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universidad de extremadura

EXTRACTA MATHEMATICAE
Article in press

Available online May 31, 2025

Spectrally distinguishing symmetric spaces II

Emilio A. Lauret 1,@, Juan S. Rodŕıguez 2
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Abstract : The action of the subgroup G2 of SO(7) (resp. Spin(7) of SO(8)) on the Grassmannian

space M =
SO(7)

SO(5)×SO(2)
(resp. M =

SO(8)
SO(5)×SO(3)

) is still transitive. We prove that the spectrum

(i.e. the collection of eigenvalues of its Laplace-Beltrami operator) of a symmetric metric g0 on M

coincides with the spectrum of a G2-invariant (resp. Spin(7)-invariant) metric g on M only if g0

and g are isometric. As a consequence, each non-flat compact irreducible symmetric space of non-

group type is spectrally unique among the family of all currently known homogeneous metrics on

its underlying differentiable manifold.
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1. Introduction

Any Riemannian manifold (M, g) has naturally associated a distinguished
second order differential operator called the Laplace-Beltrami operator ∆g.
When M is compact, its spectrum Spec(M, g) := Spec(∆g) is real, non-
negative and discrete. Two compact Riemannian manifolds (M1, g1) and
(M2, g2) are called isospectral if Spec(M1, g1) = Spec(M2, g2).

It is expected that compact Riemannian manifolds with distinguished geo-
metrical properties are spectrally unique, that is, any isospectral Riemannian
manifold is necessarily isometric. In this article we consider the compact sym-
metric spaces as geometrically distinguished manifolds. Since this problem is
still very difficult (e.g. it is not known whether a round sphere of dimension
at least 7 is spectrally unique among orientable Riemannian manifolds), we
restrict the family to compact homogeneous Riemannian manifolds. We refer
to the first part of this series, [13], for a recent account of previous results on
this subject.

This article focuses in the following particular and natural question:
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Question 1.1. Is any non-flat compact irreducible symmetric space
(M, g) spectrally unique within the space of homogeneous Riemannian
metrics on M?

The non-flat assumption is due to the existence of isospectral and non-
isometric flat tori. We next summarize partial answers to Question 1.1. The
cases of compact rank one symmetric space were solved in [3] (see [19, 11, 15]
for the particular cases of S3 and P 3(R)).

The cases M = K ∼= K×K
diag(K) , with K a compact simple Lie group, has

the great difficulty that in most cases it is not know whether the space of
left-invariant metricsMleft(K) includes all homogeneous Riemannian metrics
on K. Moreover, the problem is already difficult restricted to the family
Mleft(K). Gordon, Schueth and Sutton [6] proved that any symmetric (i.e. bi-
invariant) metric g0 on K is spectrally isolated withinMleft(K), that is, there
is a neighborhood V around g0 such that no metric in V r {g0} is isospectral
to g0. Furthermore, the only particular cases fully solved are SU(2) ' S3,
SO(3) ' P 3(R), and Sp(n) for any n ≥ 1 by [12].

The remaining cases are compact irreducible symmetric spaces of rank ≥ 2
of non-group type (i.e. it has a symmetric presentation Ḡ/K̄ satisfying that
Ḡ is simple). Again, the space of homogeneous metrics on the corresponding
underlying differentiable manifold is not classified for most of cases. The only
cases that we know they admit homogeneous metrics are the following:

SC
(
R2n

)
:=

SO(2n)

U(n)
∼=

SO(2n− 1)

U(n− 1)
,

SH(C2n) :=
SU(2n)

Sp(n)
∼=

SU(2n− 1)

Sp(n− 1)
,

Gr2

(
R7
)

:=
SO(7)

SO(2)× SO(5)
∼=

G2

U(2)
,

Gr3

(
R8
)

:=
SO(8)

SO(3)× SO(5)
∼=

Spin(7)

SO(4)
.

(1.1)

The first two are the space of orthogonal complex structures on R2n and
the space of quaternionic structures on C2n compatible with the Hermitian
metric, which are of type DIII and AII respectively. The other two are the
Grassmannians of oriented real 2-dimensional subspaces of R7 and real 3-
dimensional subspaces of R8, both of type BDI.

The first presentation Ḡ/K̄ for each case in (1.1) is the symmetric pre-
sentation, satisfying at the Lie algebra level that ḡ = k̄ ⊕ m̄ and [m̄, m̄] ⊂ k.
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The second presentation G/H allows us to describe the currently know ho-
mogeneous metrics on each of them, as the space of G-invariant metrics on
G/H. In each case, G is a subgroup of Ḡ such that its action on Ḡ/K̄ is still
transitive. These metrics were discovered by Onishchik [17].

Question 1.1 for the first two symmetric spaces in (1.1) has been answered
affirmatively in [13]. The main goal of this article is to complete the other
two cases in (1.1), to obtain the following main result.

Theorem 1.2. Let G/H denote the second presentation of the symmetric
space M = Ḡ/K̄ of any of the cases in (1.1). If a G-invariant metric on M is
isospectral to a symmetric metric on M , then they are isometric.

It is highly expected that any homogeneous and non-symmetric metric
on the underlying differentiable manifold of a compact irreducible symmetric
spaces of non-group type and rank ≥ 2 is isometric to a G-invariant metric of
G/H as in (1.1) (see e.g. [7, Remark 1.3]). If this is the case, then Theorem
1.2 combined with [3] imply that the answer to Question 1.1 is affirmative for
all compact irreducible symmetric spaces of non-group type of arbitrary rank.

We next move to an application. Cao, Hamilton and Ilmanen (see [4,
Theorem 1.1]) proved that a compact Einstein manifold (M, g) is ν-unstable
if

λ1(M, g) < 2E,

where E is the Einstein constant of (M, g) (i.e. Rc(g) = Eg) and λ1(M, g)
denotes the smallest positive eigenvalues of the Laplace-Beltrami operator of
(M, g). Furthermore, Kröncke [10, Theorem 1.3] proved that a ν-unstable Ein-
stein manifold of positive scalar curvature is necessarily dynamically unstable.
See [10] for their definitions.

There are (up to positive scalars) two non-symmetric G2-invariant Einstein
metrics on the space Gr2

(
R7
)
. We prove in Subsection 3.5 that one of them

is ν-unstable. Similarly, we prove in Subsection 4.2 that the non-symmetric
Spin(7)-invariant Einstein metrics on Gr3

(
R8
)

are ν-unstable.

2. Preliminaries

Almost all preliminaries contents necessary for this article are in [13, §2].
We begin this section by summarizing them.

Let G be a compact Lie group and H ⊂ G a closed subgroup, with Lie
algebras g and h respectively. Let p be an Ad(H)-invariant complement of h
in g, thus g = h⊕ p and [h, p] ⊂ p.
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We fix a G-invariant metric g on G/H associated with an Ad(H)-invariant
metric 〈·, ·〉 on p. The spectrum of the Laplace-Beltrami operator ∆g associ-
ated to (G/H, g) is given by

Spec(G/H, g) := Spec(∆g) =
⋃
π∈Ĝ

{{
λπj (g), . . . , λπj (g)︸ ︷︷ ︸

dπ-times

: 1 ≤ j ≤ dHπ
}}
, (2.1)

where Ĝ is the set of equivalence classes of irreducible representations of G,
dπ = dimVπ, dHπ = dimV H

π , and λπ1 (g), . . . , λπ
dHπ

(g) are the eigenvalues of the

self-adjoint linear endomorphism

π(−Cg)|V Hπ := −
dim p∑
i=1

π(Xi)
2
∣∣∣
V Hπ

: V H
π −→ V H

π ,

where {X1, . . . , Xdim p} is any orthonormal basis of p with respect to 〈·, ·〉 and
Cg =

∑n
i=1X

2
i . The operator π(−Cg)|V Hπ is uniquely determined by g, though

the element Cg, which lies in the universal enveloping algebra U(g), is not well
defined; see [13, Remark 2.2].

