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Abstract : We provide infinite-dimensional versions of analytic gap dichotomies, in the sense that a
sequence of analytic hereditary families {Ip}p<ω of subsets of a countable set Ω is either countably

separated or there is a tree structure inside Ω in which p-chains are sets from Ip. A topological

version of this is that if K is a separable Rosenthal compact space, then either K is a continuous
image of a finite-to-one preimage of a metric compactum or there is a tree structure inside K in

which p-chains inside every branch form a relatively discrete family of sets.
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1. Introduction

The classical notion of a gap, as first considered by Hausdorff [11] in set
theory can be thought as a couple of families I0 and I1 of sets that are
orthogonal but not separated. Here, orthogonal means that a0 ∩ a1 is finite
whenever a0 ∈ I0 and a1 ∈ I1. And the families would be separated if there
existed disjoint sets b0, b1 such that, for i = 0, 1 we have a ⊆∗ bi whenever
a ∈ Ii. Remember that x ⊆∗ y means that x \ y is finite. There were two
new ingredients that were added in the article [15] (see also [18]) to the the-
ory of gaps. One ingredient is that the assumption of descriptive complexity
hypotheses (like being analytic, which is natural in certain applications) trans-
lates into strong structural results. A second ingredient was the introduction
of a weaker notion of separation: I0 and I1 are countably separated if there
exists a countable family F of sets such that for every a0 ∈ I0 and a1 ∈ I1

there exists disjoint b0, b1 ∈ F such that a0 ⊆ b0 and a1 ⊆ b1. One of the
main results of [15] was the following dichotomy:
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Theorem 1.1. ([15, Theorem 2]) Let I0 and I1 two hereditary analytic
families of subsets of ω. One and only one of the following two statements
hold:

1. either I0 and I1 are countably separated,

2. or there exists an injective mapping from the dyadic tree 2<ω into ω
that sends every 0-chain into an element of I0 and every 1-chain into an
element of I1.

Terminology: Ii is hereditary if b ∈ Ii and a ⊂ b implies a ∈ Ii. We
consider a topology on the power set P(ω) of ω given by the transfer of the
product topology of {0, 1}ω via the natural identification of subsets of ω with
sequences of zeros and ones. The property of being analytic refers to this topol-
ogy. Given p ∈ ω, a p-chain is a set x of finite sequences of natural numbers
such that whenever s = (s0, . . . , sn) and t = (t0, . . . , tm) are different elements
of x, then either n < m and t is of the form t = (s0, . . . , sn, p, tn+2, . . . , tm) or,
vice-versa m < n and s = (t0, . . . , tm, p, sm+2, . . . , sn). Another way to view
this is to consider, for every x ∈ ωω and every p ∈ ω the set

axp = {(x0, . . . , xn) : xn+1 = p}.

A p-chain is then a subset of axp for some x.

A further step in this direction of research was taken in [5, 6] by considering
finitely many families instead of just two. The families I0, . . . , Im−1 are said
to be countably separated if there is a countable family F such that for every
a0 ∈ I0, . . . , am−1 ∈ Im−1 there exists b0, . . . , bm−1 ∈ F such that

⋂
i<m bi = ∅

and ai ⊆ bi for all i. The n-adic tree n<ω is the set of all finite sequences of
numbers 0, 1, . . . , n− 1. The new version of the dichotomy was

Theorem 1.2. ([6]) Let {Ii : i < n} be n analytic hereditary families of
subsets of ω. One and only one of the following two statements hold:

1. either the families are countably separated,

2. or there exists an injective mapping from the n-adic tree n<ω into ω
that sends every i-chain into an element of Ii.

The aim of this note is to consider infinite versions of this dichotomy,
dealing with countably many families instead of finitely many. We shall state
two different versions of it. In one of them the tree involved will be ω<ω the
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set of all finite sequences of natural numbers, while in the other one we will
use the profusing tree

Υ =
{

(t0, . . . , tk) ∈ ω<ω : ti ≤ i for all i
}
.

Accordingly, there will be two infinite generalizations of the concept of count-
able separation. They are given below for a general family I of sequences of
sets, but keep in mind the case when I =

∏
i<ω Ii for hereditary families of

sets I0, I1, . . . . We fix a countable set Ω.

