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Abstract: The objective of this paper is to establish initial coefficient inequalities, Upper bounds
to the Hankel and Toeplitz determinants for certain normalized univalent functions defined on the
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1. INTRODUCTION

Let A be the family of analytic functions f defined on the open unit disk
D = {z € C: |z| < 1} in the complex plane C with the normalization f(0) =0
and f/(0) = 1. The Taylor series expansion of f € A is

N 1™ ()
(1.1) fz)=z+ Zanz” for all z € D, where ap, = ~———.

o n!
The collection of univalent functions (that are one-to-one) f € A is denoted
by S. Unless otherwise stated throughout this paper, we assume the series

representation of f € S is of the form (1.1).
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The classes of starlike, convex and bounded turning functions denoted by
S*, C and R respectively are well recognised subclasses of §. Let B be the
family of analytic functions w(z) in D with w(0) = 0 and |w(z)| < 1 for all z €
D. The members of B are called the Schwarz functions and w(z) = z, w(z) =
22 are a couple of examples of members in B. A function f € A is said to be
subordinate to g € A if there exists a w € B such that f(z) = g(w(z)) for all
z € D. In this case, we write f < g. If g is univalent, then f < g if, and only
if, g(0) = f(0)and f(D) C ¢g(D). For basic information on univalent function

theory, we refer to 7] and [24].

For f € A with series expansion ([1.1]), The ¢** Hankel determinant of index
n, denoted by Hy,(f) ( or simply Hgy(n)), is defined as

(079 an+1 e an+q,1
An+1 an4+2 ... Qp+tq
an+q—1 Qn+q .- 0n42¢g—2

for ¢ > 2 and n > 1 with a; = 1 (see [23], [22]), whereas ¢*" Symmetric
Toeplitz determinant of index n, denoted by T,(n), is defined as

(07 an+1 ceo Onigq—1
Ap41 (079) cev OAni4q—2
Gn4q—1 OAnt4q—2 --- (479

for ¢ > 2 and n > 1 with a1 =1 (see [33]).

The classes S* and C were further generalized to the classes S*(p) and
C(y) by Ma and Minda [I§] and studied growth, distortion results associated
with these classes, which are defined as

sy ={res: oy #(2)},
2f"(2)
= 01
() {feS e <so(z)},
where ¢ € A such that R{¢(z)} > 0, ¢'(0) > 0, ¢(D) is symmetric with
respect to real axis and starlike with respect to ¢(0) = 1. If we choose

¢(z) = 122 for 2 € D then it is evident that S*(p) = S* and C(yp) = C.
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ZALCMAN CONJECTURE: In 1960, Lawrence Zalcman conjectured that
the coefficients of f € S with series representation (|1.1)) satisfy the inequality

|ai —agn—1| < (n— 1)2, for n > 2.

Ma [I7] proposed generalized Zalcman conjecture for f € S of the form (|1.1)
that
‘anam - an—i—m—l’ < (TL - 1)(m - 1)7 for n,m > 2

and proved this conjecture is true for starlike functions and univalent function
with real coefficients.

2. LITERATURE REVIEW

Geometric function theory relies heavily on the study of Hankel and
Toeplitz determinants related to the members of S.Many researchers were
inspired to study |H2(2)| and |Hs(1)| for different subclasses of S by the
groundbreaking work of Pommerenke [22],[23] and Hayman [9] on Hankel de-
terminants for functions in the class §. For instance, Noonan and Thomas
[20] studied the second Hankel determinant of areally mean p-valent functions,
Noor [21] has investigated the Hankel determinant of close-to-convex univa-
lent functions. Babalola [4] estimated an upper bound of |Hz(f)| for the
functions in the classes S*, C, and R. Sharp estimates of |Hs1(f)| for these
three classes were obtained in the papers [15], [14] and [I3] respectively.

In recent years, various geometric characteristics have been investigated
and considered by selecting a certain function ¢ that satisfies the conditions
proposed by Ma-Minda. For instance, the functions ¢3r(z) = 1+ %z + %z‘l,
vo(z) =1+ %z + %22, ps(z) = 1+ sinz maps D onto three-leaf, cardioid,
and eight-shaped domains respectively (see [5], [28], and [3]) are a few notable
Ma-Minda-type functions that have been researched recently. The classes

2f'()
o <ot}
2"(2)
o <ot}

Rar={f€S:f'(2) < par(z)}

SZL:{fES

C4L:{f68:1+

of starlike, convex and bounded turning functions are associated with
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¢ar(z) =1+ 2z + £2° that maps D onto four leaf shaped domain have been
introduced by Pongsakorn Sunthrayuth et al. [32].