Let B be an Ad(G)-invariant inner product on g. We next introduce strong
hypotheses that will hold in the next two sections. We assume that there
exist a closed subgroup K of G, with Lie algebra k, such that H ⊂ K ⊂ G.
Moreover, we also assume that there are H-invariant subspaces p1, p2, p3 of p
such that p = p1 ⊕ p2 ⊕ p3,

k = h⊕ p3, g = k⊕ (p1 ⊕ p2), with p1 ⊕ p2 invariant by K. (2.2)

For any r = (r1, r2, r3) ∈ R3
>0, we set

〈·, ·〉r =
1

r2
1

B|p1 ⊕
1

r2
2

B|p2 ⊕
1

r2
3

B|p3 .

It follows that the inner product 〈·, ·〉r is Ad(H)-invariant, so it induces a
G-invariant metric gr on G/H.

We fix r ∈ R3
>0, π ∈ Ĝ and v ∈ V H

π . For each index h = 1, 2, 3, let{
X

(h)
1 , . . . , X

(h)
ph

}
be an orthonormal basis of ph with respect to B|ph (ph =

dim ph). It follows that
⋃3
h=1

{
rhX

(h)
1 , . . . , rhX

(h)
ph

}
is an orthonormal basis of

p with respect 〈·, ·〉r and therefore
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π(−Cgr) · v = −
p1∑
i1=1

r2
1 π
(
X

(1)
i1

)2 · v − p2∑
i2=1

r2
2 π
(
X

(2)
i2

)2 · v
−

p3∑
i3=1

r2
3 π
(
X

(3)
i3

)2 · v
= r2

1

(
−

p1∑
i1=1

π
(
X

(1)
i1

)2 − p2∑
i2=1

π
(
X

(2)
i2

)2 − p3∑
i3=1

π
(
X

(3)
i3

)2) · v
−
(
r2

2 − r2
1

) p2∑
i2=1

π
(
X

(2)
i2

)2 · v
+
(
r2

3 − r2
1

)(
−

p3∑
i3=1

π
(
X

(3)
i3

)2 − dim h∑
j=1

π
(
Z2
j

))
· v

= r2
1 π
(
− Casg,B

)
· v +

(
r2

2 − r2
1

)
Υπ(v)

+
(
r2

3 − r2
1

)
π
(
− Cask,B|k

)
· v,

(2.3)

where {Z1, . . . , Zdim k} is any orthonormal basis of h with respect to B|h,

Υπ(v) = −
dim p2∑
i2=1

π
(
X

(2)
i2

)2 · v (2.4)

(the authors have kindly called it the ‘tricky term’), and Casg,B (resp. Cask,B|k)
is the Casimir operator of g (resp. k) with respect to B (resp. B|k). In the
second identity we used that π(Z) · v = 0 for all Z ∈ h because v ∈ V H

π .

It is well known that Casimir elements acts on irreducible representations
by calculable scalars; see [13, §2.2] for a rigorous definition and its properties.
In particular Casg,B ·v = λπB v for all v ∈ Vπ, with λπB = B∗(Λπ,Λπ + 2ρg),
where Λπ is the highest weight of π (once a maximal torus of G and a Weyl
chamber are chosen). However, it is quite difficult to obtain an eigenbasis of
π(−Cgr) in this generality since it may occur that π(−Cask,B|k) and Υπ do
not necessarily diagonalize simultaneously. Consequently, we do not expect
an explicit description of Spec(M, gr). However, the next remark determines
the eigenvalue contributed by π ∈ Ĝ such that dimV H

π = 1, which will be
enough for our purpose.
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Remark 2.1. Let π be an irreducible representation of G such that dimV H
π

= 1. On the one hand, the condition dimV H
π = 1 forces there is exactly one

representation τ ∈ K̂ occurring in π|K (i.e. HomK(Vτ , Vπ) 6= 0) satisfying that
V H
τ 6= 0. Thus π(−Cask,B|k) · v = λτB|k for all v ∈ V H

π .

On the other hand, Υπ preserves V H
π since π(−Cgr), π(−Casg,B), and

π(−Cask,B|k) do it. Hence, Υπ acts on V H
π by an scalar, say υπ.

We conclude from (2.1) and (2.3) that π contributes to Spec(G/H, gr) with
the eigenvalue

λπ1 (r) = λπB r
2
1 + υπ

(
r2

2 − r2
1

)
+ λτB|k

(
r2

3 − r2
1

)
=
(
λπB − υπ − λτB|k

)
r2

1 + υπ r2
2 + λτB|k r

2
3,

(2.5)

with multiplicity dimVπ.

3. The case Gr2

(
R7
)

In this section we consider the compact irreducible symmetric space of
oriented two-planes in R7 denoted by Gr2

(
R7
)
.

3.1. Homogeneous metrics for Gr2

(
R7
)
. Let

Gr2

(
R7
)

=
SO(7)

SO(5)× SO(2)
.

Since this presentation is symmetric, the isotropy representation is irreducible
and consequently every SO(7)-invariant metric on Gr2

(
R7
)

is symmetric. We
next define a non-symmetric presentation Gr2

(
R7
)

= G/H having a three-
parameter family of G-invariant metrics, which are of course homogeneous.

Let G be the (unique up to conjugation) subgroup of SO(7) with Lie
algebra of exceptional type G2. It is well known that the action of G on
Gr2

(
R7
)

is still transitive and the isotropy subgroup H at the trivial element
is isomorphic to U(2).

Let T be a maximal subgroup of H, which is also a maximal torus of G
since rank(G) = rank(H) = 2. As usual, we denote by ε1, ε2, ε3 the elements
satisfying that Π(gC, tC) = {α1 := ε2 − ε3, α2 := ε1 − 2ε2 + ε3} is a simple
root system and t∗C = {

∑3
i=1 aiεi : a1, a2, a3 ∈ C, a1 +a2 +a3 = 0}. This gives

fundamental weights ω1 := ε1 − ε3, ω2 := 2ε1 − ε2 − ε3, and the positive root
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system

Φ+(gC, tC) =


ε2 − ε3, ε1 − 2ε2 + ε3,
ε1 − ε2, ε1 + ε2 − 2ε3,
ε1 − ε3, 2ε1 − ε2 − ε3

 .

It will be useful the root space decomposition

gC = tC ⊕
⊕

α∈Φ+(gC,tC)

(gα ⊕ g−α). (3.1)

Without loosing generality, we pick H the subgroup of G such that its Lie
algebra h satisfies h = tC ⊕ gβ ⊕ g−β, where β = ε1 + ε2 − 2ε3 ∈ Φ+(gC, tC).

Let K be the connected subgroup of G such that its Lie algebra k satisfies

Φ+(kC, tC) = {ε1 − 2ε2 + ε3, ε1 + ε2 − 2ε3, 2ε1 − ε2 − ε3} , (3.2)

which is isomorphic to SU(3). One can see that the corresponding simple
roots are β1 := ε1 + ε2 − 2ε3 and β2 := ε1 − 2ε2 + ε3, and the fundamental
weights are ν1 := ε1 − ε3, ν2 := ε1 − ε2.

