5

96
,

|a5| =
1

60

∣∣∣c4 − c1c3 −
1

2
c2

2 +
3

4
c2

1c2 −
1

8
c4

1

∣∣∣
=

1

60

∣∣∣1
8
c4

1 +
1

2
c2

2 + c1c3 −
3

4
c2

1c2 − c4

∣∣∣
=

1

60

∣∣∣lc4
1 + rc2

2 + 2mc1c3 −
3n

2
c2

1c2 − c4

∣∣∣,
where l = 1/8, r = 1/2, m = 1/2 and n = 1/2. These values of l, m, n and
r satisfy the inequality (4.2) in the hypothesis of Lemma 4.5 as it is evident
that

8r(1− r)
(

(mn− 2l)2 + (m(r +m)− n)2
)

+m(1−m)(n− 2rm)2 = 0,

4m2(1−m)2r(1− r) = 0.0625

as well as 0 < m < 1, 0 < r < 1. Therefore, by Lemma 4.5,∣∣∣lc4
1 + rc2

2 + 2mc1c3 −
3n

2
c2

1c2 − c4

∣∣∣ ≤ 2

and hence |a5| ≤ 1
30 .

By Lemma 4.1, Lemma 4.4 and Lemma 4.5, we have |c1| ≤ 2,
∣∣c5−c2c3

∣∣ ≤ 2
and

∣∣ 3
40c

4
1 + 3

4c
2
2 + 3

4c1c3 − 1
2c

2
1c2 − c4

∣∣ ≤ 2.

Consequently, a simple computation shows that

|a6| =
5

432

∣∣∣c5 − c1c4 − c2c3 +
3

4
c2

1c3 +
3

4
c1c

2
2 −

1

2
c3

1c2 +
3

40
c5

1

∣∣∣,
≤ 5

432

(∣∣c5 − c2c3

∣∣+ |c1|
∣∣∣ 3

40
c4

1 +
3

4
c2

2 +
3

4
c1c3 −

1

2
c2

1c2 − c4

∣∣∣)
≤ 5

432
(2 + 4) =

5

72
.
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Further, in view of Lemma 4.3, we have
∣∣− 3

8c
3
1 + c1c2− 1

2c3

∣∣ ≤ 3
2 and in view

of Lemma 4.4, we have |c6 − c1c5| ≤ 2, |c4 − 3
4c1c3| ≤ 2, |c3 − 3

2c1c2| ≤ 4,
|c2 − 3

2c
2
1| ≤ 4 and using the fact |cn| ≤ 2 for n ≥ 1 and in view of Lemma4.5,

we obtain

|a7| =
5

588

(
c6 − c1c5 − c2c4 −

1

2
c2

3 +
3

4
c2

1c4 +
3

2
c1c2c3 +

1

4
c3

2

− 1

2
c3

1c3 −
3

4
c2

1c
2
2 +

3

8
c4

1c2 −
1

16
c6

1

)
≤ 5

588

(
3

8

∣∣c2
1

∣∣∣∣∣ 1

12
c4

1 +
1

2
c2

2 +
2

3
c1c3 −

1

2
c2

1c2 − c4

∣∣∣+
1

2
|c6 − c1c5|

+
1

2
|c2|

∣∣∣c4 −
3

4
c1c3

∣∣∣+
1

4
|c3|

∣∣∣c3 −
3

2
c1c2

∣∣∣+
1

8
|c2|2

∣∣∣c2 −
3

2
c2

1

∣∣∣)
≤ 5

588

(
3 +

2

6
+

4

2
+ 2 + 2

)
=

235

1764
.

We now obtain an upper bound for Fekete-Szegö functional of the class
R1

(
ϕ4L

)
.

Theorem 5.2. If f ∈ R1

(
ϕ4L

)
is given by (1.1), then for any ρ ∈ C, we

have

(5.9) |a3 − ρa2
2| ≤

5

54
max

{
1,

15

32
|ρ|
}

and this inequality is sharp.