2.1. LITERATURE REVIEW OF CONCERNING UPPER BOUND OF |Hy 1(f)]
FOR f € S: Arif et al. [2] estimated an upper bound of |Hy(f)| for f € R
by proving |Hy(1)| < $3L. Later, an upper bound for |Hy1(f)| for f € S
related to different geometric domains was obtained by few Adresearchers. We
now list some of them.

An upper bound for [Hy 1(f)] is obtained:

(1) for the class R1 ={f € A : R{f'(2) + z2f"(2)} > 0} by Kaur et al. [10];

(2) for the class R(pc) = {f € A : f/(2) < 1+ 3z + 22%} by Srivastava
et al. [30];

(3) for the class f € Rein ={f € A : f'(2) < 1+sinz} by Khan et al. [I1];

(4) for thT c]lass Rsg = {f e A: fl(z) < 1+%for allz € D} by Khan
et al. [12];

(5) for the class Ri(cosz) = {f € A : f'(2) + zf"(z) < cosz} by Yakaiah
and Bharavi Sharma [35];

(6) for the class Ri(1 +sinz) = {f € A : f'(2) + 2f"(z) < 1 +sinz} by
Ganesh et al. [6].

(7) For recent investigations on Hankel determinents,we refer to the research
works of H.M. Srivatsava et al. [31]. They found upper bounds for the
third and fourth order Hankel determinants for the functions of new sub-
classes of analytic functions by making use of subordination involving the
sine function and the modified sigmoid activation function.

2.2. LITERATURE REVIEW ON TOEPLITZ DETERMINANTS:

(1) The Hankel and Toeplitz determinants were closely related.Toeplitz de-
terminants contain constant entries along the principal diagonal, unlike
Hankel determinants.

(2) Thomas and Abdul Halim [33] initiated the concept of Toeplitz matrices
Ty(n), for the functions in S* and close to convex functions K.
(3) Zhang et al. [36] studied an upper bounds of the fourth Toeplitz deter-

minant for the class S = {f €S: z}‘ES) <1+ sin(z)}.
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(4) Vijayalakshmi et al. [34] studied symmetric Toeplitz determinants for
classes defined by post quantum operators subordinated to the limacon
function.

(5) Srivastava et al. [29] studied Hankel and Toeplitz determinants for a
subclass of g-Starlike functions associated with a General Conic Domain.

(6) Yakaiah and Bharavi Sharma [35] estimated fourth Toeplitz determinants
for f € Ri(cosz)

(7) Yakaiah et al. [6] computed upper bounds for |Ty(1)| and |Tx(2)| for
f€R1(1+sinz).

(8) Recently, Mandal et al. [19] investigated Toeplitz determinants of log-
arithmic coefficients of inverse functions for certain classes of univalent
function.

(9) For similar type of studies concerning Toeplitz determinants for starlike,
convex and bounded boundary rotation functions we refer to [1] and [25].

3. MOTIVATION AND IDENTIFICATION OF RESEARCH PROBLEM

(1) Gunasekar et al. [8] studied a new subclass Aj}° of analytic functions
related to the four-leaf domain,where r > 0, s € [0, 1] and

A = {1+ 0092 (@) @ s () -2) < puna)).

(2) Shaba et al. [27] studied Fekete-Szegd problem and second Hankel deter-
minant for a subclass of bi-univalent functions associated with four leaf
domain.

Motivated by the works of Sunthrayuth et al., Gunasekar et al., Shaba et al.
and Yakaiah et al. [32], [8], [27], [35], in this paper, upper bounds of fourth
Hankel and Toeplitz determinants for the class

Ri(par) = {f €S fl(2)+z2f"(2) = 904L(z)}

associated with four leaf function p4r(2) = 1 + %z + %25 were computed.
The image of D under ¢47,(2) can be seen as in Figure (I} The organization
of this paper is as follows. In Section [ we state some lemmas to prove
our main results. The initial coefficient bounds, second order Hankel and
Toeplitz determinants bound estimates for functions in the class R (904L) are
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presented in Section [5| and the third order Hankel and Toeplitz determinants
bound estimates in Section [ Finally, Section [7] is dedicated to compute
upper bound estimates of fourth order Hankel and Toeplitz determinants for

f € Ri(par).