We pick B = −Bg as our Ad(G)-invariant inner product, where Bg is the
Killing form of g.

Let q denote the orthogonal complement of k into g. It turns out that q is
irreducible as a K-module, or in other words, G/K is an isotropy irreducible
space (see for instance [2, 7.107]). From (3.1) and (3.2), it follows that

qC = gε1−ε2 ⊕ g−ε1+ε2 ⊕ gε1−ε3 ⊕ g−ε1+ε3 ⊕ gε2−ε3 ⊕ g−ε2+ε3 .

However, as an H-module, we have the decomposition q = p1⊕ p2 with p1, p2

irreducible, and

(p1)C = gε1−ε3 ⊕ g−ε1+ε3 ⊕ gε2−ε3 ⊕ g−ε2+ε3 ,

(p2)C = gε1−ε2 ⊕ g−ε1+ε2 .

Let p3 be the orthogonal complement of h in k, which is irreducible as an
H-module and

(p3)C = gε1−2ε2+ε3 ⊕ g−ε1+2ε2−ε3 ⊕ g2ε1−ε2−ε3 ⊕ g−2ε1+ε2+ε3 .

Note dim p1 = 4, dim p2 = 2, dim p3 = 4.
The decomposition p = p1 ⊕ p2 ⊕ p3 satisfies condition (2.2) in Section 2.

Moreover, the subspaces p1, p2, p3 are irreducible and non-equivalent as H-
modules, thus every G-invariant metric on Gr2

(
R7
)

= G/H is isometric to
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gr for some r = (r1, r2, r3) ∈ R3
>0, which is induced by the Ad(H)-invariant

inner product on p given by

〈·, ·〉r =
1

r2
1

B|p1 ⊕
1

r2
2

B|p2 ⊕
1

r2
3

B|p3 .

3.2. The tricky term for Gr2

(
R7
)
. This subsection is devoted to

express the tricky term Υπ given in (2.4).
For ξ ∈ t∗C, let us denote by uξ ∈ tC the only element in tC such that

ξ(H) = Bg(H,uξ) for all H ∈ tC. Theorem 6.6 in [9] ensures that we can pick
Xα ∈ gα for each α ∈ Φ(gC, tC) such that

[Xα, Xβ] =


uα if α+ β = 0, α > 0,

Nα,βXα+β if α+ β ∈ Φ(gC, tC),

0 otherwise,

for all α, β ∈ Φ(gC, tC), with constant terms Nα,β satisfying Nα,β = −N−α,−β
and N2

α,β = 1
2q(1 + p)|α|2, where {β + nα : −p ≤ n ≤ q} is the α-string

containing β, and moreover,

g =
⊕

α∈Π(gC,tC)

Riuα ⊕
⊕

α∈Φ+(gC,tC)

(
R(Xα −X−α)⊕ Ri(Xα +X−α)

)
.

One can easily check that the following elements form an orthonormal
basis of p2:

X
(2)
1 = 1√

2
(Xε1−ε2 −X−ε1+ε2), X

(2)
2 = i√

2
(Xε1−ε2 +X−ε1+ε2).

Lemma 3.1. For any π ∈ Ĝ, we have that

Υπ(v) = 2π(Xε1−ε2) ·
(
π(X−ε1+ε2) · v

)
for any v ∈ V H

π .

Proof. An easy computation shows that

Υπ(v) = π(X−ε1+ε2) · π(Xε1−ε2) · v + π(Xε1−ε2) · π(X−ε1+ε2) · v
= 2π(Xε1−ε2) ·

(
π(X−ε1+ε2) · v

)
− π(uε1−ε2) · v.

Now, T ⊂ H forces V H
π ⊂ V T

π , which implies that π(uε1−ε2) · v = 0, and
the assertion follows.
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We now assume dimV H
π = 1. We set

a = SpanC
{
uε1−ε2 , Xε1−ε2 , X−ε1+ε2

}
,

W = SpanC
{
π(Xε1−ε2)l · v, π(X−ε1+ε2)l · v : l ≥ 0, v ∈ V H

π

}
.

It turns out that a is a Lie algebra isomorphic to sl(2,C) and W is an irre-
ducible a-module; the last part is not true if dimV H

π > 1. Moreover, dimW is
odd because its zero weight is non-zero. The next goal is to obtain the scalar
for which Υπ acts on V H

π in terms of dimW .

We write sl(2,C) = SpanC{h, e, f} with h =
(

1 0
0 −1

)
, e = ( 0 1

0 0 ), f = ( 0 0
1 0 ).

For m ∈ N, let (Wm, χm) denote the irreducible representation of sl(2,C) of
dimension m+1, which is unique up to equivalence. Its weight decomposition
is given by Wm =

⊕m
i=0Wm(m − 2i), with Wm(m − 2i) the weight space of

weight m− 2i, which has dimension one, for any i = 0, . . . ,m.

Lemma 3.2. For 0 ≤ i ≤ m and v ∈Wm(m−2i), one has 2χm(e)·(χm(f)·
v) = 2(i+ 1)(m− i) v.

Proof. From [9, Theorem 1.63], there is a basis {v0, . . . , vm} of Wm such
that χm(h) ·vi = (m−2i)vi, χm(e) ·v0 = 0, χm(f) ·vi = vi+1 (with vm+1 = 0),
and χm(e) · vi = i(m − i + 1)vi−1. Note that Wm(m − 2j) = Cvj for any
j. We pick v = vi without loosing generality. Then, 2χm(e) · (χm(f) · v) =
2χm(e) · vi+1 = 2(i+ 1)(m− i)vi, as required.

One can check that the correspondence

hε1−ε2 ↔ 24uε1−ε2 , eε1−ε2 ↔
√

24Xε1−ε2 , fε1−ε2 ↔
√

24X−ε1+ε2

defines an isomorphism between a and sl(2,C). Since W (0) = V H
π 6= 0, dimW

is odd and Lemma 3.2 gives 2π(e) · (π(f) · v) = (dimW )2−1
2 v for any v ∈ V H

π .
We conclude from Lemma 3.1 that

Υπ(v) = 2π(Xε1−ε2) ·
(
π(X−ε1+ε2) · v

)
=

(dimW )2 − 1

48
v for any v ∈ V H

π ,
(3.3)

provided dimV H
π = 1.
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3.3. Some low Laplace eigenvalues of Gr2

(
R7
)
. According to the

description (2.1) of the spectrum of the Laplace-Beltrami operator on the Rie-
mannian manifold (Gr2

(
R7
)
, gr), each π ∈ ĜH contributes to the spectrum

Spec(Gr2

(
R7
)
, gr) with dimV H

π dimVπ eigenvalues. The goal of this subsec-
tion is to determine these eigenvalues for πω1 and πω2 . We first determine the
Casimir eigenvalues.

Remark 3.3. By combining the branching laws fromG = G2 toK = SU(3)
by Mashimo [16] and the spherical representations of the pair (K,H) =
(SU(3),U(2)), one can prove that ĜH = Ĝ, that is, every irreducible rep-
resentation of G has non-trivial elements invariant by H. The proof is not
included for shortness, since it is not need it for our purposes.