Proof. Let f ∈ R1

(
ϕ4L

)
and ρ ∈ C. Then in view of Lemma 4.2, we obtain

∣∣a3 − ρa2
2

∣∣ =

∣∣∣∣∣ 5

108

(
c2 −

1

2
c2

1

)
− ρ

(
5

48

)2

c2
1

∣∣∣∣∣
=

5

108

∣∣∣∣c2 −
(

32 + 15ρ

64

)
c2

1

∣∣∣∣
≤ 5

54
max

{
1,

∣∣∣∣2(32 + 15ρ

64

)
− 1

∣∣∣∣} =
5

54
max

{
1,

15

32
|ρ|
}
.

Sharpness: Case (i): If |ρ| ≤ 32
15 then |a3 − ρa2

2| ≤ 5
54 and the function

f2(z) = z+ 5
54z

3+ 1
726z

11 ∈ R1

(
ϕ4L

)
is an extremal function for this inequality.
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Case (ii): If |ρ| ≥ 32
15 then |a3 − ρa2

2| ≤ 25
576 |ρ| and the function f1(z) =

z + 5
24z

2 + 1
216z

6 ∈ R1

(
ϕ4L

)
is an extremal function for this inequality.

We now estimate an upper bound for second Hankel determinants for the
class R1

(
ϕ4L

)
.

Theorem 5.3. If f ∈ R1

(
ϕ4L

)
, then |H2,2(f)| ≤ 25

2916
and this inequal-

ity is sharp.

Proof. Let f ∈ R1

(
ϕ4L

)
be given by (1.1). A simple computation by using

(5.3), (5.4) and (5.5) and applying the Lemma 4.6, we obtain

|H2,2(f)| = |a2a4 − a2
3|

=
25

144

∣∣∣∣ c1

256

(
c3

1 − 4c1c2 + 4c3

)
− 1

81

(
c2

2 +
1

4
c4

1 − c2
1c2

)∣∣∣∣
=

25

11664

∣∣∣ 17

256
c4

1 −
17

64
c2

1c2 +
81

64
c1c3 − c2

2

∣∣∣
=

25

11664

∣∣∣∣ 17

256
c4

1 −
17

64

c2
1

2

(
c2

1 + x
(
4− c2

1

))
+

81

64

c1

4

(
c3

1 + 2
(
4− c2

1

)
c1x− c1

(
4− c2

1

)
x2 + 2

(
4− c2

1

)(
1− |x|2)z

)
− 1

4

(
c2

1 + x
(
4− c2

1

))2
∣∣∣∣

≤ 25

11664

(
81

256
c2
(
4− c2

)
|x|2 +

1

4

(
4− c2

)2|x|2
+

81

128
c
(
4− c2

)(
1− |x|2

)
c2|δ|

)
≤ 25

11664

(
81

256
c2
(
4− c2

)
t2 +

1

4

(
4− c2

)2
t2 +

81

128
c
(
4− c2

)(
1− t2

)
c2

)
where |δ| ≤ 1. Let

F (c, t) =
81

256
c2
(
4− c2

)
t2 +

1

4

(
4− c2

)2
t2 +

81

128
c
(
4− c2

)(
1− t2

)
c2

where c = |c1| ∈ [0, 2], t = |x| ∈ [0, 1] and 0 ≤ z ≤ 1. It is easy to see that

∂F

∂t
=
(
4− c2

)
2t
( 81

256
c2 +

1

4

(
4− c2

)
− 81

128
c
)
≥ 0.
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Therefore, F (c, t) is an increasing function in variable t. Consequently

|F (c, t)| ≤ F (c, 1) =
81

256
c2
(
4− c2

)
+

1

4

(
4− c2

)2
+

81

128
c
(
4− c2

)
(0)

=
81

256
c2
(
4− c2

)
+

1

4

(
4− c2

)2
= ψ(c).