Definition 1.3. Let I ⊂ P(Ω)ω be a family of sequences of subsets of Ω.

1. I is ε-countably separated if there exists a countable family F ⊂ P(Ω)ω

such that:

(a)
⋂
p<ω bp is finite whenever (bp)p<ω ∈ F ;

(b) for any given sequence of sets (ap) ∈ I there exists (bp) ∈ F such
that ap ⊆ bp for all p.

2. I is E-countably separated if there exists a countable family G ⊂ P(Ω)
such that: for any given sequence of sets (ap) ∈ I there exist n and
b0, . . . , bn∈G such that

⋂
i≤n bi is finite and ai ⊆ bi for i = 1, . . . , n.

Observe that every E-countably separated I is ε-countably separated, just
taking F the family of all sequences of the form (b0, . . . , bn,Ω,Ω,Ω,Ω, . . .)
with b1 ∩ · · · ∩ bn finite and b0, . . . , bn ∈ G. The converse is not true
(cf. Proposition 3.2). We will say that I is hereditary if whenever (bp) ∈ I and
ap ⊆ bp for all p, then (ap) ∈ I. These are the main results of this paper:

Theorem 1.4. Let I ⊂ P(Ω)ω be an analytic hereditary family of se-
quences of subsets of Ω. One and only one of the two following options holds:

1. either there exists an injective mapping σ : ω<ω → Ω such that
(σ(axp))p<ω ∈ I for all x ∈ ωω,

2. or I is ε-countably separated.

Theorem 1.5. Let I ⊂ P(Ω)ω be an analytic hereditary family of se-
quences of subsets of Ω. One and only one of the two following options holds:

1. either there is an injective mapping σ : Υ→ Ω such that (σ(axp))p<ω ∈ I
for all x ∈ ωω with xi ≤ i for all i,

2. or I is E-countably separated.
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In both cases, when I =
∏
i<ω Ii, condition (1) can be rephrased saying

that σ sends p-chains into sets from Ip for every p.

It may sound natural to study the infinite version of separation instead of
countable separation. However, the natural notion of separation of infinitely
many families seems to be just stating that a finite subfamily is separated.
This does not add anything really new. The notions of countable separation
studied here cannot be reduced to the finite subfamilies, see the concluding
remarks of Section 3.

In the theory developed in the finite case, after dichotomies like above
established, one refines the information by using Ramsey theory on trees in
order to get canonical objects in a stronger sense [6]. One would like to have
an embedding σ whose behavior is not only known on p-chains but also on the
other different kinds of chains and antichains that naturally exist on the tree.
However, the structure of chains and antichains in ω<ω and Υ is substantially
more complex than in an n-adic tree n<ω and we do not see how to apply the
Ramsey refinement procedure to obtain a list of minimal canonical objects in
the same elegant way as in the finite case.

A compact space is called Rosenthal if it is homeomorphic to a point-
wise compact set of functions of the first Baire class on a Polish space.
This is an important notion with origins in Banach space theory [14, 13],
very much connected to descriptive set theory [2, 9]. The analytic gap di-
chotomies are related to finding canonical objects inside certain classes of
separable Rosenthal compact spaces related to trees [16, 1, 7]. The follow-
ing is the infinite version of [7, Lemma 35] in the spirit of this note. Here,
[Υ] = {x ∈ ωω : xi ≤ i for all i < ω}, that we can view as the set of branches
of the tree Υ.

Theorem 1.6. Let K be a separable Rosenthal compactum. One and
only one of the two following statements holds

(i) Either K is a continuous image of a compact finite-to-one preimage of
a metric compactum.

(ii) Or there exists a one-to-one map u : Υ→ K such that for every x ∈ [Υ]
and p < ω we have

u(axp) ∩
⋃
q 6=p

u(axq ) = ∅.

Moreover, we can suppose that u(axp) is a convergent sequence whenever
axp is infinite.
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In Section 2 we will study the two notions of countable separation and
their relation. Section 4 contains the proof of the main results, that will make
use of games similarly as it is done in [4, 7] in the case of finitely many ideals.
In Section 5 we deal with Rosenthal compact spaces.