Lemma 3.4. For Λ = a1ε1 + a2ε2 + a3ε3 ∈ P+(G) and µ = b1ε1 + b2ε2 +
b3ε3 ∈ P+(K), we have that

λπΛ
Bg

= λπΛ where λπΛ =
1

24

(
a2

1 + a2
2 + a2

3 + 6a1 − 2a2 − 4a3

)
,

λ
τµ
Bg|k =

3

4
λτµ where λτµ =

1

18

(
b21 + b22 + b23 + 6b1

)
.

Proof. One has B∗g(εi, εj) = 1
24δi,j and ρg = 3ε1 − ε2 − 2ε3, thus λπΛ =

B∗g(Λ,Λ + 2ρg) = 1
24

(
a1(a1 + 6) + a2(a2− 2) + a3(a3− 4)

)
= 1

24

(
a2

1 + a2
2 + a2

3 +
6a1 − 2a2 − 4a3

)
, as claimed.

By [5, p. 37], Bk = 3
4Bg|k, thus λ

τµ
Bg|k = 3

4λ
τµ by (2.8) in [13, §2.2] and

B∗k (εi, εj) = 4
3B∗g(εi, εj) = 1

18δi,j (the factor 3
4 is inverted after dualizing; see

[13, (2.7)]). Since ρk = 1
2

∑
β∈Φ+(kC,tC) β = 2ε1 − ε2 − ε3, we obtain that

λτµ = −B∗k (µ, µ+ 2ρk) = −B∗k (µ, µ+ 2ρk)

=
1

18

(
b1(b1 + 4) + b2(b2 − 2) + b3(b3 − 2)

)
=

1

18

(
b21 + b22 + b23 + 6b1

)
.

Note that this is consistent with λAdK = 1 since AdK = τν1+ν2 (i.e. the adjoint
representation of K has highest weight ν1 + ν2 = 2ε1 − ε2 − ε3).

Proposition 3.5. The representations πω1 and πω2 contribute to the
spectrum Spec(Gr2

(
R7
)
, gr) with the eigenvalues

λπω1 (r) =
1

3
r2

1 +
1

6
r2

2 and λπω2 (r) =
1

12
r2

1 +
1

6
r2

2 +
3

4
r2

3,

with multiplicity 7 and 14 respectively.
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Proof. We have the weight decomposition

Vπω1
= Vπω1

(0)⊕
⊕
i 6=j

Vπω1
(εi − εj).

One can easily check that V H
π = V K

π = Vπω1
(0), so τ = 1K is the only

irreducible representation of K satisfying [1H : τ |H ][τ : πω1 |K ] > 0. Moreover,
seeing Vπω1

as an a-module, the irreducible subspace containing V H
π is W :=

Vπω1
(ε1 − ε2) ⊕ Vπω1

(0) ⊕ Vπω1
(−ε1 + ε2). Since dimW = 3, (3.3) forces

Υπ|V Hπ = 1
6 IdV Hπ , or υπB = 1

6 in the notation of Remark 2.1. Furthermore,

λπω1 = 1
2 by Lemma 3.4. According to Remark 2.1, we conclude that πω1

contributes with the eigenvalue

λπω1 (r) =
(
λ
πω1
B − υπω1

B − λ1K
B|k

)
r2

1 + υ
πω1
B r2

2 + λ1K
B|kr

2
3 = 1

3r
2
1 + 1

6r
2
2,

with multiplicity dimVπω1
= 7, as claimed.

We now consider πω2 , which is equivalent to the adjoint representation of
G, thus λπω2 = 1 and its non-zero weights are precisely the roots in Φ(gC, tC).

One can get from the branching rule from G to K in [16] that

πω2 |K ' τν1 ⊕ τν2 ⊕ τν1+ν2 . (3.4)

Alternatively, the computer program Sage [18] calculates it as follows:

sage: G=WeylCharacterRing("G2", style="coroots")
sage: K=WeylCharacterRing("A2", style="coroots")
sage: b=branching_rule(G,K,"extended")
sage: omega=G.fundamental_weights ()
sage: print("checking the dimension of G(omega2 ):",

G(omega [2]). degree ())
sage: print("branching G(omega2) to K:")
sage: G(omega [2]). branch(K,rule=b)
checking the dimension of G(omega2 ): 14
branching G(omega2) to K:
A2(0,1) + A2(1,0) + A2(1,1)

Here, for non-negative integers a, b, A2(a,b) means in our notation τaν1+bν2 .

The first two terms in (3.4) are the standard and its contragradient rep-
resentation, and none of them contains non-trivial fixed points by H. The
representation τν1+ν2 is precisely the adjoint representation of K, and its H-
invariant subspace are the elements in the Cartan subalgebra t orthogonal to
h, that is, V H

πω2
= V H

τν1+ν2
= Riuε1−ε2 . Lemma 3.4 gives λ

τν1+ν2

B|k = 3
4 .
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The a-irreducible subspace of Vπω2
' g containing V H

π is precisely a, which

has dimension 3, so Υπω2
|V Hπ = 1

6 IdV Hπ . We conclude that πω2 contributes with
the eigenvalue

λπω2 (r) =
(
λ
πω2
B − υπω2

B − λτν1+ν2

B|k

)
r2

1 + υ
πω2
B r2

2 + λ
τν1+ν2

B|k r2
3

= 1
12r

2
1 + 1

6r
2
2 + 3

4r
2
3,

with multiplicity dimVπω1
= 14, as claimed.

3.4. Spectral uniqueness for Gr2

(
R7
)
. We are now ready to show

that every symmetric metric on Gr2

(
R7
)

is spectrally unique withing the
space of G-invariant metrics on Gr2

(
R7
)
.

According to [7, §5], the symmetric metrics on Gr2

(
R7
)

are{
ḡt := g(

√
6t,
√

3t,
√

2t) : t > 0
}
.

Remark 3.6. In the notation in [7], p1 and p2 are interchanged and Q =
8 Bg, so x1 = 8

r2
2
, x2 = 8

r2
1
, and x3 = 8

r2
3
.

The standard symmetric space
(

SO(7)
SO(5)×SO(2) , gBso(7)

)
is isometric to ḡt for

t =
√

2/5. One has λ1

(
SO(7)

SO(5)×SO(2) , gBso(7)

)
= 1 with multiplicity 21 since it is

attained at the adjoint representation of SO(7) (see [20, Table A.2]). Indeed,
we note that λπω1 (

√
12/5,

√
6/5,

√
4/5) = λπω2 (

√
12/5,

√
6/5,

√
4/5) = 1

and dimπω1 + dimπω2 = 7 + 14 = 21, which implies that any eigenvalue
of the Laplace-Beltrami operator of (Gr2

(
R7
)
, ḡt) coming from π ∈ Ĝ r

{1G, πω1 , πω2} is strictly greater than λ1(Gr2

(
R7
)
, ḡt), for any t > 0.

Theorem 3.7. Any G-invariant metric on Gr2

(
R7
)
isospectral to a sym-

metric metric on Gr2

(
R7
)
is in fact isometric to such symmetric metric.

Proof. Suppose that Spec(Gr2

(
R7
)
, gr) = Spec(Gr2

(
R7
)
, ḡt) for some r =

(r1, r2, r3) ∈ R3
>0 and t > 0. Without loosing generality, we can assume that

t = 1, that is, ḡt = gr0 with r0 = (
√

6,
√

3,
√

2). The goal is to show that
r = r0.