N pe
j- %\

Figure 1: The Image of unit disk under the mapping ¢4z,
(Using Complex Tools)

4. A SET OF USEFUL LEMMAS

The collection of analytic functions p(z) defined on the unit disk D with
p(0) = 1 and R{p(z)} > 0is called the class of functions with positive real part,
and it is denoted by P. For p € P, we have the following series representation

o0
(4.1) p(z) =1+ chz”, for z € D.
n=1
Unless otherwise stated throughout this paper, we assume the series represen-
tation of p € P is of the form (4.1).
LEMMA 4.1. ([24]) If p € P, then |c,| < 2 for any positive integer n. The

+ z
1—2z

inequality is sharp for p(z) =

LEMMA 4.2. ([18]) If p € P and p € C, then |ca — pci| < 2max{1,|2p —
14 22
1— 2%

1|}. The inequality is sharp for p(z) = 22 and p(z) =
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LemMA 4.3. ([3]) If p € P, then for any real numbers A, B and C,

|Ac} — Beyea + Ces| < 2 (JA|+ |B — 24|+ |A— B+ CY).

LeMMA 4.4. ([26]) If p € P, then for all n,m € N,

2 if0<p<i,

[Pencm — Cntm] =
e 212p — 1| otherwise.

This inequality is sharp.

LemmaA 4.5. ([26]) If p € P, I, m, n and r be real numbers and the
inequalities 0 <m < 1,0 < r <1,

8r(1—r) ((mn —20)% + (m(r +m) — n)2) + m(1 —m)(n — 2rm)?

4.2
"2 <4m2(1 —m)*r(1—7)

hold, then
3
’lci1 + Tcg + 2mcicg — gc%@ — 04‘ < 2.
LeMMA 4.6. ([16]) If p € P and ¢; > 0, then

2c = ¢ + (4 — ),

des=c+2M4— Ay —c1(d— )z +2(4 - A)(1- |z |?)z
for some z,z with |z| <1 and |z| < 1.

5. INITIAL COEFFICIENT INEQUALITIES, SECOND HANKEL
DETERMINANTS FOR THE CLASS R1(ar)

Let f € Ry (<p4L). Then there exists w € B such that
(5.1) F(2) + zf"(2) = par(w(z2)), for all z € .
If we take

eP for all z € D then w(z) = ———
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so that

(5.2)  fl2)+2f"(z) =1+ 2(2231) - é(igi;f for allz € D.

On substituting (1.1) and (4.1) in (5.2) and comparing like coefficients on
both the sides of (5.2]), we obtain

(5.3) az = j2c,

(5.4) ag = 1% (02 - %C%)a

(5.5) a4 = % (ic‘;’ —cieo + 03>,

(5.6) as = 610 <C4 —cje3 — ;cg + ZC%CQ - éc‘ll),

(5.7) ag = 422 (05 —c1c4 — Coc3 + 20%63 + %clcg - %C?CQ + 43—00?)

(5.8) a7 = 528 (06 — c1c5 — CoCq — ;cg + 20%04 + gclcgc?, + icg
- sdes - 24+ 2o - dh),

EXAMPLE 5.1. By taking the Schwarz functions w(z) = 2, w(z) = 22,
w(z) = 2% and w(z) = z* in (5.1)) followed by integrating on both sides and
utilizing the fact f(0) =0, f'(0) =1 we get respectively:

(1) fi(z) = 2+ 2° + 51525,

(2) fa(z) = 2+ 512° + 2"
(3) f3(2) = 2+ g5z + 552",
(4) f ()—Z+@Z + 857"

It is easy to see that f; € Rq (@4L) fori=1,2,3,4.
We now estimate initial coefficient bounds for the functions in R4 (¢4L).