Now ψ′(c) = 0 implies c = 0 or c is a root of 81
64(2− c2) + (c2 − 4) = 0. Since

ψ′′(0) = −47
32 < 0 at c = 0. Therefore, ψ attains its maximum at c = 0. Hence

|H2,2(f)| ≤ 25

11664
ψ(0) =

25

11664
(4) =

25

2916
.

Sharpness: Consider f2(z) = z + 5
54z

3 + 1
726z

11 ∈ R1

(
ϕ4L

)
as in the

Example 5.1. It is easy to see that |H2,2(f2)| = |a2a4 − a2
3| =

∣∣∣0− ( 5
54

)2∣∣∣
= 25

2916 .

Theorem 5.4. If f ∈ R1

(
ϕ4L

)
, then |H2,3(f)| ≤ 1109

82944
.

Proof. Let f ∈ R1

(
ϕ4L

)
be given by (1.1). A simple computation by using

(5.4), (5.5) and (5.6), we obtain

|H2,3(f)| = 1

144

∣∣∣∣19c2c4 +
97

1152
c1c2c3 +

31

2304
c2

1c
2
2 −

31

4608
c4

1c2

− 1

18
c3

2 −
1

18
c2

1c4 +
31

4608
c3

1c3 +
31

36864
c6

1 −
25

256
c2

3

∣∣∣∣
≤ 1

144

(
1

18
|c1|2

∣∣∣ 31

2048
c4

1 +
31

128
c2

2 +
31

256
c1c3 −

31

256
c2

1c2 − c4

∣∣∣
+

1

9
|c2|
∣∣∣c4 −

1

2
c2

2

∣∣∣+
25

256
|c3|
∣∣∣c3 −

194

225
c1c2

∣∣∣+
31

768
|c1|2|c2|2

)
.

An application of Lemma 4.5 shows that∣∣∣∣ 31

2048
c4

1 +
31

128
c2

2 +
31

256
c1c3 −

31

256
c2

1c2 − c4

∣∣∣∣ ≤ 2.

Further, it is easy to see that an application of Lemma 4.4 yields
∣∣c3 − 194

225c1c2

∣∣
≤ 2,and Lemma 4.2 yields

∣∣c4 − 1
2c

2
2

∣∣ ≤ 2. In view of these inequalities and
using the fact that |cn| ≤ 2 for all n ≥ 1, we finally obtain |H2,3(f)| ≤ 1109

82944 u
0.01337.
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6. Bounds of Zalcman functionals, third Hankel and
Toeplitz determinants for the class R1

(
ϕ4L

)
Theorem 6.1. If f ∈ R1

(
ϕ4L

)
, then |a4 − a2a3| ≤ 5

96 . The inequality is

sharp for f3(z) = z +
5

96
z4 +

1

1536
z16 ∈ R1

(
ϕ4L

)
.

Proof. Let f ∈ R1

(
ϕ4L

)
be given by (1.1). By using Lemma 4.3, we obtain

|a4 − a2a3| =
5

20736

∣∣37c3
1 − 128c1c2 + 108c3

∣∣
≤ 5

20736
(2 (37 + 54 + 17)) =

5

96
.

Theorem 6.2. Let f ∈ R1

(
ϕ4L

)
, then

∣∣a3 − a2
2

∣∣ ≤ 5

54
,∣∣a5 − a2

3

∣∣ ≤ 1

30
,∣∣a7 − a2

4

∣∣ ≤ 61385

451584
.

Further, f2(z) = z + 5
54z

3 + 1
726z

11, f4(z) = z + 1
30z

5 + 1
2646z

21 as given in
Example 5.1 are extremal functions for first two inequalities respectively.

