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1. Introduction

The theory of double vector bundles was developped by J. Pradines in
[20] with the concept of maximal atlas of double vector bundle charts of a
surjective map π from a set D to a smooth manifold M . A double vector
chart of (D,M, π) is a system c = (U,φ,E0, E1, E2) where U is an open set
of M , Ei, i = 0, 1, 2 are Banach spaces and φ : π−1(U) → U ×E1 ×E2 ×E0

is a bijective map such that pr1 ◦ φ = π |π−1(U) (i.e., φ(Dx) = {x} × E1 ×
E2 × E0, where Dx denotes the fiber over x ∈ U). Two double vector charts
c = (U,φ,E0, E1, E2), c

′ = (U ′, φ′, E′
0, E

′
1, E

′
2) of (D,M, π) are said compati-

ble if the transition bijection

φ′ ◦ φ−1 : (U ∩ U ′)× E1 × E2 × E0 −→ (U ∩ U ′)× E′
1 × E′

2 × E′
0

is of the form

(x,X, Y, Z) 7−→ (x, u1(x) ·X,u2(x) · Y, u0(x) · Z + ω(x) · (X,Y )), (1.1)

where ui : U ∩U ′ → L(Ei, E′
i), i = 0, 1, 2 and ω : U ∩U ′ → L2(E1, E2;E

′
0) are

smooth. Definitions of atlas and structure of double vector bundle are similar
to those for vector bundles. The following result gives some basic results for
double vector bundles.

ISSN: 0213-8743 (print), 2605-5686 (online)

©The author(s) - Released under a Creative Commons Attribution License (CC BY-NC 4.0)

mailto:ekilanta@yahoo.com
mailto:achille.ntyam@univ-yaounde1.cm
https://revista-em.unex.es/index.php/EM/
https://creativecommons.org/licenses/by-nc/4.0/


2 e. kilanta, a. ntyam

Theorem 1.1. ([20]) Let (D,M, π) be a double vector bundle with the
associated maximal atlas A0.

(a) There is only one structure of smooth manifold on D for which vector
charts of A0 are diffeomorphisms. With respect to this structure, A0 is
an atlas of local trivializations for the fibration (D,M, π).

(b) The sets

A =
∐

(U,φ,E0,E1,E2)∈A0

φ−1
(
U × E1 × {0E2} × {0E0}

)
B =

∐
(U,φ,E0,E1,E2)∈A0

φ−1
(
U × {0E1} × E2 × {0E0}

)
C =

∐
(U,φ,E0,E1,E2)∈A0

φ−1
(
U × {0E1} × {0E2} × E0

)
,

(1.2)

endowed with restrictions qA, qB, qC of π to A, B, C respectively, are
vector bundles over M .

(c) If we denote qD
A

: D → A, qD
B

: D → B the maps with local expressions

(x,X, Y, Z) 7→ (x,X, 0E2 , 0E0), (x,X, Y, Z) 7→ (x, 0E1 , Y, 0E0)

on suitable vector charts, hence (D,A, qD
A
), (D,B, qD

B
) are vector bundles

such that

D
qD
B−−−−→ B

qD
A

y yqB
A

qA−−−−→ M

is a commutative diagram of vector bundle morphisms.

(d) A, B are vector subbundles1 of (D,B, qD
B
), (D,A, qD

A
) respectively.

(e) The addition and the scalar multiplication of each vector bundle struc-
ture on D is a vector bundle morphism with respect to the other struc-
ture.

The proof of this result is clear by definitions and the gluing theorem for
vector bundles in [7]. In [14] and [17], an axiomatic for double vector bundles
is presented without indicating how to deduce double vector charts. For this
reason, some structures of vector bundles are given without proof of the local

1In the more general sense
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triviality condition for vector bundles (ex. duals of a double vector bundle).
In [6] (see also [10]), the author gives a proof of the existence of local linear
splittings that are equivalent to the existence of double vector bundle charts.

As an application of double vector bundles, let us recall their importance
in the modern formulation of the concept of linear Poisson structures. For
a smooth manifold M , a Poisson structure on M (see [17]) is a bracket of
smooth functions { , } : C∞(M)×C∞(M) → C∞(M) with respect to which
C∞(M) is an R-Lie algebra, and such that for all u, v, w ∈ C∞(M),

{u, vw} = v {u,w}+ w {u, v} ;

the bivector π :M →
∧2 TM given by π(du, dv) := {u, v} is called the Poisson

bivector and the induced morphism of vector bundles π♯ : T ∗M → TM is
called the Poisson morphism associated to the given Poisson structure. A Lie
algebroid on M is a vector bundle (A,M, q) on which the module Γ(A) of
smooth sections of A is endowed with a Lie algebra structure and there is a
base-preserving morphism of vector bundles ρ : A → TM , called the anchor
of A, such that:

(a) ∀ s1, s2 ∈ Γ(A), ∀f ∈ C∞(M), [s1, f · s2] = f [s1, s2] + (ρ(s1) · f)s2.
(b) The induced map ρ : Γ(A) → X(M) is a Lie algebra homomorphism.

Lie groupoids generalize Lie groups (see [17]) and the infinitesimal counterpart
of a Lie groupoid G⇒M is a Lie algebroid called the Lie algebroid of G⇒M .
In [4], it was established that the dual A∗ → M of the Lie algebroid A → M
of a Lie groupoid G⇒ M is endowed with a Poisson structure such that the
following conditions on brackets of functions hold:

• the bracket of two linear functions is linear;

• the bracket of a linear function and a function constant on fibres is
constant on fibres;

• the bracket of two functions constant on fibres is zero.

This Poisson structure is called the linear Poisson structure on A∗ asso-
ciated to A. In [5], the equivalence between abstract Lie algebroid structures
and linear Poisson structures on their duals was established. An arbitrary
vector bundle (E,M, q) endowed with a linear Poisson structure is called a
Poisson vector bundle. For a bivector π : E →

∧2 TE, the pair (E, π) is a
Poisson vector bundle if and only if the Poisson morphism π♯ : T ∗E → TE
is a morphism of double vector bundles over a map a : E∗ → TM (see [17]).
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This result was used in [11] to lift linear symplectic forms and linear Poisson
structures.

Product preserving bundle functors on manifolds still called Weil functors
were classified by [8]. Indeed this author has shown in particular that the set of
equivalence classes of such functors are in bijection with the set of equivalence
classes of Weil algebras. These functors were used by many authors (see,
e.g., [3, 9, 12, 18]) to present some lifts of various geometric objects (smooth
functions, tensor fields, linear connections on manifolds,. . . ).

In the first part of this paper, we give another proof of the existence of local
connections on each double vector bundle by applying Lemma 4.5. WhenM is
paracompact, it is well-known that there are global connections on each vector
bundle E → M (see [7, Theorem 17.16.7] or [13]); one can then deduce that
each double vector bundle (D,M, π) admits global connections. Moreover,
when F denotes a Weil functor, we consider the F -prolongation of a double
vector bundle (Proposition 5.2). We finally give new proofs of some known
results (Theorem 6.1, Proposition 6.4 and Theorem 6.6) on duals of a double
vector bundle.

In the second part, we recall lifts of linear sections (with respect to a Weil
functor) presented in [9] and study some of their additional properties. In
particular we extend to an arbitrary double vector bundle the characteriza-
tion of linear k-forms on a tangent double vector bundle from [1, 2, 14] (see
Theorem 9.1, Theorem 10.2 and Corollary 10.4).

2. Weil functors

2.1. Weil algebra. A Weil algebra is a finite-dimensional quotient
of the algebra of germs Ep = C∞

0 (Rp,R) (p ∈ N∗). For other equivalent
definitions of Weil algebras, one can refer to [13].

Let us denote Mp ⊂ Ep the ideal of germs vanishing at 0; hence Mp is the
maximal ideal of the local algebra Ep.

It is clear that R = Ep/Mp and the algebra of jets Jr0 (Rp,R) = Ep/Mr+1
p

are examples of Weil algebras.

2.2. Covariant description of a Weil functor TA : Mf → FM.
We write Mf for the category of finite dimensional smooth manifolds and
mappings of class C∞; furthermore, FM is the category of fibered manifolds
and fibered manifolds morphisms.

Let A = Ep/I be a Weil algebra and consider a manifold M . In the set of
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φ ∈ C∞(Rp,M) such that φ(0) = x, define an equivalence relation ∼x by:

φ∼xψ if and only if [h]x ◦ [ψ]0 − [h]x ◦ [φ]0 ∈ I,

for all [h]x ∈ C∞
x (M,R). The equivalence class of φ is denoted by jAφ and

is called the A−velocity of φ at 0; the class jAφ depends only on the germ
of φ at 0. The quotient set is denoted by (TAM)x and the disjoint union of
(TAM)x, x ∈M by TAM .

The mapping πA,M : TAM → M, jAφ 7→ φ(0), defines a bundle structure
on TAM and for all smooth map f :M → N , one defines a bundle morphism
TAf : TAM → TAN , (over f) by, TAf(jAφ) = jA(f ◦ φ).

The correspondence TA : Mf → FM is a well-defined product-preserving
bundle functor called the Weil functor associated to A ([13]).

When A = Ep/Mr+1
p , then TA is equivalent to the bundle functor T rp of

(p, r)-velocities and when A is the algebra of dual numbers D = E1/M2
1 , then

TA = T is the tangent functor.