2. General properties of countable separation

Proposition 2.1. Consider I ⊂ P(Ω)ω and

I′ = {(a0 ∪ r0, a1 ∪ r1, . . .) : (a0, a1, . . .) ∈ I, r0, r1, . . . ⊂ Ω finite} .

The following are equivalent:

1. I is E-countably separated,

2. I′ is E-countably separated,

3. I′ is ε-countably separated.

Proof. [1.⇒ 2.] If G witnesses E-countable separation of I, then one has
that G′ = {b ∪ r : b ∈ G, r finite} witnesses E-countable separation of I′.

[2.⇒ 3.] Is evident as we already observed in the introduction.

[3. ⇒ 1.] Let F ⊂ P(Ω)ω be a family that ε-countably separates I′. Sup-
pose that I is not E-countably separated. In particular, the family G of
all finite modifications of terms of all sequences in F does not E-countably
separate I. This means that there exists a = (a0, a1, . . .) ∈ I such that no
sequence of the form (b0, b1, . . . , bn,Ω,Ω,Ω, . . .) satisfies bi ∈ G, ai ⊆ bi for
i = 0, . . . , n and b0 ∩ · · · ∩ bn finite. Enumerate as {b0, b2, . . .} all sequences in
F that witness ε-countable separation for a. That is, such that ai ⊆ bki for all
i and ∩i<ωbki finite. We know that for every k there are infinitely many i such
that bki 6= Ω. Thus, we can construct i0 < i1 < i2 < · · · and n0, n1, n2, . . . ∈ Ω
such that nk 6∈ bkik . Now consider

ã = (a0, a1, . . . , ai1−1, ai1 ∪ {n1}, ai1+1, . . . , aik−1, aik ∪ {nk}, aik+1, . . .),

the result of substituting aik by aik ∪ {nk} in the sequence a, while leaving
the rest of terms of the sequence a untouched. Notice that ã ∈ I′. However
no sequence in F can witness ε-countable separation on ã and this is absurd.
The proof is that if b witnesses this, then it also witnesses it for the smaller
sequence a, so b must be one of the bk. But ãik 6⊆ bkik because nk 6∈ bkik .
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Notice that, with minor proof adjustment, Proposition 2.1 also holds true
if we consider

I′′ =
{

(a0 ∪ r0, a1 ∪ r1, . . .) : (a0, a1, . . .) ∈ I, |ri| ≤ 1
}

or

I′′′ =
{

(a04r0, a14r1, . . .) : (a0, a1, . . .) ∈ I, ri finite
}

instead of I′.
There is a topological characterization of E-countable separation. In the

following statement, a′ denotes the set of accumulation points of a subset a
of a topological space.

Proposition 2.2. A family I ⊂ P(Ω)ω is E-countably separated if and
only if there exists a compact metric space K that contains Ω such that for
all (a0, a1, . . .) ∈ I we have

⋂
n<ω a

′
n = ∅. Moreover, one may suppose that all

points of Ω are isolated in K.

Proof. [⇐] Let B be a countable basis of the topology of K which is closed
under finite unions and intersections. We claim that

G =
{

(B ∩ Ω) ∪ r : B ∈ B, r ⊂ Ω finite
}

is the separating family that we need. Indeed, if (a0, a1, . . .) ∈ I, then
by hypothesis

⋂
n<ω a

′
n = ∅, and by compactness there exists n such that

a′0 ∩ · · · ∩ a′n = ∅. An easy inductive argument using normality [5, Lemma 9]
shows that there exist B0, . . . , Bn ∈ B such that a′k ⊂ Bk for all k and
B0 ∩ · · · ∩ Bn = ∅. Since the Bk are open, there are finite sets rk ⊂ ak
such that ak ⊂ Bk ∪ rk, so that ak ⊂ (Bk ∩ Ω) ∪ rk. We found the separating
sets (Bk ∩ Ω) ∪ rk, for r = 0, . . . , n, that we were looking for.