We mentioned above that the multiplicity of λ̄1 := λ1(Gr2

(
R7
)
, ḡ1) in

Spec(Gr2

(
R7
)
, ḡ1) is 21. This implies that λ̄1 is in Spec(Gr2

(
R7
)
, gr) with

multiplicity 21, thus (2.1) forces

21 =
∑

π∈ĜH : λ̄1∈Spec(π(−Cgr ))|
VHπ

dimVπ aπ,



spectrally distinguishing symmetric spaces ii 13

where aπ denotes the multiplicity of λ̄1 in Spec(π(−Cgr))|V Hπ , so 0 ≤ aπ ≤
dimV H

π . One can easily check that the only irreducible representations of G
of dimension at most 21 are 1G, πω1 , and πω2 . We know that the eigenvalue
associated to the trivial representation 1G is 0. Since dimV H

πω1
= dimV H

πω2
= 1

(see the proof of Proposition 3.5), dimVπω1
= 7, and dimVπω2

= 14, we

conclude that aπω1
= aπω2

= 1 and aπ = 0 for all π ∈ Ĝr {1G, πω1 , πω2}.
Hence λπ(r) = λπ(

√
6,
√

3,
√

2) for π = πω1 , πω2 , which is equivalent to{
5
2 = 1

3r
2
1 + 1

6r
2
2,

5
2 = 1

12r
2
1 + 1

6r
2
2 + 3

4r
2
3,

⇐⇒

{
5
2 = 1

3r
2
1 + 1

6r
2
2,

r2
1 = 3r2

3.
(3.5)

We now analyze the volume, which is also determined by the spectrum.
We have that

vol(Gr2

(
R7
)
, gr) = rdim p1

1 rdim p2
2 rdim p3

3 vol(Gr2

(
R7
)
, g(1,1,1))

= r4
1r

2
2r

4
3 vol(Gr2

(
R7
)
, g(1,1,1)).

Now, vol(Gr2

(
R7
)
, gr) = vol(Gr2

(
R7
)
, gr0) yields r4

1r
2
2r

4
3 = 2433. Substituting

r2
1 = 3r2

3 in it, we obtain that

r2
2r

8
3 = 243. (3.6)

By replacing r2
2 = 15 − 6r2

3 from the first row in (3.5) above, we get 0 =
r10

3 − 5
2r

8
3 + 8.

The polynomial f(x) := x5 − 5
2x

4 + 8 satisfies f(0) = 8 > 0, f(2) = 0,
f ′(x) = 5x3(x − 2) and limx→∞ f(x) = +∞. It follows that f(x) vanishes
only at x = 2 for x > 0. We conclude that r3 =

√
2, which implies r = r0 by

(3.5) and (3.6).

3.5. Homogeneous Einstein metrics on Gr2

(
R7
)
. We have that the

Einstein symmetric metric gBso(7)
on the space SO(7)

SO(5)×SO(2) is neutrally ν-stable

according to [4]. Actually, we mentioned before that the first Laplace eigen-

value of ( SO(7)
SO(5)×SO(2) , gBso(7)

) is equal to 1 and its Einstein constant is E = 1/2

by [2, Proposition 7.93], therefore

λ1

(
SO(7)

SO(5)× SO(2)
, gBso(7)

)
= 2E.

There are two additional (up to scaling) G-invariant Einstein metrics on
Gr2

(
R7
)

discovered in [1] and [8]; see also [7, §5]. These two metrics do not
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belong to a canonical variation of any of the two fibrations, which makes very
difficult the calculations of their first eigenvalue.

Taking into account the dictionary of notations in Remark 4.5 between
this article and [7], the additional two G-invariant Einstein metrics g1, g2 on
Gr2

(
R7
)

have approximate parameters x = (x1, x2, x3) and r = (r1, r2, r3)
given by

g1 g2

x1 1 1

x2 0.597133339764792 5.35063404291744

x3 1.22554394913282 5.25152734929540

r2
1 13.3973427160359 1.49514990855887

r2
2 8 8

r2
3 6.52771367820850 1.52336634047490

By using the expression for the scalar curvature in [7, p. 164], we obtain
that

scal(Gr2

(
R7
)
, g1) u 33.6319213085489,

scal(Gr2

(
R7
)
, g2) u 7.25191745508143.

Dividing by dim Gr2

(
R7
)

= 10, we obtain E1 u 3.36319213085489 and E2 u
0.725191745508143 of g1 and g2 respectively.

Although we do not have an explicit expression for the first Laplace eigen-
value of g1 and g2, we have that

λ1(Gr2

(
R7
)
, g1) ≤ λπω1 (r(g1)) u 5.79911423867862

< 6.72638426170978 u 2E1,

thus the Einstein manifold (Gr2

(
R7
)
, g1) is ν-unstable.

It is not possible to obtain the same consequence for the Einstein metric
g2 because

λπω1 (r(g2)) u 1.83171663618629, λπω2 (r(g2)) u 2.60045391440275

are both greater than 2E2 = 1.45038349101629.

4. The case Gr3

(
R8
)

In this section we consider the compact irreducible symmetric space of
oriented three-planes in R8 denoted by Gr3

(
R8
)
.
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4.1. Root systems for Gr3

(
R8
)
. We consider the compact Lie groups

H := SO(4) ⊂ K := G2 ⊂ G = Spin(7).

The goal of this section is to describe these embeddings at the Lie algebra
level h ⊂ k ⊂ g and their complexifications hC ⊂ kC ⊂ gC. We will identify
g ≡ so(7) = {X ∈ gl(7,R) : Xt +X = 0}.

We consider the maximal torus T of G such that its Lie algebra is given
by

t =
{

diag
((

0 ih1
−ih1 0

)
,
(

0 ih2
−ih2 0

)
,
(

0 ih3
−ih3 0

)
, 0
)

: h1, h2, h3 ∈ iR
}
.

Its complexification tC has the same expression with h1, h2, h3 ∈ C. For
i = 1, 2, 3, we define Hi ∈ tC as above setting hi = 1 and hj = 0 for j 6= i. It
follows that {H1, H2, H3} is a C-basis of tC. Let {ε1, ε2, ε3} be its dual basis,
that is, εi(Hj) = δi,j .

One can check that Bg(X,Y ) = −5 Tr(XY ) for all X,Y ∈ g, where Bg

stands for the negative of the Killing form of g. We pick B = Bg as the
Ad(G)-invariant inner product on g fixed in Section 2.

One has B(Hi, Hj) = 10 δi,j . For ν =
∑3

i=1 aiεi ∈ t∗C, the element uν :=
1
10

∑3
i=1 aiHi satisfies ν(H) = B(H,uν) for all H ∈ tC. We extend B|tC to t∗C

by B∗(ν, ν ′) = B(uν , uν′).

We pick the standard Weyl chamber such that the positive root system is
given by

Φ+(gC, tC) = {εi ± εj : 1 ≤ i < j ≤ 3} ∪ {ε1, ε2, ε3}.

The corresponding fundamental weights are ω1 = ε1, ω2 = ε1 + ε2, and ω3 =
1
2(ε1 + ε2 + ε2). For α ∈ Φ(gC, tC), set Hα = 2uα

B∗(α,α) . We have H±εi±εj =
±Hi ±Hj and H±εi = ±2Hi.