2.3. The canonical flow natural equivalence κ : TA◦T → T ◦TA.
Given two Weil functors TA, TB with A = Ep/I, B = Eq/J ; let M be a
manifold. For any ζ = jAφ ∈ TATBM , there is a differentiable mapping
Φ : Rp×Rq → M such that φ(z) = jBΦz, in a neighbourhood of 0 ∈ Rp (see
[3] for bundle functors of (p, 1)-velocities or [13] for Weil functors). By this
result, one can define a natural equivalence

κA,B : TA ◦ TB −→ TB ◦ TA

by : (κA,B)M (ζ) = jBη, where η : Rq → TAM , t 7→ jAΦt. In particular, for
TB = T , we obtain the canonical flow natural equivalence

κ : TA ◦ T −→ T ◦ TA (2.1)

associated to the bundle functor TA, i.e., the following diagram commutes for
every manifold M and every vector field X on M :

TAM
FMX−−−−→ TTAM

TAX

y κM
↗

yπTAM

TATM −−−−→
TAπM

TAM
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with FMX the vector field on TAM given by:

FMX(u) =
∂

∂t
TA(FlXt )(u)|t=0 ∈ TuT

AM ,

and FlX : R ×M ⊇ ΩX → M the global flow of X. Xc := FMX is called
the complete lift of X to TAM and F : T ⇝ TTA is called the flow operator
of TA (see [13]).

Remarks 2.1. (a) Given a product preserving bundle functor F , AF =
F (R) is a real associative, commutative, unital and finite dimensional algebra.
The fiber N = F0(R) over 0 is the ideal of nilpotent elements of AF and
we have AF = R·1 ⊕ N ; moreover, there is a canonical natural equivalence
Θ : F → TA

F
(see [13]). The algebra AF is called the Weil algebra of F .

(b) Weil functors TA : Mf → FM preserve immersions, embeddings,
submersions, surjective submersions, transversal maps,. . . In particular let
(Y,M, q) a fibered manifold and a smooth map f : N → M ; the canonical
isomorphism (

TApr1, T
Apr2

)
: TA

(
N ×(f,q) Y

)
−→ TAN × TAY

induces an isomorphism of fibered manifolds

TA
(
N ×(f,q) Y

)
−→ TAN ×(TAf,TAq) T

AY

over TAN, which can be written TA(f∗(Y )) = (TAf)∗(TAY ).

(c) For a smooth manifold M , one can consider the vector bundles(
TATM, TAM,TAπM

)
and

(
TTAM,TAM,πTAM

)
;

let 0TM : M → TM be the zero vector field; hence the zero section of
TATM → TAM is just

TA(0TM ) : TAM −→ TATM and κM : TATM −→ TTAM

is an isomorphism of vector bundles over idTAM .

(d) For a vector bundle (E,M, q),
(
TAE, TAM,TAq

)
is a vector bundle

with the addition TA(+) : TAE ×TAM TAE → TAE and the multiplication
(t, ẽ) 7→ TA(mE

t )(ẽ), where mE denotes the multiplication on E. If (g, g) is

a morphism of vector bundles, then
(
TAg, TAg

)
is also a morphism of vector

bundles.

For the sake of simplicity, in the rest of the document F :Mf → FM is
a product preserving bundle functor with the associated Weil algebra AF .
We will often write DVB for “double vector bundle”.
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3. Axiomatic of double vector bundles

3.1. Double vector bundles.

Definition 3.1. ([17]) A double vector bundle is a system (D;A,B;M)
of four vector bundle structures

D
qDB−−−−→ B

qDA

y yqB
A

qA−−−−→ M

(3.1)

where D is a vector bundle on bases A and B, which are themselves vector
bundles on M , such that each of the four structure maps of each vector bun-
dle structure on D (projection, addition, scalar multiplication and the zero
section) is a vector bundle morphism with respect to the other structure.

Let (D;A,B;M) be a double vector bundle.

The vector bundle D
qDA→ A is called the vertical bundle structure on D

and D
qDB→ B is called the horizontal bundle structure on D.

Notation 3.2. ([17]) Vector bundles D
qDA→ A and D

qDB→ B are usually
denoted D̃A and D̃B respectively; the zero sections of vector bundles A, B,
D̃A, D̃B are respectively denoted 0A, 0B, 0̃A, 0̃B; the additions and scalar

multiplications of D
qDA→ A and D

qDB→ B are denoted +
A
, ·
A
and +

B
, ·
B
respectively.

We denote Da the fiber of D̃A over a ∈ A and Db the fiber of D̃B over b ∈ B.

Remarks 3.3. (1) We have Da ∩Db ̸= ∅ if and only if qA(a) = qB(b) and
for d in Da ∩Db, Da ∩Db = d+

A
ker(qDB )a = d+

B
ker(qDA )b is an affine subspace

of both Da and Db. Hence Da ∩Db is a vector subspace of both Da and Db

if and only if ker(qDB )a = ker(qDA )b, i.e., a = 0A(x), b = 0B(x), i.e., the vector

bundles D̃A and D̃B coincide on the set C :=
⋃
x∈M

D0A(x) ∩D0B(x).

(2) When we say that the addition +
A

: D̃A ⊕ D̃A → D̃A is a morphism

of vector bundles over the addition B ⊕ B → B we implicitly admit that
D̃A⊕ D̃A → B⊕B is a vector bundle. In fact D̃A⊕ D̃A is a subbundle of the
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restriction L := D̃B × D̃B |B⊕B since (qDA , qB) and (qDB , qA) are morphisms of

vector bundles. Indeed D̃A ⊕ D̃A ⊂ L and for all (b, b′) in Bx ⊕Bx,

D̃A ⊕ D̃A ∩ L(b,b′) =
( ⋃
a∈Ax

Da ×Da

)
∩Db ×Db′

=
[(
qDA

)
b
×
(
qDA

)
b′

]−1
(∆Ax×Ax)

is a vector subspace of L(b,b′) = Db×Db′ , where ∆Ax×Ax denotes the diagonal

of Ax×Ax. Moreover,
(
qDA ×qDA

)
(L) = A⊕A and the induced map qDA ⊕B q

D
A :

L → A ⊕ A is a fibrewise surjective morphism of vector bundles over the
projection qB⊕B, hence D̃A ⊕ D̃A =

[
qDA ⊕B q

D
A

]−1
(∆A×A) is a subbundle of

L, since ∆A×A ⊂ A⊕A is a subbundle.

(3) Using the fact that a continuous map θ : V → W between two real
vector spaces is linear if and only if θ(v+ v′) = θ(v)+ θ(v′), for all v, v′in V , a
commutative diagram (3.1) of four vector bundle structures is a double vector
bundle if and only if we have

qDA (d+
B
d′) = qDA (d) + qDA (d

′), for all d, d′ in D̃B , (3.2)

qDB (d+
A
d′) = qDB (d) + qB(d

′), for all d, d′ in D̃A , (3.3)

(d1 +
A
d2) +

B
(d3 +

A
d4) = (d1 +

B
d3) +

A
(d2 +

B
d4) , (3.4)

for all (d1, d2), (d3, d4) in D̃A ⊕ D̃A such that qDB (d1) = qDB (d3) and
qDB (d2) = qDB (d4).

Examples 3.4. (1) Given three vector bundles A, B, C over the same
base M , hence (A ⊕ B ⊕ C;A,B;M) is a DVB. Indeed let us consider the
vector bundles A ⊕ B ⊕ C → A as q∗A(B ⊕ C) and A ⊕ B ⊕ C → B as
q∗B(A ⊕ C); these data satisfy obviously (3.2), (3.3) and (3.4). In particular,
A⊕B ∼= A⊕B⊕ 0C(M) is a DVB (A⊕B⊕C;A,B;M) called a decomposed
double vector bundle.

(2) Let (D;A,B;M) be a DVB and U ⊂M a non empty open set. There
is a structure of DVB on DU := (qA ◦ qDA )−1(U) = (qB ◦ qDB )−1(U). Indeed
let DU → q−1

A (U), DU → q−1
B (U) and q−1

A (U) → U , q−1
B (U) → U be the

restrictions D̃A |q−1
A (U), D̃B |q−1

B (U) and A |U , B |U respectively; hence the
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induced commutative diagram

DU
qDB−−−−→ B |U

qDA

y yqB
A |U

qA−−−−→ M

of vector bundle structures obviously satisfies (3.2), (3.3) and (3.4). This DVB
denoted D |U is called the restriction of D to U .

3.2. Core and exact sequences. Let us recall that given a morphism
of vector bundles f : E → E′ over f :M →M ′, one can associate a morphism

of vector bundles f ! : E → f∗E′ overM ([17]) defined by f !(e) = (qE(e), f(e)).

One has ker f ! = ker f and f ! is fibrewise surjective if f is fibrewise surjective.
Let (D;A,B;M) be a double vector bundle.
In Remark 3.3, we noticed that the vector bundles D̃A and D̃B coincide

on the set C :=
⋃
x∈M

D0A(x)∩D0B(x), intersection of kernels ker qDA and ker qDB .

For x in M ,

Cx := D0A(x) ∩D0B(x) = ker(qDB )0A(x) = ker(qDA )0B(x)

is a vector subspace of bothD0A(x) andD0B(x); but 0̃
A◦0A(x) = 0̃B◦0B(x) and

c +
A
c′ = c +

B
c′ by (3.4), hence the induced structures of vector space on Cx

coincide. Now, C = ker(qDB ) |0A(M)= ker(qDA ) |0B(M) is a vector bundle over

0A(M) and 0B(M) diffeomorphic to M , hence there are two structures of
vector bundle on C over M with the same projection qC := qA ◦ qDA |C=
qB ◦ qDB |C and the same structure of vector space on each fibre, so (C,M, qC)
is a vector bundle called the core of (D;A,B;M).