[⇒] Let G ⊂ P(Ω) be the family that witnesses E-countable separation.
By adding the finite sets and taking the subalgebra generated, we can suppose
that G is a countable algebra of subsets of Ω that contains the finite sets.
Let K be the Stone space of G. Each element of Ω can be identified with
the corresponding principal ultrafilter in K, which is an isolated point. All
required properties are satisfied.

3. Critical examples

Proposition 3.1. The family

Iε =
{

(axp)p<ω : x ∈ ωω
}
⊂
(
ω<ω

)ω
is not ε-countably separated.
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Proof. Assume, on the contrary, that the corresponding countable family
F exists. For every k < ω consider the set T [k] = k<k. This is a tower of finite
sets that cover ω<ω. For every x ∈ ωω there must exist bx = (bxp)p<ω ∈ F and
kx < ω such that

⋂
p b

x
p ⊂ T [kx] and axp ⊆ bxp for all p. By the Baire category

theorem there must exist b ∈ F and k < ω such that the interior of the closure
of {x : bx = b, kx = k} is nonempty. This means that there exists s ∈ ω<ω
that we can take of length ≥ k such that for every t ∈ ω<ω that end-extends s
there exists y ∈ ωω that end-extends t such that by = b and ky = k. For each
p < ω, if t is chosen as s followed by p then the corresponding y will satisfy
s ∈ ayp ⊆ byp = bp. This contradicts that

⋂
p bp ⊂ T [k].

It follows form the above proposition that the two conditions of
Theorem 1.4 are incompatible. So this theorem will mean that Iε is, in a
sense, a minimal example of an analytic hereditary family of sequences that
is not ε-countably separated. In an analogous way the following proposition
implies that the two conditions of Theorem 1.5 are incompatible, and this
theorem will mean that IE is a minimal example of an analytic hereditary
family of sequences that is not E-countably separated.

Proposition 3.2. The family

IE =
{

(axp)p<ω : x ∈ [Υ]
}
⊂ P(Υ)ω

is ε-countably separated but not E-countably separated.

Proof. In order to show that IE is not E-countably separated, by Propo-
sition 2.1, it is enough to show that the family I′E of finite modifications of IE
is not ε-countably separated. This is the same as to show that the hereditary
family

I′′E =
{

(yp)p<ω : ∃x ∈ I′E such that yk ⊆ xk for all k
}

is not ε-countably separated. By Proposition 3.1, it is enough to define an
injective mapping σ : ω<ω → Υ such that (zp)p<ω∈Iε implies (σ(zp))p<ω ∈ I′′E .
For this, we want that, for every x ∈ ωω there exists σ̄(x) ∈ [Υ] such that

σ(axp) is contained in a finite modification of a
σ̄(x)
p for every p ∈ ω. Given

s = (s0, s1, s2 . . . , sn) consider ti = min{i, si} and then define σ(s) as

(t0, t0+1, t0+2, . . . , s0−1, s0, s0, t1, t1+1, t1+2, . . . , s1, s1, t2, t2+1, . . . , sn, sn).

Similarly, if s = (s1, s2, . . .) ∈ ωω, then

σ̄(s) = (t0, t0+1, t0+2, . . . , s0−1, s0, s0, t1, t1+1, t1+2, . . . , s1, s1, t2, t2+1, . . .).
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This works. Indeed, σ(s) ∈ Υ because the definition of the numbers ti and
the delays introduced in the definition of σ(s) ensure that σ(s)i ≤ i. And if
x = (s0, s1, s2, . . .), then

σ(axp) = {(t0, t0 + 1, . . . , s0− 1, s0, s0, t1, t1 + 1, . . . , sn, sn) : sn+1 = p} ⊂ aσ̄(x)
p .

It remains to check that IE is ε-countably separated. We will prove the
stronger fact that the family

I =
{

(ap)p<ω : ap is a p-chain for every p
}

is ε-countably separated. Let bp be the set of all elements of Υ of length at
least p and let F be the family of sequences consistiting of (b0, b1, b2, b3, . . .)
and all sequences of the form (Υ,Υ,Υ,Υ, . . . ,Υ, {t},Υ,Υ, . . .), all entries Υ
except one that is a singleton. This family witnesses ε-countable separation.
All these sequences have a finite intersection. If (a0, a1, . . .) ∈ I there are two
options. If the p-chain ak is a singleton for some k, then it is dominated by
(Υ,Υ, . . . ,Υ, ak,Υ,Υ,Υ, . . .) ∈ F . This also works if one ak is empty. On the
other hand, if each of the p-chains ap ⊂ Υ has at least two elements, then
ap ⊂ bp for all p.