Proof. Taking ρ = 1 in the (5.9) yield
∣∣a3 − a2

2 | ≤ 5
54 . Using (5.6) and

(5.4), we obtain

∣∣a5 − a2
3

∣∣ =

∣∣∣∣ 1

60

(
c4 − c1c3 −

1

2
c2

2 +
3

4
c2

1c2 −
1

8
c4

1

)
− 25

11664

(
c2 −

1

2
c2

1

)2
∣∣∣∣

=
1

60

∣∣∣∣ 1833

11664
c4

1 +
3666

5832
c2

2 + c1c3 −
10248

11664
c2

1c2 − c4

∣∣∣∣
=

1

60

∣∣∣∣ 611

3888
c4

1 +
611

972
c2

2 + c1c3 −
427

486
c2

1c2 − c4

∣∣∣∣
=

1

60

∣∣∣∣lc4
1 + rc2

2 + 2mc1c3 −
3n

2
c2

1c2 − c4

∣∣∣∣ ,
where l = 611/3888, r = 611/9722, m = 1/2, n = 427/729. These values of l, r, m, n
satisfy the hypothesis of Lemma 4.5 as it is evident from the facts that
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0 < r < 1, 0 < m < 1, 4m2(1−m)2r(1− r) = 0.0583655 and

8r(1−r)
(

(mn−2l)2+
(
m(r+m)−n

)2)
+m(1−m)(n−2rm)2 =0.00217541.

Therefore, by Lemma 4.5,∣∣∣lc4
1 + rc2

2 + 2mc1c3 −
3n

2
c2

1c2 − c4

∣∣∣ ≤ 2.

Hence |a5 − a2
3| ≤ 1

60(2) = 1
30 .

On similar lines, utilizing the inequalities |a7| ≤ 235
1764 and |a4| ≤ 5

96 as
proved in Theorem 5.1, we obtain |a7 − a2

4| ≤ |a7|+ |a4|2 ≤ 61385
451584 .

Remark 6.1. It is clear from Theorem 6.2 that the Zalcman conjecture is
true for n = 2, 3, 4 for f ∈ R1

(
ϕ4L

)
.

We now estimate an upper bound of |H3,1(f)| for f ∈ R1

(
ϕ4L

)
.

Theorem 6.3. If f ∈ R1

(
ϕ4L

)
, then |H3,1(f) ≤ 481

82944
.

Proof. Let f ∈ R1

(
ϕ4L

)
be given by (1.1). Then in view of Theorem 6.1

and Theorem 6.2, we have |a4− a2a3| ≤ 5
96 , |a3− a2

2| ≤ 5
54 and |a5− a2

3| ≤ 1
30 .

On expanding and utilizing the triangular inequality, we have

|H3,1(f)| ≤
∣∣a5 − a2

3

∣∣ ∣∣a3 − a2
2

∣∣+ |a4 − a2a3|2.

Hence, |H3,1(f)| ≤
(

1
30

) (
5
54

)
+
(

5
96

)2
= 481

82944 u 0.005799.

Theorem 6.4. If f ∈ R1

(
ϕ4L

)
, then |H3,2(f)| = 3065155

1605632
.

Proof. Let f ∈ R1

(
ϕ4L

)
be given by (1.1). By using (5.3)–(5.6), we obtain

|a2a5 − a3a4| =
1

576

∣∣∣∣c1c4 +
7

36
c1c

2
2 −

47

72
c2

1c3 +
11

48
c3

1c2 −
11

288
c5

1 −
25

36
c2c3

∣∣∣∣
=

1

576

∣∣∣∣c1

(
c4 −

47

72
c1c3

)
+

10

48
c3

1

(
c2 −

11

60
c2

1

)
+

1

48
c2

(
c3

1 +
28

3
c1c2 −

100

3
c3

)∣∣∣∣
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≤ 1

576

(
|c1|
∣∣∣c4 −

47

72
c1c3

∣∣∣+
10

48
|c1|3

∣∣∣c2 −
11

60
c2

1

∣∣∣+
1

48
|c2|
∣∣∣c3

1

+
28

3
c1c2 −

100

3
c3

∣∣∣)
≤ 1

576

(
4 +

10

3
+

53

36

)
=

317

20736
.