Moreover, the maps

τA : q∗AC −→ D̃A

(a, c) 7−→ 0̃A(a) +
B
c and

τB : q∗BC −→ D̃B

(b, c) 7−→ 0̃B(b) +
A
c

are fibrewise injective morphisms of vector bundles (such that Im τA = ker qDB ,
Im τB = ker qDA ) called translations over A and B respectively. Hence there
are short exact sequences of morphisms of vector bundles

0 −−→ q∗AC
τA−−−−→ D̃A

(qDB )!

−−−−→ q∗AB −−→ 0 , (3.5)
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0 −−→ q∗BC
τB−−−−→ D̃B

(qDA )!

−−−−→ q∗BA −−→ 0 , (3.6)

called core sequences over A and B respectively.

Remarks 3.5. (1) It is clear by (3.4) that

d+
A
τA(a, c) = d+

B
τB(b, c), (3.7)

for all (a, b, c) ∈ A⊕B ⊕ C and d ∈ Da ∩Db.

(2) Given a smooth section γ ∈ Γ(C), the image of q∗Aγ ∈ Γ(q∗AC) by
τA is a section of ker qDB → A denoted γA and called in [17] the core section
corresponding to γ with respect to (3.5). Clearly, γA(a) = τA(a, γ(qA(a)))
and since τA induces an isomorphism of vector bundles q∗AC → ker qDB over A,
for a local frame (γl) of C, (γ

A
l ) is a local frame of ker qDB .

3.3. Morphisms of double vector bundles. Let (D;A,B;M) and
(D′;A′, B′;M ′) be two double vector bundles with cores C and C ′.

Definition 3.6. [17] A morphism from (D;A,B;M) to (D′;A′, B′;M ′)
is a system (φ;φA, φB;φM ) of smooth maps φ : D → D′, φA : A → A′,
φB : B → B′, φM :M →M ′ such that (φ,φA), (φ,φB), (φA, φM ), (φB, φM )
are morphisms of vector bundles. In fact,

φA = qD
′

A′ ◦ φ ◦ 0̃A, φB = qD
′

B′ ◦ φ ◦ 0̃B,

φM = qB′ ◦ φB ◦ 0B = qA′ ◦ φA ◦ 0A

= qB′ ◦ qD′
B′ ◦ φ ◦ 0̃B ◦ 0B = qA′ ◦ qD′

A′ ◦ φ ◦ 0̃A ◦ 0A.

If M =M ′ and φM = idM , φ is said over M ; if A = A′ and φA = idA, we
say that φ preserves A ; if A = A′, B = B′ and φA = idA, φB = idB, we say
φ preserves the side bundles.

Remark 3.7. Let (φ;φA, φB, ;φM ) be a morphism from (D;A,B;M) to
(D′;A′, B′;M ′). It is clear that φ(ker qDA ) ⊂ ker qD

′
A′ and φ(ker qDB ) ⊂ ker qD

′
B′ ;

in particular, φ(C) ⊂ C ′ and the induced map φC : C → C ′ is a morphism of
vector bundles over φM called the core morphism of (φ;φA, φB;φM ).

4. Linear sections, splittings, vertical and
horizontal lifts ([14, 17, 6])

Let (D;A,B;M) be a double vector bundle with core C.
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4.1. Linear sections and splittings.

Definition 4.1. A linear section of D with respect to its vertical vector
bundle structure D → A is a pair (σ, σ) of sections where σ ∈ ΓA(D),
σ ∈ Γ(B) and σ is a morphism of vector bundles

A
σ−−−−→ D

qA

y yqDB
M

σ−−−−→ B

. (4.1)

The set of linear sections with respect to D → A is denoted ΓℓinA (D); this
is a C∞(M)-module where the multiplication is given by f · σ := f ◦ qA · σ.

One can also define in the same way a linear section of D with respect to
its horizontal vector bundle structure D → B.

Definition 4.2. A linear splitting of the exact sequence (3.5) is a right
inverse of the surjective morphism of vector bundles (qDB )

! : D̃A → q∗AB, i.e., a

morphism of vector bundles ψ : q∗AB → D̃A over A such that (qDB )
!◦ψ = idq∗AB.

One can define in the same way a linear splitting of the exact sequence (3.6).

A linear splitting (or a linear connection) of D is a linear splitting
ψ : A⊕B → D of (3.5) and (3.6).

Remark 4.3. Each of the exact sequences (3.5) and (3.6) admits local lin-
ear splittings. Indeed let U be an open paracompact set ofM over which A and
B are trivializable; since q−1

A (U) and q−1
B (U) are paracompact manifolds, all

subbundles of vector bundles D̃A |q−1
A (U) and D̃B |q−1

B (U) admit complements

(see [7, 16.17.3]), i.e., there are subbundles K ⊆ D̃A |q−1
A (U), L ⊆ D̃B |q−1

B (U)

such that

D̃A |q−1
A (U)= ker qDB |q−1

A (U) ⊕K , D̃B |q−1
B (U)= ker qDA |q−1

B (U) ⊕L .

Hence

ψ : q∗AB |q−1
A (U)

((qDB )!|K)−1

−−−−−−−−→ K ↪→ D̃A ,

η : q∗BA |q−1
B (U)

((qDA )!|L)−1

−−−−−−−−→ L ↪→ D̃B

are respectively local splittings of (3.5) and (3.6).
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Definition 4.4. When η : q∗BA → D̃B is a linear splitting of (3.6), the
horizontal lift (with respect to η) of a section β ∈ Γ(B) is the linear section

β ∈ ΓℓinA (D) defined by β(a) = η(β(qA(a), a).

When ψ : q∗AB → D̃A is a linear splitting of (3.5), the vertical lift (with
respect to ψ) of a section α ∈ Γ(A) is the linear section α ∈ ΓℓinB (D) defined
by α(b) = ψ(α(qB(b)), b).

Lemma 4.5. For a linear function h : A → R and a linear section
α ∈ ΓℓinB (D), the map αh : A ⊕ B → D, given by αh(a, b) = h(a) ·

B
α(b),

is a morphism of double vector bundles (αh;h · α ◦ qA, idB; idM ).

Proposition 4.6. ([6]) (D;A,B;M) admits local linear splittings.

Proof. Let ψ : q−1
A (U) ⊕ q−1

B (U) → D̃A a local linear splitting of (3.5);

consider (αi)1≤i≤n1 a local frame of A on U and αi : q
−1
B (U) → D̃A, 1 ≤ i ≤ n1

their associated horizontal lifts. Let hi : q
−1
A (U) → R, 1 ≤ i ≤ n1 be the linear

functions given by hi(a) =
〈
αi((qA(a)), a

〉
, where (αi)1≤i≤n1 is the dual frame

of (αi)1≤i≤n1 ; hence (by the previous lemma) the map ψ̃ :=
∑

B hi ·
B
αi is a

morphism of double vector bundles over
n1∑
i=1
hiα ◦ qA = idq−1

A (U) and idq−1
B (U),

i.e., a local linear splitting of D.

Remark 4.7. Each linear splitting σ : A ⊕ B → D of (D;A,B;M) is
equivalent to an isomorphism of double vector bundles ϕ : D −→ A⊕ B ⊕ C
over A and B such that ϕC = idC . Indeed the map

θ : A⊕B ⊕ C −→ D
(a, b, c) 7−→ σ(a, b) +

A
τA(a, c) = σ(a, b) +

B
τB(b, c) ,

is an isomorphism of DVB over A and B such that θC = idC , hence ϕ := θ−1

is an isomorphism of DVB over A and B such that ϕC = idC . Conversely
given such an isomorphism of double vector bundles, a linear splitting
is defined by σ(a, b) = ϕ−1(a, b, 0C(x)). Such an isomorphism is called a
decomposition of D.

Given a local decomposition ϕ : D |U → A ⊕ B ⊕ C |U of D such that
A,B,C are trivializable over U , one can associate a double vector chart
φ := (φA ⊕ φB ⊕ φC) ◦ ϕ of D, where φA, φB, φC are local trivializations
of A,B,C and

φA ⊕ φB ⊕ φC : q−1
A⊕B⊕C(U) −→ U × Rn1 × Rn2 × Rn0
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is the isomorphism of DVB (5.1).

Conversely a double vector chart φ : D |U→ U × Rn1 × Rn2 × Rn0 is
an isomorphism of DVB over local trivializations φA, φB; if φC is its core
morphism, hence ϕ := (φ−1

A ⊕ φ−1
B ⊕ φ−1

C ) ◦ φ is a local decomposition of
D. This shows (by the previous result) that the structure of D is entirely
described by local decompositions.

Lemma 4.8. Let ∅ ̸= U ⊂ M be a domain of chart over which A and B
are trivializable, f : U → R a smooth function with a compact support and a
local linear splitting ψ : A⊕B |U→ D of D. Hence the map ψ̃ : A⊕B → D,
given by {

ψ̃ := f ◦ qA⊕B ·
B
ψ on q−1

A⊕B(U),

ψ̃ := 0̃B ◦ p2 on A⊕B\q−1
A⊕B(U),

is a morphism of DVB over fidA and idB, where f ∈ C∞(M) is equal to f
on U and 0 on M\U .