Suppose that we have families of sets {Ii}i<ω such that {Ii}i<n is count-
ably separated for some n < ω. It follows easily from the definition that
the families {Ii}i<ω are then ε-countably separated. We finish this section
by observing that the converse is not true, and therefore the new notions of
countably separation cannot be reduced to countable separation of finitely
many families. The example is the following: For every k < ω take

T̃k = {(k, t1, . . . , tn) : ti < k, i = 1, . . . , n}

and T̃ =
⋃∞
k=1 T̃k. This would be just the disjoint union of incomparable

copies of the trees k<ω. Let Ip be the set of p-chains inside T̃ . {Ip}p<n fails
to be countably separated for every p, as T̃ contains a natural copy of n<ω.
However the families {Ip}p<ω are E-countably separated. Indeed, it is enough
to take G = {T̃k : k < ω} ∪ {{t} : t ∈ T̃}. If ap is a p-chain for every p, then
for every p there is kp such that ap ⊂ T̃kp . If some ap is a singleton, we can
take bp = ap. If none is a singleton then kp ≥ p for all p, and in particular
there exist p1 < p2 such that kp1 6= kp2 . We take bp = T̃kp for p = 0, 1, . . . , p2.
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4. The two dichotomies

In this section we write the proof of Theorem 1.4. The proof of Theorem 1.5
is just the same making some obvious modifications, forcing Player II in the
game described below to play pi ≤ i for all i. We have already shown that the
two options of the dichotomy are incompatible, so our aim is to check that at
least one of the options must hold.

Let f : ωω → I be a continuous surjection. We consider a game where, at
each turn i < ω, Player I picks ni ∈ Ω \ {nj : j < i} and ξi < ω and then
Player II picks pi < ω. Player I wins if and only if {ni : pi = p} ⊆ f((ξi)i<ω)p
for every p. This is a Borel game, so it is determined.

We first prove that if Player I has a winning strategy then the first option
holds. A first attempt would be to define σ(s) as the element of Ω that the
strategy of Player I dictates to play after Player II has chosen the entries
of s. The only problem is that such σ would not be injective, and for this we
have to refine this idea a little bit. We define σ inductively with respect to
an enumeration of ω<ω compatible with end-extension (s is enumerated after
t whenever s is an end-extension of t), together with an auxiliary function
τ : ω<ω → ω<ω. In the initial case, τ(∅) = ∅ and σ(∅) is the element of Ω that
Player I plays as initial move. Take s ∈ ω<ω, s 6= ∅ and we define σ(s) and τ(s)
assuming that they are already defined for previous finite sequences. Let p be
the last coordinate of s, so that s = (s0, . . . , sm, p) and let s− = (s0, . . . , sm)
be the result of removing this last coordinate. For every t < ω let nt and ξt
be what the strategy of Player I dictates to play after Player II plays τ(s−)
followed by p, 1, 2, 3, 4, . . . , t. Since Player I is not allowed to repeat, there
must be a t such that nt is different from all the values of σ previously defined.
We define σ(s) to be that nt and τ(s) to be τ(s−) followed by p, 1, 2, 3, . . . , t.
In this way σ is clearly injective. If we have a p-chain cp inside a branch
B = (q0, q1, q2, . . .) of ω<ω, notice that {τ(s) : s ∈ B} lies in another branch
of ω<ω of the form

(q0, 1, 2, 3, . . . , t0, q1, 1, 2, 3, . . . , t1, q2, 1, 2, 3, . . .).