5
THEOREM 5.1. If f € R1(§O4L) is given by |i Then |ao] < —

24’
) 1 5 235

las| < lasg] < las| < lag| < The members

> — and |a7| <
547 T4 =967 1O = 307 1701 = 7 = 17647
f1, fa, f3, fa are extremal functions for first four inequalities respectively.
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Proof. Let f € Ri(par) be given by (1.1). By applying Lemma
Lemma [4.2] and Lemma to (5.3)), (5.4) and (5.5 respectively, we obtain

]a\—ic‘<E
27487 = o

5 c 5
= | — _ < —
sl = | 108 <c2 8)‘ = 54

lag| = 7%8’6? —4C1C2+4C3‘ < %[2(1+2+1)] _ %?
|as| = % ey — cire3 — %Cg + chcz _ écﬂ

= % gcil + %C% +cic3 — %C%CZ — 64‘

= % It + 7k 4 2meycz — 37710%@ — ¢,

where | = 1/8, r = 12, m = 12 and n = 1/2. These values of [, m, n and
r satisfy the inequality (4.2]) in the hypothesis of Lemma as it is evident
that

8r(l—r) <(mn —20)% + (m(r +m) — n)2> +m(1—m)(n—2rm)? =0,
4m2(1 —m)?r(1 —r) = 0.0625

as well as 0 <m < 1, 0 < r < 1. Therefore, by Lemma

<2

3n
‘lc‘l1 + Tcg + 2mcicg — 30%02 — 64‘

and hence [a5| < .

By Lemma Lemmaand Lemma we have [c1| < 2, |5 —cacs| < 2

3 4,3 3
and ‘Ecl + 3¢5 + jc103 — 5CCo — 64‘ < 2.

Consequently, a simple computation shows that

3 9 3 o9 13 3 5
Cs — C1C4 — CoC3 + —CjC3 + —c165 — —CcjCc2 + —cCi |,

5
| _@’ 1 1 2 101

< S ‘ ‘+| |‘34+32+3 15 ’

- Cy — C2C Cl||7=C —C —C1C3 — ZC1C2 — C

= 3o (65— 268 Ujgpct T 32T a6~ 500 —a
5 5

< —(244) = .

*432(+) 72
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Further, in view of Lemma we have ‘ — fcl +creo — 03‘ <3 5 and in view
of Lemma we have |06 - clc5| <2, lea — 2eres] €2, Jes — 3erea] < 4
lco — 3¢3| < 4 and using the fact |c,| < 2 for n > 1 and in view of Lemm
we obtain

Lo 35 3 3
97 = Fss (06 — €105 — o0y — o3+ oeies F geicacs + 16
1 3 3 1
- 50‘%03 - ZC%C% + gcﬁ‘@ EC?)

<i f| ” +lc +2cc 1026 c‘—i—l\c crs)
=588 \ 81121 T g2 T gas T oae malT ol T acs

+1|c|)c—§cc‘+1|c\‘c—§cc‘+1\c\2‘c—§c2’

gleal|ca — qares| + Zlasl e — garca| + gleal” ez — 5
5) 4 235

<5 sia) = 25

_588(3+6+ tet 1764

We now obtain an upper bound for Fekete-Szeg6 functional of the class
Ri(par).

THEOREM 5.2. If f € Ry(wpar) is given by (1.1), then for any p € C, we
have

5 15
(5.9) oy = pef] < 2 max {1, 211}

and this inequality is sharp.

Proof. Let f € Ry (g04L) and p € C. Then in view of Lemma we obtain

5 1, 5\% ,
108<CQ2 >p<48> “

5 32+ 15p\ ,
w82 \Te /A

5 32+ 15p 5 15
<2 1Ll2 (22222 g 2 {1’7 }
54max{ ‘ < 64 ) ‘} 51 max L gl

SHARPNESS: Case () If |p| < 22 then |ag — pa3| < 2 and the function
fa(z) = 2+ 5542 + 726Z Ler,y (9041;) IS an extremal function for this inequality.

s — pa] =
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Case (ii) If lp| > 32 then |ag — pa3| < 22|p| and the function fi(z) =
zZ+ 3 4z + 2162 Ry (904L) is an extremal function for this inequality. [}

We now estimate an upper bound for second Hankel determinants for the
class Rq (@4L).