Proof. It is sufficient to show that ψ̃ is smooth. Indeed ψ̃ is smooth

on q−1
A⊕B(U) and A ⊕ B\q−1

A⊕B(U); moreover for (a, b) in q−1
A⊕B(U)\q−1

A⊕B(U),

qA⊕B(a, b) ∈ U\U ⊂M\Supp(f) = V , hence q−1
A⊕B(V ) is an open neighbor-

hood of (a, b) such that ψ̃ |q−1
A⊕B(V )= 0̃B ◦ p2 |q−1

A⊕B(V ), so ψ̃ is smooth.

This is sufficient to generalize [7, Theorem 17.16.7].

Theorem 4.9. ([20]) If M is paracompact, (D;A,B;M) admits (global)
connections. In particular (D;A,B;M) admits global decompositions.

Proof. Let (Ui)i∈I be a locally finite atlas of M such that A and B are
trivializable over each Ui. Let ψi : A ⊕ B |Ui→ D, i ∈ I be a local linear
splitting (Proposition 4.6) and let (fi)i∈I be a partition of unity subordinate
to this open cover. By the previous lemma, the maps given by{

ψ̃i := fi ◦ qA⊕B ·
B
ψi on q−1

A⊕B(Ui),

ψ̃i := 0̃B ◦ p2 on A⊕B\q−1
A⊕B(Ui),

i ∈ I

are morphisms of DVB over fiidA and idB. Hence ψ̃ :=
∑

B ψ̃i is a linear
splitting of D.
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4.2. Local coordinate systems. Let ϕ : D | U → A⊕B ⊕ C | U be
a local decomposition of a double vector bundle (D;A,B;M) where A, B, C
are trivializable over U . For local frames

(
αk

)
1≤k≤n1

,
(
β
j

)
1≤j≤n2

,
(
γ
l

)
1≤l≤n0

of A, B, C on U , it is clear by definitions of horizontal lifts, core sections and
the previous remark that

αk(b) = ϕ−1
(
αk(qB(b)), b, 0

C(qB(b))
)
, 1 ≤ k ≤ n1,

γ′l(b) := γBl (b) = ϕ−1
(
0A(qB(b)), b, γl(qB(b))

)
, 1 ≤ l ≤ n0,

βj(a) = ϕ−1
(
a, β

j
(qA(a)), 0

C(qA(a))
)
, 1 ≤ j ≤ n2,

γl(a) := γAl (a) = ϕ−1
(
a, 0B(qA(a)), γl(qA(a))

)
, 1 ≤ l ≤ n0,

define local frames

(αk, γ
′
l) and (βj , γl) (4.2)

of D̃B and D̃A respectively. Moreover, considering local trivializations
φA, φB, φC associated to (αk)1≤k≤n1 , (βj)1≤j≤n2 , (γl)1≤l≤n0 , one can asso-
ciate by the previous remark a double vector chart (U,φ,Rn1 ,Rn2 ,Rn0) such
thatβj(a) = φ−1

(
φA(a), e

2
j , 0

)
, γl(a) = φ−1

(
φA(a), 0, e

0
l

)
,

αk(b) = φ−1
(
x, e1k, (φB

)
x
(b), 0), γ′l(b) = φ−1

(
x, 0, (φB)x(b), e

0
l

)
,

(4.3)

where x = qB(b) and
(
e1k
)
1≤k≤n1

,
(
e2j
)
1≤j≤n2

,
(
e0l
)
1≤l≤n0

are bases of Rn1 ,
Rn2 , Rn0 respectively.

When U is a domain of chart (U, u), there are adapted local coordinate
systems (xi, zk), (xi, rj) of A, B on q−1

A (U), q−1
B (U) and an adapted local

coordinate system (xi, ak, bj , cl) of D →M on π−1(U) such that
xi = ui ◦ π |π−1(U), 1 ≤ i ≤ m,

ak = zk ◦ qDA |π−1(U), 1 ≤ k ≤ n1,

bj = rj ◦ qDB |π−1(U), 1 ≤ j ≤ n2,

(4.4)

and functions cl, 1 ≤ l ≤ n0 are linear on fibers of both D̃A|q−1
A (U)

and D̃B|q−1
B (U).
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5. Examples of double vector bundles

5.1. The decomposed double vector bundle. Let A,B,C be three
structures of vector bundles over the same base M . The decomposed double
vector bundle also called trivial DVB in [17],

A⊕B ⊕ C
p2−−−−→ B

p1

y yq2
M

q1−−−−→ B

associated to A,B,C is already defined and denoted {A,B;C} in [20]. The
double vector chart corresponding to vector charts (U,φA,Rn1), (U,φB,Rn2),
(U,φC ,Rn0) of A,B,C is the map

q−1
A⊕B⊕C(U)

φA⊕φB⊕φC−−−−−−−−→ U × Rn1 × Rn2 × Rn0

Ax ⊕Bx ⊕ Cx ∋ (a, b, c) 7−→ (x, (φA)x(a), (φB)x(b), (φC)x(c)).
(5.1)

Remark 5.1. One can consider the following particular cases: A = 0A(M)
and B = 0B(M), C = 0C(M) isomorphic to B ⊕ C and A respectively.

Since each real vector space V is a vector bundle over a one point manifold,
hence V = V ⊕{0}⊕{0} is a double vector bundle and a linear map φ : V →W
a is morphism of double vector bundles.

5.2. Double vector bundles ker qDA , ker q
D
B , C. Given a double vec-

tor bundle (D;A,B;M) with core C, hence ker qDA , ker q
D
B and C are double

vector bundles respectively isomorphic to {0A(M), B;C}, {A, 0B(M);C} and
{0A(M), 0B(M);C}. The (global) linear splittings associated to these double
vector bundles are respectively 0̃A, 0̃B, 0̃A ◦ 0A = 0̃B ◦ 0B.

5.3. The tangent double vector bundle of a vector bundle.
Let (E,M, q) be a vector bundle. Consider a chart c = (U, u,m) of M such
that E is trivializable over U and let φ : q−1(U) → u(U) × Rn be a fibered
chart of E. Tφ is an isomorphism of vector bundles over Tu and φ; moreover if
τu(U)×Rn : T (u(U)×Rn) → u(U)×Rn×Rm×Rn is the canonical isomorphism,
hence

Tq−1(U)
Φ:=(u−1×idRn×idRm×idRn )◦τu(U)×Rn◦Tφ−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ U × Rn × Rm × Rn
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is a double vector chart of (TE,M, π), where π = πM ◦Tq = q ◦πE . Indeed if

Tq−1(U1)
Φ1:=(u−1

1 ×idRn×idRm×idRn )◦τu(U1)×Rn◦Tφ1

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ U1 × Rn × Rm × Rn

is another double vector chart with ∅ ≠ Tq−1(U)∩Tq−1(U1) = Tq−1(U ∩U1)
and

φ1 ◦ φ−1 : u(U ∩ U1)× Rn −→ u(U ∩ U1)× Rn
(z, k) 7−→ (u1 ◦ u−1(z), a(z) · k)

with a : u(U ∩ U1) → Gl(Rn) a smooth map, hence Φ1 ◦ Φ−1 is the map

U ∩ U1 × Rn × Rm × Rn −→ U ∩ U1 × Rn × Rm × Rn
(x, k, h, t) 7−→ (x, α(x) · k, β(x) · h, η(x) · t+ ω(x) · (k, h)),

where α = η = a◦u : U∩U1 → Gl(Rn), β = D(u1◦u−1)◦u : U∩U1 → Gl(Rm)
and ω : U ∩ U1 → L2(Rn,Rm;Rn), given by ω(x) · (k, h) = (Da(u(x)) · h) · k.
These charts constitute an atlas for a structure of double vector bundle

TE
Tq−−−−→ TM

πE

y yπM
E

q−−−−→ M

. (5.2)

Its core
⋃
x∈M

T0E(x)Ex is isomorphic to E.

The local coordinate system (4.4) of (TE;E, TM ;M) associated to (xi, yk)

and (xi,
·
x
j
) is exactly the usual local coordinate system (xi, yk,

·
x
j
,
·
y
l
).

5.4. The F -prolongation of a double vector bundle. Consider
a product preserving bundle functor. F : Mf → FM.

Proposition 5.2. For a double vector bundle (D;A,B;M),

FD
FqDB−−−−→ FB

FqDA

y yFqB
FA

FqA−−−−→ FM

(5.3)

is a double vector bundle.
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Proof. Indeed if (U,φ,Rn1 ,Rn2 ,Rn0) is a double vector chart of
(D;A,B;M) then (FU,Fφ, FRn1 , FRn2 , FRn0) is a double vector chart of
(FD;FA,FB;FM); to see it consider another double vector chart
(U,φ′,Rn1 ,Rn2 ,Rn0) of (D;A,B;M) such that

φ′ ◦ φ−1(x,X, Y, Z) = (x, u1(x) ·X,u2(x) · Y, u0(x) · Z + ω(x)(X,Y )),

with ui : U → GL(Rni), i = 0, 1, 2 and ω : U → L2(Rn1 ,Rn2 ;Rn0) smooth
maps; hence Fφ′ ◦ Fφ−1(x̃, X̃, Ỹ , Z̃) is equal to

(x̃, jRn1 (Fu1(x̃)) · X̃, jRn2 (Fu2(x̃)) · Ỹ , jRn0 (Fu0(x̃)) · Z̃ + ℓ1,2(Fω(x̃))(X̃, Ỹ )),

where jRni : FGL(Ri) → GL(FRi), i = 0, 1, 2 are canonical representations
and ℓ1,2 : FL2(Rn1 ,Rn2 ;Rn0) → L2(FRn1 , FRn2 ;FRn0), the canonical map.
This proves that double vector charts (FU,Fφ, FRn1 , FRn2 , FRn0) constitute
an atlas for a structure of double vector bundle on FD.