If Player II plays the above sequence of integers and Player I plays according
to its strategy, a run of the game will be generated, where Player I will play
σ(q0, . . . , qk−1) (and some integer) before Player II plays qk. If ξ ∈ ωω is the
sequence formed by the second choices of Player I along the run, we will have,
since Player I wins, that

{σ(q0, . . . , qk−1) : qk = p} ⊆ f(ξ)p.
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Since cp is a p-chain lying in (q0, q1, . . .), then cp ⊆ {(q0, . . . , qk−1) : qk = p}.
Therefore σ(cp) ⊆ f(ξ)p. Since f(ξ) ∈ I and I is hereditary we are done. Now
suppose that Player II has a winning strategy and we shall see that the second
option holds. Let SII be the set of finite rounds of the game finishing at a
movement of Player II that are played according to that winning strategy.
Given G = (n1, ξ1, p1, . . . , nk, ξk, pk) ∈ SII and given ξ, p < ω, define

bGξ,p = {n ∈ Ω : (n1, ξ1, p1, . . . , nk, ξk, pk, n, ξ, p) 6∈ SII}.

We claim that

F =
{

(bGξ,p ∪ β)p<ω : G ∈ SII , ξ < ω, β ⊂ Ω finite
}

is the family we are looking for. First, notice that
⋂
p<ω b

G
ξ,p = ∅ for ev-

ery G and ξ, so all intersections of sequences from F are finite. Suppose
that we are given (ap)p ∈ I. We can write (ap)p = f((ξi)i<ω). We sup-
pose for contradiction that we could find no G and no ξ and no finite β
such that ap ⊂ bGp,ξ ∪ β for all p. Then we can play a full round of our
game (n1, ξ1, p1, n2, ξ2, p2, . . .) according to the strategy of Player II in the
following way. The ξi are always chosen as the coordinates of the ξ fixed
before. If we have played Gi−1 = (n1, ξ1, p1, . . . , ni−1, ξi−1, pi−1), then we

can find pi such that api 6⊆ b
Gi−1

ξi,pi
∪ {n1, . . . , ni−1}. Player I then plays

ni ∈ api \ (b
Gi−1

ξi,pi
∪ {n1, . . . , ni−1}) and ξi, and then the strategy of Player

II will be to play pi (precisely because ni 6∈ bGi−1

ξi,pi
). This construction makes

that ni ∈ api for all i, so {ni : pi = p} ⊆ ap = f((ξi)i<ω)p which contradicts
that the strategy makes Player II win.

5. Rosenthal compact spaces

The following is the infinite version of [3, Theorem 7.2]

Lemma 5.1. For a compact space K, the following are equivalent:

(1) K is a continuous image of a compact finite-to-one preimage of a metric
compactum.

(2) There exists a countable family F of closed subsets of K such that for
every infinite Y there exist finitely many sets from F whose union covers
K but none of them covers Y .
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(3) There exists a countable family F of closed subsets of K such that for
every family {Wi}i<ω of open sets with

Wi ∩
⋃
j 6=i

Wj = ∅ for all i,

there exist finitely many sets in F that cover K, and such that none of
the Wi’s intersect all of these sets.

(4) There exists a countable family F of closed subsets of K such that for
every family {Fi}i<ω of closed sets with

Fi ∩
⋃
j 6=i

Fj = ∅ for all i,

there exist finitely many sets in F that cover K, and such that none of
the Fi’s intersects all of these sets.

Proof. (1)⇒ (4): We suppose that there exist two continuous surjections
f : L → K and g : L → M between compact spaces such that M is metric
and g−1(x) is finite for all x ∈M . Let h : 2ω →M be a continuous surjection
from the Cantor set. Consider the basic clopen sets of the Cantor set Cs =
{σ : σ|n = s}, for s ∈ 2<ω of length n. We claim that the family

F =
{
f(g−1(h(C))) : C ⊆ 2ω is clopen

}
is as desired. Take {Fi}i<ω as in (4).

Claim 1. Fore every σ ∈ 2ω there exist n < ω and i < ω such that
f−1(Fi) ∩ g−1(h(Cσ|n)) = ∅. Proof of the claim: Otherwise, by compactness,
there would exist σ such that for every i < ω we would have

∅ 6= f−1(Fi) ∩
⋂
n

g−1(h(Cσ|n))

= f−1(Fi) ∩ g−1
(⋂

n

h(Cσ|n)
)

= f−1(Fi) ∩ g−1(h(σ)),

which contradicts that g−1(h(σ)) is finite.