THEOREM 5.3. If f € R1(¢4L), then |Ha2(f)| <
ity is sharp.

and this inequal-
2916

Proof Let f € R1 (804L) be given by (1.1). A simple computation by using
. and (| and applying the Lemma we obtain

|Ha2(f)| = |azas — a%!
= 144 |26 (1 — 4e12 +4es) — 87(02 tTia- Clc?)
25 1i4 17 5 +8160_02’
T 11664125670 T 6412 T g 1B T @

_ % |17, 17 1-))
116642561 ~ 64 2 (Cl (4 - )
81 C1

—1—6—4Z< Ad4+2—car—c(d—c)a® +2(4-c) (1 - |z[)z )

i(cl+x(4—c%)>2‘

25 8L , 2 2 } 22 2
<2 (256 (4= )fef 4 L4 - ) le

81 AN 1I2) 2
+ 71280(4 c )(1 || )c |5|>
81

25 81 1
< B <256 P-4 L cfa e )(1—1&2)@2)
where [0] < 1. Let

81
256

_ 20, 2 L o 8L _42).2
F(e,t) = c4-)t +4(4 )t+1280(4 A)(1—1%)c

where ¢ = |e1] € [0,2], t = |z] € [0,1] and 0 < z < 1. It is easy to see that

oF 81 , 1 5 81
ot O )2t<256 + (=) - 1286) 2 0.
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Therefore, F(c,t) is an increasing function in variable t. Consequently

Fle.t)] < Fle) = (4 =) + 1 (4 =) + et~ ) (0)
= 28516 2(4 — 62) + %(4 — 02)2 = (c).

Now /(¢ )-01mp11esc-00r01saroot of 82—+ (c*—4) =0. Since

" (0) = < 0 at ¢ = 0. Therefore, ¥ attams its maximum at ¢ = 0. Hence
25 25 25
< — = 4) = .
H22(D1 < 176650 = 11663 = 2916

SHARPNESS: Consider fo(z) = z + %23 + 7716,211 c Ry (g04L) as in the
Example It is easy to see that |Hss(f2)| = |asas — a3| = ‘0 - (5%)2‘

_ 25
= 2916 1
THEOREM 5.4. If f € Ri(par), then [Ha3(f)| < ——
’ ’ — 82944°

Proof Let f € Ry (904L) be given by . A simple computation by using

. and (| -, we obtain

11 97 31 31
H R 2 4
[Ho(1)l = 745|920 + 15310208 + 330594 ~ 3505912
1, 1, 31 . B,
182~ 186104 + 46086103 * 368641 2564
oL ||‘ +312+31 31, C‘
3t 3l a
= 144 20481 T 1282 T 25613 T 25612 T A
1 2 2
|02“C4 2% ‘ 256| 3" Cl 2’ + 768‘61‘ ez )

An application of Lemma, [£.5 shows that

S P 2+£13—£22—C4

< 9.
20181 T 1282 T 256 256 1€ =

Further, it is easy to see that an apphcatlon of Lemmaylelds ‘63 535 c1 CQ‘
< 2,and Lemma [4.2| yields ‘64 — 5 ‘ < 2. In view of these inequalities and
using the fact that \cn| < 2 for all n > 1, we finally obtain |Ha3(f)| < g =
0.01337. 1
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6. BOUNDS OF ZALCMAN FUNCTIONALS, THIRD HANKEL AND
TOEPLITZ DETERMINANTS FOR THE CLASS R1(4r)

THEOREM 6.1. If f € Ry (g04L), then |ag — agag| < %. The inequality is
5 1
sharp for f3(z) = 2+ —2* + ——210 e R4 (cp4L).

96 1536
Proof. Let f € Ry (804L) be given by ([1.1)). By using Lemma we obtain
)
las — agas| = m}B?ci‘ — 128cy¢; + 108c3|
< _(2(BT+54+17) = >
~ 20736 96

THEOREM 6.2. Let f € Ry (s04L), then

5
’a?)_a%‘ < 574>

1
‘05 _ag‘ S %a

61385
a7 - ad] < 451584

Further, fo(z) = z+ ;2% + 328, fa(2) = 2+ 52° + 55220 as given in
Example [5.1] are extremal functions for first two inequalities respectively.