For α ∈ Φ(gC, tC), we denote by Eα the element in gC defined as in Example
2 in [9, §II.1]. We set Xα = cαEα, where cεi±εj = 1

2 and c−εi±εj = 1
2 for

1 ≤ i < j ≤ 3, and c±εi = ±1 for i = 1, 2, 3. That is,

Xε1−ε2 =
1

2


1 i
−i 1

−1 i
−i −1

03

, X−ε1+ε2 =
−1

2


1 −i
i 1

−1 −i
i −1

03

,
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Xε1+ε2 =
1

2


1 −i
−i −1

−1 i
i 1

03

, X−ε1−ε2 =
−1

2


1 i
i −1

−1 −i
−i 1

03

,

Xε1 =


0 1

0 −i
03

0
−1 i 0

, X−ε1 = −


0 1

0 i
03

0
−1 −i 0

,
and the rest can be figured out by changing indexes. Here 03 abbreviates the
zero 3× 3 matrix.

This particular choice makes a Chevalley basis, that is, [Xα, X−α] = Hα

for all α ∈ Φ(gC, tC), and [Xα, Xβ] = ±(m + 1)Xα+β with m = max{a ∈ Z :
β − aα ∈ Φ(gC, tC)}, for all α, β ∈ Φ(gC, tC) satisfying that α+ β 6= 0.

We are now in position to describe the embeddings hC ⊂ kC ⊂ gC. Ac-
cording to [14, §2.3], we have

kC = SpanC


H̄α1 := H1 −H2 + 2H3, Y±α1 , Y±α2 ,

H̄α2 := H2 −H3, Y±(α1+α2), Y±(2α1+α2),

Y±(3α1+α2), Y±(3α1+2α2)

 ,

where

Y±α1 = X±(ε1−ε2) +X±ε3 , Y±α2 = X±(ε2−ε3),

Y±(α1+α2) = −X±(ε1−ε3) +X±ε2 , Y±(2α1+α2) = −X±(ε2+ε3) −X±ε1 ,
Y±(3α1+α2) = −X±(ε1+ε3), Y±(3α1+2α2) = −X±(ε1+ε2).

Here, α1 is the short simple root in Φ(kC, (t ∩ k)C) and α2 is the long one.
Without loosing generality, we can assume that

hC = SpanC{H̄α1 , Yα1 , Y−α1}
⊥
⊕ SpanC{H̄3α1+2α2 := −H1 −H2, Y3α1+2α2 , Y−3α1−2α2}.

(4.1)

4.2. Homogeneous metrics for Gr3

(
R8
)
. We first find the irre-

ducible components of the isotropy representation of G/H.
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Since B(gα, gβ) = 0 if α+β 6= 0, it follows immediately that the orthogonal
complement p3 of h in k with respect to B satisfies

(p3)C = SpanC
{
Y±α2 , Y±(α1+α2), Y±(2α1+α2), Y±(3α1+α2)

}
.

Moreover, p3 is irreducible as an H-module since (p3)C is equivalent to σ3⊗σ1,
where σk denotes the irreducible representation of sl(2,C) of dimension k+ 1.

Lemma 4.1. The orthogonal complement of k in g (with respect to B)
decomposes as irreducible H-modules as p1 ⊕ p2, where

(p1)C = SpanC
{
X±(ε2+ε3) − 1

2X±ε1 , X±(ε1−ε3) + 1
2X±ε2

}
,

(p2)C = SpanC
{
H1 −H2 −H3, X±(ε1−ε2) − 1

2X±ε3
}
.

Proof. By using that [Xα, X−α] = Bg(Xα, X−α)uα for all α ∈ Φ(gC, tC)
(see for instance [9, Lemmma 2.18(a)]), one can check that Bg(Xεi±εj ,
X−(εi±εj)) = 10 for all 1 ≤ i < j ≤ 3, and Bg(Xεi , X−εi) = 20 for all
1 ≤ i ≤ 3. This allows us to prove that (p1)C ⊕ (p2)C is orthogonal to k
by checking that every generator of (p1)C ⊕ (p2)C is orthogonal to every gen-
erator of k. For instance,

Bg

(
Xε2+ε3 − 1

2Xε1 , Y−(2α1+α2)

)
= −Bg(Xε2+ε3 , X−ε2−ε3)

+ 1
2Bg(Xε1 , X−ε1) = 0.

The rest are very simple.
We next obtain the decomposition of (p1)C ⊕ (p2)C as irreducible H-

modules. Since Y±(3α1+2α2) acts trivially on p2 and

[Yα1 , X−ε1+ε2 − 1
2X−ε3 ] = Hε1−ε2 +Hε3 = H1 −H2 + 2H3,

[Yα1 , H1 −H2 + 2H3] = −2(Xε1−ε2 − 1
2X−ε3),

[Yα1 , Xε1−ε2 − 1
2Xε3 ] = 0,

it follows that (p2)C is an irreducible hC-submodule equivalent to σ2 ⊗ σ0.
Similarly, one can see that (p1)C is an irreducible hC-submodule equivalent to
σ1 ⊗ σ1.

Note that dim p1 = 4, dim p2 = 3, dim p3 = 8, so p1, p2, p3 are pairwise non-
equivalent as H-modules. Furthermore, the decomposition p = p1 ⊕ p2 ⊕ p3

satisfies condition (2.2) in Section 2. We conclude that every G-invariant
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metric on Gr3

(
R8
)

= G/H is isometric to gr for some r = (r1, r2, r3) ∈ R3
>0,

which is induced by the Ad(H)-invariant inner product on p given by

〈·, ·〉r =
1

r2
1

B|p1 ⊕
1

r2
2

B|p2 ⊕
1

r2
3

B|p3 .

4.3. Casimir scalars and the tricky term for Gr3

(
R8
)
. The goal

of this subsection is to provide explicit expressions for the three individual
terms of π(−Cgr) in (2.3), namely the Casimir operators π(−Casg,B) and
π(−Cask,B|k), and the tricky term Υπ.

We have that the sum of positive roots is 2ρg = 5ε1 + 3ε2 + ε3. If πΛ ∈ Ĝ
has highest weight Λ =

∑3
i=1 aiεi, then πΛ(−Casg,B) acts on VπΛ by the scalar

λπΛ
Bg

= B∗g(Λπ,Λπ + 2ρg) =
1

10

(
a1(a1 + 5) + a2(a2 + 3) + a3(a3 + 1)

)
. (4.2)

We have that Bk = 4
5Bg|k by [5, p. 37], so π(−Cask,Bg|k) = 4

5 π(−Cask,Bk
)

(see [13, §2.2]). By writing the simple roots in Φ(kC, tC) in the usual way α1 =
ε̄2− ε̄3 and α2 = ε̄1− 2ε̄2 + ε̄3, one has the fundamental weights ν1 = ε̄1− ε̄3,
ν2 = 2ε̄1 − ε̄2 − ε̄3, and 2ρk = 6ε̄1 − 2ε̄2 − 4ε̄3. Since B∗k (ε̄i, ε̄j) = 1

24δi,j , if

τν ∈ K̂ has highest weight ν =
∑3

i=1 biε̄i, then τν(−Cask,B) acts on Vτν by
the scalar

λτνB =
4

5
B∗k (ν, ν + 2ρk) =

4

5

1

24

(
b1(b1 + 6) + b2(b2 − 2) + b3(b3 − 4)

)
. (4.3)

We next move to the tricky term. One can check that an orthonormal
basis of p2 is given by the three elements

X
(2)
1 :=

1√
30

((
Xε1−ε2 −

1

2
Xε3

)
−
(
X−(ε1−ε2) −

1

2
X−ε3

))
,

X
(2)
2 :=

i√
30

((
Xε1−ε2 −

1

2
Xε3

)
+
(
X−(ε1−ε2) −

1

2
X−ε3

))
,

X
(2)
3 :=

i√
30

(
H1 −H2 −H3

)
.