As a consequence of Claim 1,{
Cs : ∃ i < ω f−1(Fi) ∩ g−1(h(Cs)) = ∅

}
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is an open covering of 2ω, hence it has a finite subcover {Cs : s ∈ S}. Then⋃
s∈S

f
(
g−1(h(Cs))

)
= f

(
g−1
(
h
( ⋃
s∈S

Cs

)))
= K.

For every i < ω, define

Ai =
⋃{

f
(
g−1(h(Cs))

)
: s ∈ S, f(g−1(h(Cs))) ∩ Fi = ∅

}
.

Since S is finite, the family {Ai : i < ω} ⊂ F is finite even if parametrized
by i. They cover K because, by the definition of the open covering, for every
s ∈ S there exists i such that Fi ∩ f(g−1(h(Cs))) = ∅. Each Ai is disjoint
with Fi.

(4)⇒ (3): Is obvious.
(3) ⇒ (2): Take Y ⊆ K infinite. It is enough to find open subsets Wi of

K as in (3) that all intersect Y . This is an elementary exercise in topology.
We can suppose that Y is countable. By Urysohn’s lemma, for every y0 6= y1

in Y there is a continuous function hy0,y1 : K → [0, 1] with h(yk) = k for
k = 0, 1. Putting all these functions together, we have a continuous function
h : K → [0, 1]{(y0,y1)∈Y 2:y0 6=y1} that has metrizable range and is injective on Y .
Since the range is a metrizable compactum, we can find an infinite sequence
{yn}n<ω such that {h(yn)}n<ω converges to a point z 6∈ {h(yn)}. Fixing a
metric d and passing to a subsequence we can suppose that the sequence of
distances rn = d(h(yn), z) is strictly decreasing, and then define the desired
open sets as Wn = {y ∈ K : d(h(y), z) ∈ (r3n−1, r3n+1)}.

(2) ⇒ (1): Now suppose that F is a family of closed sets like in (2).
Consider the countable family Z of all the finite subsets F of F whose union
is K. The following set

L =

{
(x, (AF )F∈Z) ∈ K ×

∏
F∈Z

F : x ∈
⋂
F∈Z

AF

}

is a closed, therefore compact set. Here
∏
F∈Z F is endowed with the product

topology of the discrete topology in each finite set F . The projection on the
first coordinate L→ K is onto. Condition (2) implies that the projection on
the second coordinate L→

∏
F∈Z F is finite-to-one.

We proceed now to the proof of Theorem 1.6. We show first that the
two conditions are incompatible. Suppose that both hold. Take a family F
like in Lemma 5.1 (4). We claim that the family G =

{
u−1(K \ F ) : F ∈ F

}
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witnesses the E-countable separation of IE in Proposition 3.2, a contradiction.
For every x ∈ [Υ], we apply Lemma 5.1 (4) to the closed sets u(axp) for p < ω,
obtaining finitely many sets F 1, . . . , Fm ∈ F that cover K and so that no
u(axp) intersects all F j . This implies that

m⋂
j=1

u−1(K \ F j) = ∅,

and for every p there exists j ∈ {1, . . . ,m} such that axp ⊂ u−1(K \ F j),
which is what is required for E-countable separation. Now we prove that one
of the options must hold. We suppose that K is a Rosenthal compact and
D is a countable dense subset of K. Consider the space CD(K) of bounded
real valued continuous functions of K endowed with the topology of pointwise
convergence of K. This is an analytic space by a result of Godefroy [10], so
we fix a continuous surjection π : ωω → CD(K).

We play a game of length ω.
At stage k Player I chooses dk ∈ D \ {d0, . . . , dk−1} together with natural

numbers sij for i, j < ω, max(i, j) = k. Player II responds with a natural
number pk ≤ k. At the end of the game, consider si = (si0, si1, si2 , . . .) ∈ ωω
for every i < ω. Player I wins if for every i < ω we have

π(si)(dn) < 0 < 1 < π(si)(dm) whenever pn = i and pm 6= i.

This is a Borel game. By Martin’s theorem, one of the two players must have
a winning strategy.