Definition 5.3. We call it the F -prolongation of (D;A,B;M).

6. Duality on double vector bundles

Let us recall that given a morphism of vector bundles φ : E → E′ over
a diffeomorphism φ : M → M ′, its transpose morphism is the morphism of
vector bundles φt : E′∗ → E∗ over the diffeomorphism φ−1 :M ′ →M , defined

on fibres by (φt)x′ :=
[
φφ−1(x′)

]t
.

6.1. Duals of a double vector bundle. Let (D;A,B;M) be a dou-
ble vector bundle. Let

(
D∗A,A, (qDA )

∗) denotes the dual bundle of (D,A, qDA ).
The transpose of the exact sequence (3.5) is the exact sequence

0 → q∗AB
∗ [(qDB )!]

t

↣ D∗A
(τA)t−−−→ q∗AC

∗ → 0 (6.1)

of morphisms of vector bundles over A; the composition of vector bundles
morphisms

D∗A
(τA)t−−−−→ q∗AC

∗ p2−−−−→ C∗

(qDA )∗
y y yqC∗

A
idA−−−−→ A

qa−−−−→ M

is a surjective submersion q∗AC∗ : D∗A→ C∗.
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Theorem 6.1. ([17]) The commutative diagram of surjective submer-
sions

D∗A
q∗A
C∗−−−−→ C∗

(qDA )∗
y yqC∗

A
qA−−−−→ M

(6.2)

is a double vector bundle (D∗A;A,C∗;M) with (6.1) as a core sequence.

Proof. Let us denote as π∗ : D∗A → M the surjective submersion
qA ◦ (qDA )∗ = qC∗ ◦ q∗AC∗ . Consider a double vector chart (U,φ,Rn1 ,Rn2 ,Rn0) of
(D;A,B;M) over local trivializations

φA : q−1
A (U) −→ U × Rn1 , φB : q−1

B (U) −→ U × Rn2

of A, B; the transpose morphism (φ∗, φA) := ([φ−1]t, φA) of (φ
−1, φ−1

A ) is an
isomorphism of vector bundles given by

φ∗ : (π∗)−1(U) −→ U × Rn1 × (Rn2)∗ × (Rn0)∗

D∗
a ∋ Φ 7−→ (φA(a),Φ ◦ φ−1

a (·, 0),Φ ◦ φ−1
a (0, ·)).

If (U,φ′,Rn1 ,Rn2 ,Rn0) is another double vector chart of (D;A,B;M) such
that

φ′ ◦ φ−1(x,X, Y, Z) =
(
x, u1(x) ·X,u2(x) · Y, u0(x) · Z + ω(x)(X,Y )

)
,

with ui : U → GL(Rni), i = 0, 1, 2 and ω : U → L2(Rn1 ,Rn2 ;Rn0) smooth
maps, hence φ′∗ ◦ (φ∗)−1(x,X, Y ∗, Z∗) is equal to(

x, u1(x)
−1 ·X, [u2(x)]t (Y ∗) + [ω(x)(X, ·)]t (Z∗), [u0(x)]

t · Z∗). (6.3)

So double vector charts (U,φ∗,Rn1 , (Rn0)∗, (Rn2)∗) constitute an atlas
for a structure of double vector bundle on D∗A with left and right sides

D∗A
(qDA )∗

−−−→ A and D∗A
q∗A
C∗−−→ C∗.

Definition 6.2. [17] The double vector bundle (6.2) is called the vertical
dual (or dual over A) of (3.1). Its core is obviously isomorphic to the dual
B∗ of B.

Remark 6.3. The transpose

0 → q∗BA
∗ [(qDA )!]

t

−−−−−→ D∗B
(τB)t−−−→ q∗BC

∗ → 0 (6.4)
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of the core sequence (3.6) allows in the same way to consider the horizontal
dual

D∗B
(qDB )∗

−−−−→ B

q∗B
C∗

y yqB
C∗ qC∗−−−−→ M

(6.5)

of (3.1) with the core isomorphic to A∗.

Hence the following properties are clear.

Proposition 6.4. ([17]) Let θ ∈ C∗.

(i) For all Φ, Φ′ in (D∗A)θ with (qDA )
∗(Φ) = a, (qDA )

∗(Φ′) = a′ we have:

(Φ +
C∗

Φ′)(d′′) = Φ(d) + Φ′(d′). (6.6)

where d′′ ∈ Da+a′ , d ∈ Da, d
′ ∈ Da′ and d

′′ = d+
B
d′.

(ii) For all Φ in (D∗A)θ with (qDA )
∗(Φ) = a, we have:

(s ·
C∗

Φ)(s ·
B
d) = sΦ(d), (6.7)

for all s ∈ R.

Proof. Let us consider a double vector chart (U,φ,Rn1 ,Rn2 ,Rn0) of
(D;A,B;M) such that x := qC∗(θ) ∈ U .

(i) For all Φ, Φ′ in (D∗A)θ with (qDA )
∗(Φ) = a, (qDA )

∗(Φ′) = a′ and
d′′ ∈ Da+a′ , d ∈ Da, d

′ ∈ Da′ such that d′′ = d+
B
d′, let d = φ−1(x,X, Y, Z),

d′ = φ−1(x,X ′, Y, Z ′), Φ = (φ∗)−1(x,X, Y ∗, Z∗), Φ′ = (φ∗)−1(x,X ′, Y ′∗, Z∗);
since Φ +

C∗
Φ′ := (φ∗)−1(φ∗(Φ) +

(Rn0 )∗
φ∗(Φ′)) by definition, we have

Φ +
C∗

Φ′ = (φ∗)−1(x,X +X ′, Y ∗ + Y ′∗, Z∗) , hence

Φ +
C∗

Φ′(d′′) =
〈
Y, Y ∗ + Y ′∗〉+ 〈

Z + Z ′, Z∗〉
= ⟨Y, Y ∗⟩+ ⟨Z,Z∗⟩+

〈
Y, Y ′∗〉+ ⟨Z,Z∗⟩ = Φ(d) + Φ′(d′).

(ii) Similarly, since s ·
C∗

Φ := (φ∗)−1
(
s ·
(Rn0 )∗

φ∗(Φ)
)
, we have

s ·
C∗

Φ = (φ∗)−1(x, sX, sY ∗, Z∗)
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hence

(s ·
C∗

Φ)(s ·
B
d) = ⟨Y, sY ∗⟩+ ⟨sZ, Z∗⟩ = s(⟨Y, Y ∗⟩+ ⟨Z,Z∗⟩) = sΦ(d).

Remark 6.5. The dual frame (βj , γl) of the local frame (βj , γl) of D̃A|q−1
A (U)

defined by (4.3) is clearly the local frame of D∗A |q−1
A (U) induced by the double

vector chart (U,φ∗,Rn1 , (Rn0)∗, (Rn2)∗), i.e.,{
βj(a) = (φ∗)−1(φA(a), (e

2
j )

∗, 0) , 1 ≤ j ≤ n2 ,

γl(a) = (φ∗)−1(φA(a), 0, (e
0
l )

∗) , 1 ≤ l ≤ n0 .
(6.8)

Likewise, we have,

q∗AC∗(βj) = 0C∗
qA(a)

and q∗AC∗(γl) = γ∗
l
(qA(a)), 1 ≤ j ≤ n2, 1 ≤ l ≤ n0. (6.9)

In the case of the vertical dual

T ∗E
rE−−−−→ E∗

π∗
E

y yqE∗

E
qE−−−−→ M

of (5.2), we have for x in Ex,{
rE(dx

i(e)) = 0E∗
x
, 1 ≤ i ≤ m,

rE(dy
j(e)) = yj |Ex , 1 ≤ j ≤ n .

(6.10)

6.2. Canonical pairing. We give a new proof of the following result.

Theorem 6.6. ([14, 16]) There is a natural duality between D∗A and
D∗B over C∗ given by

| Φ,Ψ |= ⟨d,Φ⟩A − ⟨d,Ψ⟩B , (6.11)

where qDA (d) = (qDA )
∗(Φ) and qDB (d) = (qDB )

∗(Ψ).