Proof. Taking p = 1 in the 1} yield |a3 —a3] < %. Using || and
(5.4), we obtain

5 |1 1, 3, 1, 25 1 5\2
G I LR N
111833 , 3666 o 10248 ,
=60 116641 T g3 T BT 11642 T ™
1]611 , 611, 427
= @ 388861 @02 + c1c3 — @clcz — 4
= % lc‘l1 + ’I“C% + 2meicg — %C%CQ — ¢4,

where [ = 611/3888, 7 = 611 /9722, m = 1/2, n = 427/729. These values of [, r, m, n
satisfy the hypothesis of Lemma 4.5 as it is evident from the facts that
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0<r<1,0<m<1, 4m3(1 —m)?r(1 —r) = 0.0583655 and
8r(1—r) ((mn—Ql)2+(m(r+m)—n)2) +m(1—m)(n—2rm)?=0.00217541.

Therefore, by Lemma

3n
‘lc‘l1 + rcg + 2mcics — 70%02 —cy| < 2.

2 1oy _ 1
Hence |as — a3| < 55(2) = 55- e i
On similar lines, utilizing the inequalities |a7| < % and |ag| < g5 as

proved in Theorem 5.1 . we obtain |a7 — af| < |ar| + |as|? < 2325 1

Remark 6.1. It is clear from Theorem that the Zalcman conjecture is
true for n = 2,3,4 for f € R4 (904L)-

We now estimate an upper bound of |Hs1(f)| for f € Ry (g04L).

481
3. < —,
THEOREM 6.3. If f € Rq(par), then [Hs:(f) < 501l

Proof. Let f € Ri(par) be given by (1 . Then in view of Theorem
and Theorem we have |asq — aga3| < g5, ]ag —aj| < 2 and a5 — 3| < 55
On expanding and utilizing the triangular inequality, we have

|H31(f)| < |as — a3 |as — a3| + |as — azas|*.
Hence, [H31(f)] < () (Z) + (&) = g%, = 0.005799. B

3065155

THEOREM 6.4. If f € R1(804L); then |Hso(f)| = 1605632

Proof. Let f € Ry (g04L) be given by . By usmg ., we obtain
47 11 4 11 25

lagas — asaq| = =6 |c1cs + 376610% —5 €103 + — 15 cleg — 2886? ~ 35026
1 47 10 4 11,
~ 576/ (C“ T 72 Clc‘“’) 48° ( @Cl)
1 28 100
@02 <01 + 30102 - ?03>
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1
< 576<|01|‘C4—6103‘ + — |C1| ‘CQ— Cl‘—i- ‘CQ“C?

+ 36102 - 703
1 ( 10 53) _ 317

< (44 —+2) =
=56\ "3 T 36) T 20736

28 100 D

A simple computation by using the fact that |asas—asas| < 28%6 and applying
the Theorem Theorem [5.3] and Theorem we obtain

‘H&Q(f)‘ = ’CLG (a2a4 — CL%) — a5(a2a5 — a3a4) + ag (a3a5 - ai)‘
< ]a6|’a2a4 - a%] + |as||azas — agaq| + !a4|’a3a5 - aZ’
125 317 5545
< + +
209952 622080 = 7962624
3065155
= ———— =~ 1.9090021.
1605632
1
25553
THEOREM 6.5. If feR then |T:
f 1(par), then |T3(1)] < 33393
Proof. From Theorem and Theorem [5.2) . we have |az| < 2, |ag| < &
and |ag — 2a3| < 2 Therefore it is easy to see that
|T5(1)| =1+ 2|a2]2 + \a3|‘a3 — 2a§’
5\° 25 25553
<1 ~ 1. 4.
* (24) T 5916 ~ 23308 © 1099378 I

70625

THEOREM 6.6. If f € Ry(par), then |T3(2)| < 1478976

Proof. By the definition of T3(2), we have

T5(2) = (az — aq) (a3 — 2a3 + azas) = (a2 — as)(T2(2) + Ha2(f))-
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Since f € Ri(par), we have |ag| < 5/24 and |ag| < 5/54 and hence

25 25 2425
ie — a2 — a2| < |ag|? 2 =
I T2(2)] = laz — a3 < lazl* + |as|* < oo + 5o = Joees

Further, using the bounds obtained in the Theorem and Theorem it
can be shown that

|T3(2)| = |az — a4]|T2(2) + Ha(f)|
< (laz| + laa]) (IT2(2)] + [H2,2(f)])
5 51/ 2425 25
= (ﬂ + %) <46656 + M)
70625

= — z . 1 .
4478976 00139506

7. UPPER BOUNDS OF FOURTH HANKEL AND TOEPLITZ DETERMINANTS
FOR FUNCTIONS IN THE CLASS Ri(paz)

1
THEOREM 7.1. If f € Ry (304L), then |as — agay| < 30 This inequality

is sharp.