A simple computation by using the fact that |a2a5−a3a4| ≤ 317
20736 and applying

the Theorem 5.1, Theorem 5.3 and Theorem 5.4, we obtain

|H3,2(f)| =
∣∣∣a6

(
a2a4 − a2

3

)
− a5(a2a5 − a3a4) + a4

(
a3a5 − a2

4

)∣∣∣
≤ |a6|

∣∣a2a4 − a2
3

∣∣+ |a5||a2a5 − a3a4|+ |a4|
∣∣a3a5 − a2

4

∣∣
≤ 125

209952
+

317

622080
+

5545

7962624

=
3065155

1605632
u 1.9090021.

Theorem 6.5. If f ∈ R1

(
ϕ4L

)
, then |T3(1)| ≤ 25553

23328
.

Proof. From Theorem 5.1 and Theorem 5.2, we have |a2| ≤ 5
24 , |a3| ≤ 5

54
and |a3 − 2a2

2| ≤ 5
54 . Therefore it is easy to see that

|T3(1)| = 1 + 2|a2|2 + |a3|
∣∣a3 − 2a2

2

∣∣
≤ 1 +

(
5

24

)2

+
25

2916
=

25553

23328
u 1.09537894.

Theorem 6.6. If f ∈ R1

(
ϕ4L

)
, then |T3(2)| ≤ 70625

4478976
.

Proof. By the definition of T3(2), we have

T3(2) = (a2 − a4)
(
a2

2 − 2a2
3 + a2a4

)
= (a2 − a4)

(
T2(2) +H2,2(f)

)
.
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Since f ∈ R1

(
ϕ4L

)
, we have |a2| ≤ 5/24 and |a3| ≤ 5/54 and hence

|T2(2)| = |a2
2 − a2

3| ≤ |a2|2 + |a3|2 ≤
25

576
+

25

9216
=

2425

46656
.

Further, using the bounds obtained in the Theorem 5.1 and Theorem 5.3, it
can be shown that

|T3(2)| = |a2 − a4|
∣∣T2(2) +H2,2(f)

∣∣
≤
(
|a2|+ |a4|

)(
|T2(2)|+ |H2,2(f)|

)
≤
( 5

24
+

5

96

)( 2425

46656
+

25

2916

)
=

70625

4478976
u 0.0139506.

7. Upper bounds of fourth Hankel and Toeplitz determinants
for functions in the class R1

(
ϕ4L

)
Theorem 7.1. If f ∈ R1

(
ϕ4L

)
, then |a5 − a2a4| ≤

1

30
. This inequality

is sharp.

Proof. Let f ∈ R1

(
ϕ4L

)
be given by (1.1). By using (5.6), (5.3) and (5.5),

|a5 − a2a4| =
1

60

∣∣∣ 509

3072
c4

1 +
1

2
c2

2 +
893

768
c1c3 −

701

768
c2

1c2 − c4

∣∣∣
=

1

60

∣∣∣lc4
1 + rc2

2 + 2mc1c3 −
3n

2
c2

1c2 − c4

∣∣∣
where l = 509/3072, r = 1/2, m = 893/1536 and n = 701/1152. The values of
l, r, m, n satisfy the hypothesis of Lemma 4.5 and hence

|a5 − a2a4| =
1

60

∣∣∣lc4
1 + rc2

2 + 2mc1c3 −
3n

2
c2

1c2 − c4

∣∣∣ ≤ 1

30
.

The equality hold in |a5 − a2a3| ≤ 1
30 for

f4(z) = z +
1

30
z5 +

1

2646
z21 ∈ R1

(
ϕ4L

)
.
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Theorem 7.2. If f ∈ R1

(
ϕ4L

)
, then |H4,1(f)| ≤ 0.00148679.

Proof. It is found in [11, 6] that if f ∈ S of the form (1.1), then

H4,1(f) = a7H3,1(f)− 2a4a6

(
a2a4 − a2

3

)
− 2a5a6(a2a3 − a4)

− a2
6

(
a3 − a2

2

)
+ a2

5

(
a2a4 − a2

3

)
+ a2

5

(
a2a4 + 2a2

3

)
− a3

5 + a4
4 − 3a3a

2
4a5.