Proof. Let θ ∈ C∗
x ; consider a double vector chart (U,φ,Rn1 ,Rn2 ,Rn0) of

(D;A,B;M) such that x ∈ U . For all (Φ,Ψ) ∈ (D∗A)θ ⊕ (D∗B)θ, let:

Φ = (φ∗)−1(x,X, Y ∗, Z∗) and Ψ = (φ̃∗)−1(x,X∗, Y, Z∗)
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with θ = φ∗−1
C (x, Z∗); for all d = φ−1(x,X, Y, Z) ∈ D(qDA )∗(Φ) ∩D(qDB )∗(ψ), we

have

Φ(d) = ⟨Y, Y ∗⟩+ ⟨Z,Z∗⟩ and Ψ(d) = ⟨X,X∗⟩+ ⟨Z,Z∗⟩ ;

let us show that the real number

Φ(d)−Ψ(d) := ⟨Y, Y ∗⟩ − ⟨X,X∗⟩

does not depends on (U,φ,Rn1 ,Rn2 ,Rn0). Indeed let (U ′, φ′,Rn1 ,Rn2 ,Rn0)
be another double vector chart such that x ∈ U ′ and

φ′ ◦ φ−1(x,X, Y, Z) =
(
x, u1(x) ·X,u2(x) · Y, u0(x) · Z + ω(x)(X,Y )

)
,

with u1 : U ∩U ′ → GL(Rn1), u2 : U ∩U ′ → GL(Rn2), u0 : U ∩U ′ → GL(Rn0),
ω : U ∩ U ′ → L2(Rn1 ,Rn2 ;Rn0) of class C∞, hence

Φ = (φ′∗)−1(x,X ′, Y ′∗, Z ′∗) and Ψ = (φ̃′∗)−1(x,X ′∗, Y ′, Z ′∗)

imply 
X = u1(x)

−1 ·X ′

X∗ = [u1(x)]
t ·X ′∗ + [ω(x)(·, Y )]t (Z ′∗)

Y = u2(x)
−1 · Y ′

Y ∗ = [u2(x)]
t · Y ′∗ + [ω(x)(X, ·)]t (Z ′∗)

and {
⟨Y, Y ∗⟩ = ⟨Y ′, Y ′∗⟩+ ⟨ω(x)(X,Y ), Z ′∗⟩
⟨X,X∗⟩ = ⟨X ′, X ′∗⟩+ ⟨ω(x)(X,Y ), Z ′∗⟩ ,

so ⟨Y, Y ∗⟩−⟨X,X∗⟩ = ⟨Y ′, Y ′∗⟩−⟨X ′, X ′∗⟩, i.e., (6.11) is well-defined. Finally,
since the map

Rn0 × (Rn2)∗ × (Rn0)∗ × Rn2 −→ R, ((X,Y ∗),
(X∗, Y )) 7−→ ⟨Y, Y ∗⟩ − ⟨X,X∗⟩

is bilinear and nondegenerate, (6.11) defines a pairing.

7. Some natural morphisms of double vector bundles

In this section, we generalize for DVB some natural morphisms of vector
bundles attached to a Weil functor F : Mf −→ FM (see [13] or [9]).
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7.1. Canonical isomorphisms κE : FTE → TFE. Let us consider
the canonical flow natural equivalence (2.1) κ : FT → TF associated to F .
For a vector bundle (E,M, q), one can consider the F -prolongation

FTE
F (Tq)−−−−→ FTM

F (πE)

y yF (πM )

FE
Fq−−−−→ FM

of (TE;E, TM ;M) and the tangent double vector bundle

TFE
T (Fq)−−−−→ TFM

πFE

y yπFM

FE
Fq−−−−→ FM

of (FE,FM,Fq). It is clear to see that

κE : FTE −→ TFE (7.1)

is a double vector bundle isomorphism (κE ; idFE , κM ; idFM ).

7.2. Natural transformations Q(a) : F → F . For a vector bundle
(E,M, q), the fibered multiplication µE : R×E → E is a morphism of vector
bundles over the projection R × M → M ; hence FµE : AF × FE → FE
is a morphism of vector bundles over the projection AF × FM → FM , i.e.,
the partial maps FµE(a, ·) : FE −→ FE (a ∈ AF ) are morphisms of vector
bundles over idFM . One deduces (for a in AF ) a natural transformation

Q(a) : F −→ F (7.2)

by Q(a)E := FµE(a, ·) that for all s, t ∈ R and a, b ∈ AF satisfies

Q(1AF ) = idFE ,

Q(sa+ tb) = sQ(a) + tQ(b) ,

Q(ab) = Q(a) ◦Q(b) .

(7.3)

Now, let (D;A,B;M) be a double vector bundle. Hence for all a in AF ,
Q(a)

D̃A
: FD → FD is a morphism of double vector bundles

(
Q(a)

D̃A
; idFA,

Q(a)B; idFM
)
, since the fibered multiplication R × D̃A → D̃A is a morphism

of vector bundles over the projection R × A → A and the multiplication on
B. Similarly, for all a in AF , Q(a)

D̃B
: FD → FD is a morphism of double

vector bundles
(
Q(a)

D̃B
; idFB, Q(a)A; idFM

)
.
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7.3. Natural transformations Q(a) : TF → TF . For all smooth
manifold M , let Q(a)M := κM ◦ Q(a)TM ◦ κ−1

M
; one defines in this way a

natural transformation

Q(a) : TF −→ TF (7.4)

between Weil functors satisfying (7.3).

Finally, for a vector bundle (E,M, q), µTE : R×TE → TE is a morphism
of double vector bundles from

R× TE
idR ×Tq−−−−−→ R× TM

idR ×πE
y yidR ×πM

R× E
idR ×q−−−−→ R×M

to

TE
Tq−−−−→ TM

πE

y yπM
E

q−−−−→ M

over the projection R× E → E and µTM : R× TM → TM . So, the maps

Q(a)E : TFE −→ TFE, (a ∈ AF ) (7.5)

become morphisms of double vector bundles (Q(a)E ; idFE , Q(a)M ; idFM ), as
composition of morphisms of double vector bundles.

8. On lifts of linear functions and sections

Let us recall these tools developed in [9, 17] (and in [19] with a product
preserving gauge bundle functor on vector bundles).

8.1. Lifts of linear functions. Let (E,M, q) be a vector bundle and
{pt} a one point manifold.

A smooth function h : E → R is linear on fibres (or a linear function) if

E
h−−−−→ R

q

y y
M −−−−→ {pt}

is a morphism of vector bundles over a constant map.

One denotes by C∞
ℓin(E,R) the set all smooth linear functions on E. This is

a module over C∞(M,R) isomorphic to the module Γ(E∗) of smooth sections
of the dual of E, since the map ℓ : Γ(E∗) → C∞

ℓin(E,R) given by (ℓσ)x = σ(x),
is an isomorphism of modules.
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Each h in C∞
ℓin(E,R) is a morphism of double vector bundles, hence for

a linear function λ : AF → R, h(λ) := λ ◦ Fh, belongs to C∞
ℓin(FE,R) (as

composition of morphisms of double vector bundles) and is called the λ-lift
of h to FE.

8.2. Lifts of linear sections. Let (D;A,B;M) be a double vector
bundle. For a linear section

A
σ−−−−→ D

qA

y yqDB
M

σ−−−−→ B

of the vertical bundle structure, its local expression in a local frame (βj , γl)

of D̃A (see subsection 4.2) is

σ |q−1
A (U)=

∑n2

j=1
σj ◦ qAβj +

∑n0

l=1
σlγl, (8.1)

where σ |U=
∑n0

l=1 σ
jβj and σl : q−1

A (U) → R, 1 ≤ k ≤ n0, linear functions.

Moreover for a ∈ AF , let

σ(a) := Q(a)B ◦ Fσ , σ(a) := Q(a)
D̃A

◦ Fσ . (8.2)

Proposition 8.1. (σ(a), σ(a)) is a smooth linear section of FD → FA.

Proof. σ(a) is a section of FD → FA since Q(a)
D̃A

is a morphism of

vector bundles over idFA. Moreover σ(a) is the composition of two morphisms
of vector bundles, namely

FA
Fσ−−−−→ FD

FqA

y yF (qDB )

FM
Fσ−−−−→ FB

and

FD
Q(a)D−−−−→ FD

F (qDB )

y yF (qDB )

FB
Q(a)B−−−−→ FB

,

hence σ(a) is a linear section over σ(a).

Definition 8.2. (σ(a), σ(a)) is called the a-lift of (σ, σ, ) to FA.
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One may define in the same way the a-lift (β(a), β(a)) of a linear section

B
β−−−−→ D

qB

y yqDA
M

β
−−−−→ A

of the horizontal bundle structure D → B.

8.3. Application to lifts of linear vector fields. In this subsec-
tion, we set (D;A,B;M) = (TE;E, TM ;M) the tangent prolongation double
vector bundle of a vector bundle (E,M, q).

Given a linear vector field (ξ, x) and a in AF ; by [9], we have some vector
fields x(a) ∈ X(FM), ξ(a) ∈ X(FE) given by

x(a) = Q(a)M ◦ FMx , ξ(a) = Q(a)E ◦ FEξ . (8.3)

Since (ξ(a), x(a)) is the composition of (κE , κM ) with the a-lift (8.2) of (ξ, x)
to FE, (ξ(a), x(a)) is a linear vector field .

Definition 8.3. (ξ(a), x(a)) or ξ(a) is called the a-lift of (ξ, x) related to F .

Remark 8.4. Some properties of lifts of vector fields and functions on man-
ifolds can be found in [3, 9, 12, 18]. For some additional properties of the
particular case of linear vector fields, one can refer to [19].

9. On lifts of linear sections on duals of a
double vector bundle

Let (D;A,B;M) be a double vector bundle with core C and (6.2) its
vertical dual.

9.1. Linear sections on duals of a double vector bundle. Let
us recall that a linear section ω ∈ ΓℓinA (D∗A) of (6.2) with respect to its
vertical vector bundle structure is a morphism of vector bundles

A
ω−−−−→ D∗A

qA

y yq∗AC∗

M
ω−−−−→ C∗

. (9.1)

where ω ∈ Γ(C∗).
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A linear 1-form on E is a linear section of the vertical dual (T ∗E;E,E∗;M)
of (TE;E, TM ;M) with respect to its vertical vector bundle structure, i.e., a
smooth 1-form on E that is a morphism of vector bundles

E
ω−−−−→ T ∗E

q

y yrE
M

ω−−−−→ E∗

(9.2)

over a smooth section of E∗.