Hence, for π ∈ Ĝ and a weight vector v of weight µ (i.e. v ∈ Vπ(µ)), we have
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that

Υπ(v) = −
(
π(X

(2)
1 )2 + π(X

(2)
2 )2 + π(X

(2)
3 )2

)
· v

=
µ(H1 −H2 −H3)2

30
v

− 1

15

 −2π(Xε1−ε2)π(X−(ε1−ε2)) + π(Hε1−ε2)

+π(Xε1−ε2)π(X−ε3) + π(Xε3)π(X−(ε1−ε2))

−1
2π(Xε3)π(X−ε3) + 1

4π(Hε3)

 · v
=

1

30

(
µ(H1 −H2 −H3)2 − µ(2H1 − 2H2 +H3)

)
v

+
2

15
π(Xε1−ε2)π(X−(ε1−ε2)) · v +

1

30
π(Xε3)π(X−ε3) · v

− 1

15
π(Xε1−ε2)π(X−ε3) · v − 1

15
π(Xε3)π(X−(ε1−ε2)) · v.

(4.4)

4.4. Presentations of the standard and the spin representa-
tion. The strategy to calculate the tricky term Υπ(v) for v ∈ V H

π is to
work with a particular presentation of the representation π : G = Spin(7) →
GL(Vπ). For our purposes, it will be enough to consider the standard rep-
resentation πω1 and the spin representation πω3 , which have highest weights
ω1 = ε1 and ω3 = 1

2(ε1 + ε2 + ε3) respectively.

We have Vπω1
= C7, and the action is multiplication at the left. Its weights

are P(πω1) = {0,±ε1,±ε2,±ε3}. Let {e1, . . . , e7} denote the canonical basis
of C7. We set uεi = e2i−1− ie2i and u−εi = e2i−1 + ie2i for any i = 1, 2, 3, and
u0 = e7. It follows that uµ is a weight vector of weight µ and {uµ : µ ∈ P(πω1)}
is a basis of Vπω1

. Moreover, one can easily check that the non-trivial actions
between an element Xα with α ∈ Φ(gC, tC) and uµ with µ ∈ P(πω1) are in
Table 1.

Table 1: Representation table of the standard representation πω1
of gC = so(7,C).

Xεi−εj · uεj = uεi , Xεi+εj · u−εj = uεi , Xεk · u0 = uεk ,

Xεi−εj · u−εi = −u−εj , Xεi+εj · u−εi = −uεj , Xεk · u−εk = −2u0,

X−εi+εj · u−εj = −u−εi , X−εi−εj · uεj = −u−εi , X−εk · u0 = −u−εk ,
X−εi+εj · uεi = uεj , X−εi−εj · uεi = u−εj , X−εk · uεk = 2u0.

for every 1 ≤ i < j ≤ 3 and 1 ≤ k ≤ 3.
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We now move to the spin representation πω3 . There are several presenta-
tions of it (see e.g. [9, Chapter V, Problems 16–27]). For shortness reasons, we
will give a particular basis of weight vectors with the corresponding actions
of the basis of gC. We have

P(πω3) =
{

1
2(±ε1 ± ε2 ± ε3)

}
= {±ω3} ∪ {±(ω3 − εi) : 1 ≤ i ≤ 3},

each of them with multiplicity one. One can check that there is a basis {vµ :
µ ∈ P(πω3)} of Vπω3

, with vµ ∈ Vπω3
(µ) for all µ, such that the non-trivial

elements of the form Xα ·vµ for α ∈ Φ(gC, tC) are shown in Table 2. Note that
Xα · vµ 6= 0 if and only if α + µ ∈ P(πω3). Of course, πω3(H) · vµ = µ(H) vµ
for all H ∈ tC.

Remark 4.2. In the notation of [9, Chapter V, Problems 19–27], one has
vω3 = z∅, vω3−ε2 = z′{2}, vε3−ω3 = z{1,2}, vε1−ω3 = z{2,3}, vω3−ε1 = z′{1},

vω3−ε3 = z′{3}, vε2−ω3 = z{1,3}, v−ω3 = z′{1,2,3}.

4.5. Some low Laplace eigenvalues of Gr3

(
R8
)
. The main goal

of this section is to obtain the eigenvalues in Spec(Gr3

(
R8
)
, gr) contributed

via (2.1) by the irreducible representations πω3 and πω1+ω3 of G = Spin(7)
with highest weights ω3 = 1

2(ε1 + ε2 + ε3) and ω1 + ω3 = 1
2(3ε1 + ε2 + ε3)

respectively. We can deal with both simultaneously because the decomposition
πω1 ⊗πω3 ' πω1+ω3 ⊕πω3 , which ensures that there are G-invariant subspaces
Vπω1+ω3

and Vπω3
of Vπω1

⊗ Vπω3
, which are irreducible as G-modules with

highest weights ω1 + ω3 and ω3 respectively, satisfying that

Vπω1
⊗ Vπω3

= Vπω1+ω3
⊕ Vπω3

. (4.5)

Of course,
{
uµ ⊗ vη : µ ∈ P(πω1), η ∈ P(πω3)

}
is a basis of Vπω1

⊗ Vπω3
.

Remember the action of X ∈ gC is given by X · u ⊗ v =
(
πω1(X) · u

)
⊗ v +

u⊗
(
πω3(X) · v

)
. Therefore, Tables 1–2 allow us to compute Xα · uµ ⊗ vη for

every root α ∈ Φ(gC, tC). Furthermore, it turns out that uµ ⊗ vη is a weight
vector of weight µ+ η, thus H cdotuµ ⊗ vη = (µ+ η)(H)uµ ⊗ vη. Note that,
unlike πω1 and πω3 , there are weights of πω1 ⊗ πω3 with multiplicity greater
than one.

Lemma 4.3. We have that (Vπω1
⊗ Vπω3

)H = SpanC{w1, w2}, where

w1 = uε1 ⊗ v−ω3 − 4u−ε2 ⊗ vω3−ε3 + 2uε2 ⊗ vε3−ω3 + 8u−ε1 ⊗ vω3 ,

w2 = uε3 ⊗ vε2−ω3 − 2u0 ⊗ vω3−ε1 + u0 ⊗ vε1−ω3 + 2u−ε3 ⊗ vω3−ε2 .
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Table 2: Representation table of the spin representation πω3
of gC = so(7,C).