Let f ∈ R1

(
ϕ4L

)
be given by (1.1). Then the required upper bound is esti-

mated as follows

|H4,1(f)| ≤ |a7| |H3,1|+ 2|a4||a6|
∣∣a2a4 − a2

3

∣∣
+ 2|a5||a6||a2a3 − a4|+ |a6|2

∣∣a3 − a2
2

∣∣
+ |a5|2

∣∣a2a4 − a2
3

∣∣+ |a5|2
∣∣a2a4 + 2a2

3

∣∣
+ |a5|3 + |a4|4 + 3|a3||a4|2|a5|

≤ 0.00148679.

follows by using the bounds obtained in Theorem 5.1,Theorem 5.3, Theorem
6.1 and Theorem 6.2.

Theorem 7.3. If f ∈ R1

(
ϕ4L

)
, then |T4(1)| ≤ 1.16244413.

Proof. Let f ∈ R1

(
ϕ4L

)
be given by (1.1). Then by using the bounds of

initial coefficients of f ∈ R1

(
ϕ4L

)
obtained in Theorem 5.1, we can prove

|a3 − a2a4| ≤ |a3|+ |a2||a4| ≤
5

54
+

5

24

( 5

96

)
=

715

6912
,

|a2 − a2a3| ≤ |a2|
(
1 + |a3|

)
≤ 5

24

(
1 +

5

54

)
=

295

1296
,

|1− a2
2| ≤ 1 + |a2|2 ≤ 1 +

25

576
=

601

576
.

Also, using the results established in Theorem 6.2, Theorem 6.1 and Theorem
5.3, respectively, we obtain
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|T4(1)| =
∣∣∣(1− a2

2

)2 − (a2a3 − a4)2 +
(
a2

3 − a2a4

)2 − (a2 − a2a3)2

+ 2
(
a2

2 − a3

)
(a3 − a2a4)

∣∣∣
≤
∣∣1− a2

2

∣∣2 + |a2a3 − a4|2 +
∣∣a2

3 − a2a4

∣∣2 + |a2 − a2a3|2

+ 2
∣∣a2

2 − a3

∣∣|a3 − a2a4|

≤ 1.16244413.

Theorem 7.4. If f ∈ R1

(
ϕ4L

)
is of the form (1.1), then |T4(2)| ≤

0.0036043885.

Proof. Since f ∈ R1

(
ϕ4L

)
, in view of Theorem 6.6, Theorem 5.4, Theorem

5.3 and Theorem 6.4, we have |T2(2)| ≤ 2425
46656 , |H2,3(f)| ≤ 3373

360000 , |H2,2(f)| ≤
16

2025 and |a3a4 − a2a5| ≤ 317
20736 . Further,

|a2a3 − a3a4| ≤ |a3|
(
|a2|+ |a4|

)
≤ 125

5184
,

|a2a4 − a3a5| ≤ |a2||a4|+ |a3||a5| ≤
25

2304
+

5

1620
=

289

20736
,

in view of Theorem 5.1. Therefore,we have

|T4(2)| ≤ |T2(2)|2 + |a3a4 − a2a5|2 + |H2,3(f)|2 + |a2a3 − a3a4|2

+ 2|H2,2(f)||a2a4 − a3a5|
≤ 0.0036043885.

8. Concluding remarks and scope of further research

In this paper, upper bounds of Hankel and Toeplitz determinants |H4,1(f)|,
|T4(1)| and |T4(2)| for f ∈ R1

(
ϕ4L

)
associated with four leaf function ϕ4L(z) =

1 + 5
6z + 1

6z
5 were computed. Examples have been provided to illustrate the

sharpness of certain results. There is ample scope to study upper bounds of
fourth order Hankel and Toeplitz determinants for functions in various other
subclasses of class S related to four leaf function.
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