Theorem 9.1. Let ω ∈ ΓA(D
∗A) and denote ω̃ ∈ C∞

ℓin(D̃A,R) the corre-
sponding function on D. The following assertions are equivalent:

(1) (ω, ω) is a linear section.

(2) ω̃ ∈ C∞
ℓin(D̃B,R).

Proof. (1) implies (2): We have to prove that

D
ω̃−−−−→ R

qDB

y y
B −−−−→ {pt}

is a vector bundle morphism. Let d, d′ ∈ D such that qDB (d) = qDB (d
′) with

a = qDA (d), a
′ = qDA (d

′); we have

ω̃(d+
B
d′) = ω(a+ a′)(d+

B
d′)

= (ω(a) +
C∗
ω(a′))(d+

B
d′) (by (1))

= ω(a)(d) + ω(a′)(d′) (by (6.6))

= ω̃(d) + ω̃(d′) ,

hence the result follows by Remark 3.3 (3).
(2) implies (1): Let a, a′ ∈ A such that qA(a) = qA(a

′) = x ; we have
q∗AC∗(ωa) = q∗AC∗(ωa′). Indeed, for all c in Cx, d = τA(a,−c) and d′ = τA(a

′,+c)
satisfy d+

B
d′ = 0̃A(a+ a′), hence,

0 = ω̃(d+
B
d′′) = ω̃(d) + ω̃(d′) = ωa ◦ τA(a,−c) + ωa′ ◦ τA(a′, c)
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i.e., q∗AC∗(ωa) = ωa ◦ τA(a, ·) = ωa′ ◦ τA(a′, ·) = q∗AC∗(ωa′). Hence, the rela-
tions

〈
d +
B
d′, ω̃

〉
= ⟨d, ω̃⟩ + ⟨d′, ω̃⟩, for every (d, d′) in Da × Da′ imply that

ω(a + a′) = ω(a) +
C∗
ω(a′); whence ωsa = s ·

C∗
ωa, for all (s, a) in R × A, by

continuity. Finally, for all a in A, ω(a) ∈ (D∗A)ω(qA(a)), where ω :M → C∗ is

a map and since q∗AC∗ ◦ ω = ω ◦ qA, ω is a smooth section of C∗, hence (ω, ω)
is a linear section.

Remark 9.2. Some similar characterizations for linear 1-forms may be
found in [17], [14] or [15].

Let (ω, ω) be a linear section of (6.2) with respect to its vertical vector
bundle structure; hence by Remark 6.5 we have

ω |q−1
A (U)=

∑n0

l=1
ωlγ

l +
∑n2

j=1
ωjβ

j , (9.3)

where ω |U=
∑n0

l=1 ωlγ
l and ωj : q

−1
A (U) → R, 1 ≤ j ≤ n2 linear functions. In

the particular case of a linear 1-form (ω, ω) on E, one can write

ω |q−1(U)=
∑n

l=1
ωldy

l +
∑m

j=1
ωjdx

j , (9.4)

where ω |U=
∑n

l=1 ωlε
l and ωj : q

−1(U) → R, 1 ≤ j ≤ m linear functions.

9.2. Lifts of linear sections. Now, given a linear section of (6.2)
(ω, ω) and a linear map λ : AF → R, let

ω̃(λ) = λ ◦ Fω̃ : FM −→ R , ω̃(λ) = λ ◦ Fω̃ : FA −→ R . (9.5)

Proposition 9.3. Hence (ω(λ), ω(λ)) is a linear section of the vertical dual
of (5.3) (with respect to its vertical side bundle structure) such that

ω(λ)(σ(a)) = (ω(σ))(λa), (9.6)

for all linear section (σ, σ) in ΓlinA (D), λ : AF → R a linear map, a ∈ AF and
λa : A

F → R given by λa(x) = λ(ax).

Proof. Indeed

ω(λ)(σ(a)) = ω̃(λ) ◦ σ(a) = λ ◦ Fω̃ ◦Q(a)D ◦ Fσ (by (8.2))

= λ ◦Q(a)R ◦ Fω̃ ◦ Fσ (by (7.2))

= λa ◦ F (ω(σ)) = (ω(σ))(λa)
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and since Fω̃ : FD → AF is a morphism of double vector bundles over
FA→ {pt} and FB → {pt}, the result follows.

Definition 9.4. The pair (ω(λ), ω(λ)) is called the λ-lift of (ω, ω) to FA.

9.3. Application to lifts of linear 1-forms. Given a vector bundle
(E,M, q), let

T ∗E
rE−−−−→ E∗

π∗
E

y yq∗
E

q−−−−→ M

be the vertical dual of the tangent double vector bundle (TE;E, TM ;M).

Let us give another proof of this result of [14].

For a linear function f ∈ C∞
ℓin(E), (df, f) is a linear 1-form on E. Indeed

let ξ ∈ TeE, ξ′ ∈ Te′E such that Tq(ξ) = Tq(ξ′) and g, h ∈ C∞(R, E),

q(gt) = q(ht) in a neighborhood of 0 with ξ = dgt
dt

∣∣∣
t=0

, ξ′ = dht
dt

∣∣
t=0

; we have

d̃f
(
ξ +
TM

ξ′
)
= d̃f

(
d(gt+ht)

dt

∣∣∣
t=0

)
= d

dtf(gt + ht)
∣∣
t=0

= d
dtf(gt)

∣∣
t=0

+ d
dtf(ht)

∣∣
t=0

= d̃f(ξ) + df(e′)(ξ′)

and the result follows by continuity (see Remark 3.3 (3)).

Now, given a linear 1-form (ω, ω) on E and a linear map λ : AF → R, by
[9], we have some 1-forms ω(λ) ∈ Ω1(FM), ω(λ) ∈ Ω1(FE) by

ω̃(λ) = λ ◦ Fω̃ ◦ κ−1
M : TFM −→ R , ω̃(λ) = λ ◦ Fω̃ ◦ κ−1

E : TFE −→ R .

Corollary 9.5. (ω(λ), ω(λ)) is a linear 1-form on FE such that

ω(λ)(ξ(a)) = (ω(ξ))(λa ). (9.7)

for all linear vector field (x, ξ) on TE, linear map λ : AF → R and a ∈ AF .

Proof. (9.7) comes from [9] and (ω(λ), ω(λ)) is the composition of the trans-
pose morphism ((κE)

t, (κM )t) with the λ-lift (9.5) of (ω, ω) to FE, hence
(ω(λ), ω(λ)) is a linear 1-form.

Definition 9.6. [9](ω(λ), ω(λ)) is called the λ-lift of (ω, ω) to FE.
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10. On lifts of linear covariant tensor fields
on double vector bundles

10.1. Linear covariant tensor fields. Let (D∗A;A,C∗;M) be the
vertical dual of a double vector bundle (D;A,B;M). Let us set

⊕0D̃A = A
and

⊕0A =M .

Definition 10.1. A covariant tensor field ω : A →
⊗kD∗A (k ≥ 1) on

D̃A is said linear if the associated multilinear morphism over A,⊕k−1D̃A
ω♭

−→ D∗A⊕k−1Da ∋ (d1, . . . , dk−1) 7−→ ω(a)(d1, . . . , dk−1, ·)
(10.1)

is a morphism of vector bundles⊕k−1D̃A
ω♭−−−−→ D∗A

(⊕k−1qDB )

y yq∗AC∗⊕k−1B
ω−−−−→ C∗

(10.2)

over a smooth map ω. In this case, ω is in fact a multilinear morphism of
vector bundles over M .

When k = 0, a linear tensor field is just a linear function A → R, while
for k = 1, a linear tensor field is a linear section A→ D∗A of (6.2).

One defines in the same way the concept of linear covariant tensor
fields on D̃B.

Theorem 10.2. Let ω : A →
⊗kD∗A (k ≥ 1) be a covariant tensor field

on D̃A. The following assertions are equivalent:

(1) ω is a linear tensor field.

(2) The associated multilinear function,⊕kD̃A
ω̃−→ R⊕kDa ∋ (d1, . . . , dk) 7−→ ω(a)(d1, . . . , dk)

is a morphism of vector bundles⊕kD̃A
ω̃−−−−→ R

(⊕kqDB )

y y⊕kB −−−−→ {pt}

.
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Proof. The result is already proved for k = 1. Let k ≥ 2.

(1)⇒(2) Let (b1, . . . , bk) in
⊕kBx; for (di)1≤i≤k, (d

′
i)1≤i≤k in(⊕kD̃A

)
(bi)1≤i≤k

=
⋃

i=1

[⊕k
i=1Da ∩Dbi

]
such that di ∈ Da ∩Dbi and d

′
i ∈ Da′ ∩Dbi ,

ω̃((di)1≤i≤k + (d′i)1≤i≤k) = ω̃((di +
B
d′i)1≤i≤k)

= ω♭((di +
B
d′i)1≤i≤k−1)(dk +

B
d′k)

= ω♭((di)1≤i≤k−1 + (d′i)1≤i≤k−1)(dk +
B
d′k)

=
[
ω♭((di)1≤i≤k−1) +

C∗
ω♭((d′i)1≤i≤k−1)

]
(dk +

B
d′k) (by (1))

= ω♭((di)1≤i≤k−1)(dk) + ω♭((d′i)1≤i≤k−1)(d
′
k) (by (6.6))

= ω̃((di)1≤i≤k) + ω̃((d′i)1≤i≤k).