First, we prove that a winning strategy for Player I will give condition
(ii). As a first try, we can define u(p0, . . . , pn) as the element dn+1 given by
the strategy of Player I if Player II plays p0, . . . , pn. This u would satisfy the
condition that

u(axp) ∩
⋃
q 6=p

u(axq ) = ∅

for all x ∈ [Υ] and p < ω, but it may fail to be one-to-one. However, it is easy
to inductively refine this to make u injective, in a similar way as we did at
the beginning of Section 4: If u′(p0, . . . , pn) = u(t) is already defined, then for
each p define u′(p0, . . . , pn, p) = u(t_p, 0, 1, 2, 3, . . . , n) for n high enough to
make sure that the value is different from all the u′(s) whose value has been
already established. It remains to justify that we can assume that u(axp) is
a convergent sequence whenever axp is infinite. So we assume that have u as
in condition (ii) of the theorem, and we will find a new u′ with that extra
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condition. We will define u′(s) together with a strong subtree Ts of Γ in such
a way that Tt ⊂ Ts if s < t and u′(s) is the image under u of the root of Ts.
A strong subtree of Υ is a subset T ⊂ Υ with a root (minimum for <) and
the property that every immediate successor in Υ of a node t ∈ T has exactly
one extension in the next level of Υ that has nonempty intersection with T ,
and conversely every node of T that is not the root is the extension of a node
in the previous level of Υ that intersects T . A level is the set of nodes that
have a given length. We are using Milliken’s theory [12], cf. [17, Chapter 3].
As a starting point, we declare u′(∅) = u(∅) and T∅ = Υ. Now, suppose that
u′(s) and Ts have been already defined for all s of length n, and let s_i be
of length n + 1. We color the infinite n-chains of {t ∈ Ts : t ≥ u′(s)_i} with
two colors, depending on whether their image under u is convergent or not.
Since K is a Rosenthal compactum, the family of convergent subsequences of
u(Ts) is a conalytic family of subsets of u(Ts), cf. the beginning of the proof
of [7, Lemma 36]. This means that that coloring is Souslin measurable and we
can apply Milliken’s Theorem [17, Theorem 6.13], so there is a strong subtree
Ts_i ⊂ {t ∈ Ts : t ≥ u′(s)_i} where all n-chains have the same color. This
color must be that all sequences are convergent, because Rosenthal compact
spaces are sequentially compact [14] (even Fréchet-Urysohn, by the celebrated
result of Bourgain, Fremlin and Talagrand [8]). We will define u′(s_i) as the
image under u of the root of Ts_i.

Now we suppose that Player II has a winning strategy and we will prove
condition (i). Given a finite round of the game ξ where Player I and II have
played k movements each, given s = (sij)max(i,j)=k, and p ≤ k we define
Fp(ξ, s) to be the set of all d ∈ D such that the strategy of Player II gives p
after ξ is played and then Player I plays (d, s). Let F be the family of all sets
of the form Fp(ξ, s) together with all singletons from D. Let {Wi : i < ω}
be an infinite family of open sets as in Lemma 5.1 (3) and let us check that
the statement (3) in that lemma holds. For every i, let ψi be a real-valued
continuous function on K that is negative on Wi and greater than one on all
Wj with j 6= i. Each ψi is of the form ψi = π(si0, si1, . . .).

Suppose that Player I always plays those sij and elements dk ∈ Wpk . If
Player II always responds with that pk, then he will lose. That means that,
in particular, there must be a finite round of the game ξ of length k such
that whenever Player I tries to play next some dk ∈ Wq and the sij , then
Player II will always respond with some p 6= q. In other words, that means
that Wq ∩ Fq(ξ, {sij}) = ∅ for every q. Since Wq is open, this implies that

Wq ∩ Fq(ξ, {sij}) = ∅. We also have that
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⋃
q

Fq(ξ, {sij}) =
⋃
q

Fq(ξ, {sij}) = D \D0 ⊇ K \D0.

Here, D0 is the finite set of all di ∈ D that have been played by Player I along
ξ. The parameter q in the union above takes only finitely many values, at
most the length of the partial game ξ. So we have found finitely many closed
sets from our family F as desired.
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