Proof. Let f € Ri(par) be given by (1.1). By using and (5.5

509 ! 893 701 ,

1,
60‘3072 1+ 3% +@Clc3 7686162 4‘

las — azaq| =
3n
= @‘lc‘f + rcg + 2meicg — 70?02 — 04‘

where [ = 509/3072, r = 12, m = 893/1536 and n = 701/1152. The values of
I,7, m, n satisfy the hypothesis of Lemma [£.5 and hence

1 3
las — agaq| = @’lcil + TC% + 2mecie3 — ?nc%@ — 04‘ < 30

The equality hold in |as — agas| < % for

1 1
fa(z )—Z+% 2646z21 € Ri(paL).
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THEOREM 7.2. If f € Ri(par), then [Hy1(f)| < 0.00148679.

Proof. 1t is found in [I1}, 6] that if f € S of the form (1.1)), then

Hy1(f) = arH3z1(f) — 2a4a6 (a2a4 — ag) — 2asa6(azas — aq)
— a% (a3 — a%) + a% (a2a4 - a%)
+ a? (a2a4 + 2(1%) —ad + ai — 3aza’as.
Let f € Ry (<p4L) be given by . Then the required upper bound is esti-
mated as follows
|Ha 1 (f)] < lar| |Hs1| + 2laa]|as||azas — a3
+ 2|as||ag||azas — aq| + \a6|2|a3 — ag‘
+ |a5]2‘a2a4 - a%‘ + ]a5|2|a2a4 + 2a?2)‘
+las|® + |aa|* + 3las||aa|?|as]
< 0.00148679.

follows by using the bounds obtained in Theorem [5.1} Theorem [5.3] Theorem
and Theorem 1

THEOREM 7.3. If f € Ri(par), then |Ty(1)] < 1.16244413.

Proof. Let f € Ry (4,04L) be given by 1) Then by using the bounds of
initial coefficients of f € Ry (904L) obtained in Theorem Wwe can prove
a3 — azaa] < [ag| +lasllas] < o + () = B2

8 TRl =TI =50 ™ 94\96/) — 6912

5 5 295

o <o) < 50+ ) = 2

(a2 = azas] < Jaal (1 + las]) < o7 (1457 ) = 055
2% _ oo
576 576

Also, using the results established in Theorem Theorem [6.1] and Theorem
5.3l respectively, we obtain

1 —a3| <1+ asf?

IN
—_
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|T4(1)| = ‘(1 — a%)Q — (a2a3 - a4)2 + (CL?; - a2a4)2 - (CL2 — a2a3)2
+ 2(&% — CL3) (a3 — a2a4)‘
<1- ag‘Z + azaz — aq|?® + |a3 — a2a4|2 + |ag — azas|?

+ 2‘@% — ag||as — azay]

<1.16244413.

THEOREM 7.4. If f € Ri(par) is of the form (L.1), then |Tx(2)| <
0.0036043885.

Proof. Since f € Ry (904L)7 in view of Theorem Theorem Theorem
and Theorem [6.4) we have |T5(2)] < 5, [H2(0/)| < 5505, 122 (f)] <
and |azay — agas| < 5o+ Further,

|agas — azas] < |as|(|az| + |as]) < 12
- ~ 5184’
25 5 289
|azay — azas| < |as||as] + |asl|as| < +

~ 2304 ' 1620 20736
in view of Theorem Therefore,we have

T4(2)] < |T2(2)]* + azas — azas|* + |Hz3(f)|> + |azas — asas)?
+ 2|Ha2(f)l|azas — azas|
< 0.0036043885.

8. CONCLUDING REMARKS AND SCOPE OF FURTHER RESEARCH

In this paper, upper bounds of Hankel and Toeplitz determinants |Hy 1 (f)],
Ty (1)| and |T4(2)| for f € R1(par) associated with four leaf function par,(z) =
1+ %z + %z5 were computed. Examples have been provided to illustrate the
sharpness of certain results. There is ample scope to study upper bounds of
fourth order Hankel and Toeplitz determinants for functions in various other
subclasses of class S related to four leaf function.
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