Moreover, for t ∈ R and (di)1≤i≤k ∈
⊕k

i=1Da∩Dbi , the equality ω̃(t·(di)1≤i≤k)
= tω̃((di)1≤i≤k) holds by continuity.

(2)⇒(1) • Let (di)1≤i≤k−1, (d
′
i)1≤i≤k−1 in (

⊕k−1D̃A)(bi)1≤i≤k−1
, x = qB(bi)

such that di ∈ Da ∩Dbi and d
′
i ∈ Da′ ∩Dbi ; we have q∗AC∗(ω♭((di)1≤i≤k−1)) =

q∗AC∗(ω♭((d′i)1≤i≤k−1)). Indeed, for all c in Cx, dk = τA(a,−c) and d′k =
τA(a

′,+c) satisfy dk +
B
d′k = 0̃A(a+ a′), hence,

0 = ω̃((di)1≤i≤k + (d′i)1≤i≤k) = ω̃((di)1≤i≤k) + ω̃((d′i)1≤i≤k)

= ω♭((di)1≤i≤k−1) ◦ τA(a,−c) + ω♭((d′i)1≤i≤k−1) ◦ τA(a′, c),

i.e., q∗AC∗(ω♭((di)1≤i≤k−1)) = q∗AC∗(ω♭((d′i)1≤i≤k−1)). So, for all (di)1≤i≤k−1 in(⊕k−1D̃A

)
(bi)1≤i≤k−1

, one has

ω♭((di)1≤i≤k−1) ∈ (D∗A)ω((bi)1≤i≤k−1),

where ω :
⊕k−1B → C∗ is a map; since q∗AC∗ ◦ω = ω ◦ (⊕k−1qDB ), ω is a smooth

fibered map over M .

• Moreover, the equalities

ω̃((di)1≤i≤k + (d′i)1≤i≤k) = ω̃((di)1≤i≤k) + ω̃((d′i)1≤i≤k),
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for all (di)1≤i≤k, (d
′
i)1≤i≤k in (

⊕kD̃A)(bi)1≤i≤k
, such that di ∈ Da and d

′
i ∈ Da′

imply

ω♭((di)1≤i≤k−1 + (d′i)1≤i≤k−1) = ω♭((di)1≤i≤k−1) +
C∗
ω♭((d′i)1≤i≤k−1),

for all (di)1≤i≤k−1, (d
′
i)1≤i≤k−1 in (

⊕k−1D̃A)(bi)1≤i≤k−1
, such that di ∈ Da and

d′i ∈ Da′ ; by continuity,

ω♭((s ·
B
di)1≤i≤k−1) = s ·

C∗
ω♭((di)1≤i≤k−1),

for all (s, (di)1≤i≤k−1) in R×
⊕kDa.

Therefore, (ω, ω) is a linear covariant tensor field.

Remark 10.3. Let ω : A →
⊗kD∗A (k ≥ 2) be a linear covariant tensor

field on D̃A ; the associated multilinear morphism (10.1) over idA is a mor-
phism of vector bundles over idA if and only if k = 2. In this case ω : B → C∗

is a morphism of vector bundles.

Corollary 10.4. Let ω : A →
⊗kD∗A (k ≥ 2) be a linear covariant

tensor field on D̃A and (βj , γl) the dual frame of the local frame (βj , γl) of

D̃A |q−1
A (U) defined by (4.2). Hence ω |q−1

A (U) equals

k∑
α=1

ωj1...jα−1ljα+1...jk ◦ qA |q−1
A (U) β

j1 ⊗ . . .⊗ βjα−1 ⊗ γl ⊗ βjα+1 ⊗ . . .⊗ βjk

+ ωj1...jkβ
j1 ⊗ . . .⊗ βjk , (10.3)

where ωj1...jα−1ljα+1...jk : U → R are smooth, ωj1...jk−1h : q−1
A (U) → R are

linear functions and ωj1...jk−1l = ωj1...jk−1l
are given by the relations

ω(βj1 . . . βjk−1
) = ωj1...jk−1l

γl.

Proof. It is clear by (6.8) that each term of the right hand of (10.3) is a
linear tensor field on D̃A |q−1

A (U). Conversely, since q∗AC∗(ω♭(d1, . . . , dk−1)) = 0

when one of these vectors belongs to the kernel of qDB , all terms of ω |q−1
A (U)

of the form fX1 ⊗ . . .⊗Xk−1 ⊗ γlk with
{
X1, . . . , Xk−1

}
∩
{
γ1, . . . , γn0

}
̸= ∅

vanish by (6.9).

Likewise, all terms of ω |q−1
A (U) of the form fX1 ⊗ . . .⊗Xk−1 ⊗ βjk vanish

when the cardinality s of the intersection
{
X1, . . . , Xk−1

}
∩
{
γ1, . . . , γn0

}
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is greater than 1; indeed let (di)1≤i≤k in
⊕kD̃A such that dk = βjk(a)

and d1, . . . , dk−1 belong to the union {β1(a), . . . , βn2(a)}∪{γ1(a), . . . , γn0(a)};
the equalities ω̃(t · (di)1≤i≤k) = tω̃((di)1≤i≤k), for all real number t write,
tsωr1...rk−1jk(ta) = tωr1...rk−1jk(a) hence ωr1...rk−1jk(a) = 0.

Moreover, ω ◦ (⊕k−1qDB )(d) = q∗AC∗ ◦ ω♭(d) with d = (βj1(a), . . . , βjk−1
(a))

gives by (6.9),

ωj1...jk−1l
(qA(a))γ

l(qA(a)) = ωj1...jk−1l(a)γ
l(qA(a)),

i.e., ωj1...jk−1l = ωj1...jk−1l
|q−1

A (U) .

Applying the linearity of ω̃ on d = (βjα(a))1≤α≤k, d
′ = (βjα(a

′))1≤α≤k and
t ∈ R, the linearity of ωj1...jk follows. Thus ω |q−1

A (U) is of the form (10.3).

Remark 10.5. In the case of a skew-symmetric tensor field ω : A →∧kD∗A (k ≥ 2), we have

ω |q−1
A (U)=

1

(k − 1)!
ωj1...jk−1l

◦qA |q−1
A (U) β

j1∧ . . .⊗βjα−1+ωj1...jkβ
j1∧ . . .∧βjk ,

where ωj1...jk : q−1
A (U) → R are linear functions and ωj1...jk−1l = ωj1...jk−1l

are

given by the relations ω(βj1 ∧ . . .∧βjk−1
) = ωj1...jk−1l

γl. In the particular case
of a linear k-form on a vector bundle (E,M, q), we have

ω |q−1(U) =
1

(k − 1)
ωi1...ik−1j

dxi1 ∧ . . . ∧ dxik−1 ∧ dyj

+
1

k!
ωi1...ikjy

jdxi1 ∧ . . . ∧ dxik ,
(10.4)

as in [15].

10.2. Lifts of linear covariant tensor fields. Now, let a linear
covariant tensor field ω ∈ ΓℓinA (

⊗kD∗A) given by its morphism of DVB⊕kD̃A
ω̃−−−−→ R

⊕kqDB

y y⊕kB −−−−→ {pt}

(k ≥ 2).

One defines a covariant tensor field ω(µ) : FA→
⊗k(FD)∗FA by

ω̃(µ) = µ ◦ Fω̃ :
⊕k

(
F̃D

)
FA

−→ R ,

where µ : AF → R is a linear map.
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Definition 10.6. ω(µ) is called the µ-lift of ω.

Proposition 10.7. Then ω(µ) is a linear covariant tensor field on (F̃D)FA
such that

ω(µ)
(
σ
(a1)
1 , . . . , σ

(ak)
k

)
= (ω(σ1, . . . , σk))

(µa1...ak ), (10.5)

for all linear sections (σi, σi)1≤i≤k in ΓlinA (D), µ : AF → R a smooth lin-
ear map, a1, . . . , ak ∈ AF and µa1...ak : AF → R given by µa1...ak(x) =
µ(a1 . . . akx).

Proof. Since Fω : F (
⊕kD̃A) ∼=

⊕k(F̃D)FA → AF is a morphism of vector
bundles over F (

⊕kB) ∼=
⊕kFB → {pt} and FA → {pt}, ω(µ) is a linear

covariant tensor field on (F̃D)FA. Moreover

ω(µ)(σ
(a1)
1 , . . . , σ

(ak)
k ) = µ ◦ Fω̃ ◦

(
σ
(a1)
1 ⊕ . . .⊕ σ

(ak)
k

)
= µ ◦ Fω̃ ◦

(⊕k
i=1Q(ai)D

)
◦
(⊕k

i=1Fσi

)
= µ ◦

(⊕k
i=1Q(ai)R

)
◦ Fω̃ ◦ F

(⊕k
i=1σi

)
= µa1...ak ◦ F

(
ω̃ ◦

⊕k
i=1σi

)
= µa1...ak ◦ F

(
(ω(σ1, . . . , σk))

)
=

(
ω(σ1, . . . , σk)

)(µa1...ak ).
Remark 10.8. (10.5) is in fact a modification of a result of [9]. All mate-

rials developped in this section are valid for linear contravariant tensor fields.
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[12] I. Kolář, Covariant approach to natural transformations of Weil functors,
Comment. Math. Univ. Carolin. 27 (4) (1986), 723 – 729.
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