Xε1 · vω3−ε1 = −2 vω3 , Xε1 · vε3−ω3 = −2 vω3−ε2 ,

Xε1 · vε2−ω3 = −2 vω3−ε3 , Xε1 · v−ω3 = −2 vε1−ω3 ,

Xε2 · vω3−ε2 = −2 vω3 , Xε2 · vε3−ω3 = 2 vω3−ε1 ,

Xε2 · vε1−ω3 = −2 vω3−ε3 , Xε2 · v−ω3 = 2 vε2−ω3 ,

Xε3 · vω3−ε3 = −2 vω3 , Xε3 · vε2−ω3 = 2 vω3−ε1 ,

Xε3 · vε1−ω3 = 2 vω3−ε2 , Xε3 · v−ω3 = −2 vε3−ω3 ,

X−ε1 · vω3 = −1
2 vω3−ε1 , X−ε1 · vω3−ε2 = −1

2 vε3−ω3 ,

X−ε1 · vω3−ε3 = −1
2 vε2−ω3 , X−ε1 · vε1−ω3 = −1

2 v−ω3 ,

X−ε2 · vω3 = −1
2 vω3−ε2 , X−ε2 · vω3−ε1 = 1

2 vε3−ω3 ,

X−ε2 · vω3−ε3 = −1
2 vε1−ω3 , X−ε2 · vε2−ω3 = 1

2 v−ω3 ,

X−ε3 · vω3 = −1
2 vω3−ε3 , X−ε3 · vω3−ε1 = 1

2 vε2−ω3 ,

X−ε3 · vω3−ε2 = 1
2 vε1−ω3 , X−ε3 · vε3−ω3 = −1

2 v−ω3 ,

Xε1−ε2 · vω3−ε1 = −vω3−ε2 , Xε1−ε2 · vε2−ω3 = −vε1−ω3 ,

Xε1−ε3 · vω3−ε1 = −vω3−ε3 , Xε1−ε3 · vε3−ω3 = vε1−ω3 ,

Xε2−ε3 · vω3−ε2 = −vω3−ε3 , Xε2−ε3 · vε3−ω3 = −vε2−ω3 ,

X−ε1+ε2 · vω3−ε2 = −vω3−ε1 , X−ε1+ε2 · vε1−ω3 = −vε2−ω3 ,

X−ε1+ε3 · vω3−ε3 = −vω3−ε1 , X−ε1+ε3 · vε1−ω3 = vε3−ω3 ,

X−ε2+ε3 · vω3−ε3 = −vω3−ε2 , X−ε2+ε3 · vε2−ω3 = −vε3−ω3 ,

Xε1+ε2 · vε3−ω3 = 4 vω3 , Xε1+ε2 · v−ω3 = 4 vω3−ε3 ,

Xε1+ε3 · vε2−ω3 = 4 vω3 , Xε1+ε3 · v−ω3 = −4 vω3−ε2 ,

Xε2+ε3 · vε1−ω3 = 4 vω3 , Xε2+ε3 · v−ω3 = 4 vω3−ε1 ,

X−ε1−ε2 · vω3 = 1
4 vε3−ω3 , X−ε1−ε2 · vω3−ε3 = 1

4 v−ω3 ,

X−ε1−ε3 · vω3 = 1
4 vε2−ω3 , X−ε1−ε3 · vω3−ε2 = −1

4 v−ω3 ,

X−ε2−ε3 · vω3 = 1
4 vε1−ω3 , X−ε2−ε3 · vω3−ε1 = 1

4 v−ω3 .
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Proof. We have that

(Vπω1
⊗ Vπω3

)H = (Vπω1
⊗ Vπω3

)hC ⊂ (Vπω1
⊗ Vπω3

)hC∩tC

=
⊕

µ∈P(πω1 ),η∈P(πω3 )
(µ+η)(H)=0 ∀H∈hC∩tC

(Vπω1
⊗ Vπω3

)(µ+ η)

= (Vπω1
⊗ Vπω3

)
(

1
2(ε1 − ε2 − ε3)

)
⊕ (Vπω1

⊗ Vπω3
)
(

1
2(−ε1 + ε2 + ε3)

)
= SpanC


uε1 ⊗ v−ω3 , u−ε2 ⊗ vω3−ε3 , uε2 ⊗ vε3−ω3 ,
u−ε1 ⊗ vω3 , uε3 ⊗ vε2−ω3 , u0 ⊗ vω3−ε1 ,
u0 ⊗ vε1−ω3 , 4u−ε3 ⊗ vω3−ε2

 .

In the penultimate identity was used that {H1−H2+2H3, H1+H2} is a basis of
hC∩tC. The last identity follows by finding all ways to write ±1

2(ε1−ε2−ε3) =
µ+ η with µ ∈ P(πω1) and η ∈ P(πω3).

In order to determine (Vπω1
⊗ Vπω3

)H , it remains to find which C-linear
combinations of these 8 elements are vanished by the generators of hC as in
(4.1), namely, Y±α1 = X±(ε1−ε2) + X±ε3 and Y±(3α1+2α2) = X±(ε1+ε2). More

precisely, we look for a±εi for i = 1, 2, 3 and a±0 in C such that the element

w := aε1 uε1 ⊗ v−ω3 + a−ε2 u−ε2 ⊗ vω3−ε3 + aε2 uε2 ⊗ vε3−ω3

+ a−ε1 u−ε1 ⊗ vω3 + aε3 uε3 ⊗ vε2−ω3 + a−0 u0 ⊗ vω3−ε1

+ a+
0 u0 ⊗ vε1−ω3 + a−ε3 4u−ε3 ⊗ vω3−ε2

satisfies X±(ε1+ε2) · w = 0 and (X±(ε1−ε2) + X±ε3) · w = 0. This long but
straightforward procedure returns the conditions a−ε2 = −4aε1 , aε2 = 2aε1 ,
a−ε1 = 8aε1 , aε3 = a+

0 , a−ε3 = 2a+
0 , and a−0 = −2a+

0 , which completes
the proof.

Remark 4.4. One can check via long calculations that w1 + 2w2 ∈ V H
πω3

and −3w1 + 8w2 ∈ V H
πω1+ω3

, though it will not be necessary.

We are now ready to obtain explicit expressions for Casimir scalars and
the tricky term. From (4.2), it follows that

λ
πω3
B =

21

40
, λ

πω1+ω3
B =

49

40
.

The branching law from G = Spin(7) to K = G2 gives

πω3 |K ' τ0 ⊕ τν1 , πω1+ω3 |K ' τν1 ⊕ τν2 ⊕ τ2ν1 . (4.6)
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Similarly, the branching law from K to H of the irreducible components ap-
peared above give

τ0|H = σ0 ⊗ σ0,

τν1 |H = σ1 ⊗ σ1 ⊕ σ2 ⊗ σ0,

τν2 |H = σ2 ⊗ σ0 ⊕ σ0 ⊗ σ2 ⊕ σ3 ⊗ σ1,

τ2ν1 |H = σ0 ⊗ σ0 ⊕ σ1 ⊗ σ1 ⊕ σ2 ⊗ σ2 ⊕ σ3 ⊗ σ1 ⊕ σ4 ⊗ σ0.

(4.7)

Sage [18] calculates them as follows:

sage: G=WeylCharacterRing("B3", style="coroots")
sage: K=WeylCharacterRing("G2", style="coroots")
sage: H=WeylCharacterRing("A1xA1", style="coroots")
sage: b1=branching_rule(G,K,"miscellaneous")
sage: b2=branching_rule(K,H,"extended")
sage: omega=G.fundamental_weights ()
sage: nu=K.fundamental_weights ()
sage:
sage: print("branching to K of G(omega3 ):")
sage: print(G(omega [3]). branch(K,rule=b1))
sage: print("branching to K of G(omega1+omega3 ):")
sage: print(G(omega [1]+ omega [3]). branch(K,rule=b1))
sage: print("----")
sage: print("branching to H of K(0):")
sage: print(K(0*nu [1]). branch(H,rule=b2))
sage: print("branching to H of K(nu1):")
sage: print(K(nu [1]). branch(H,rule=b2))
sage: print("branching to H of K(nu2):")
sage: print(K(nu [2]). branch(H,rule=b2))
sage: print("branching to H of K(2nu1):")
sage: print(K(2*nu [1]). branch(H,rule=b2))
branching to K of G(omega3 ):
G2(0,0) + G2(1,0)
branching to K of G(omega1+omega3 ):
G2(1,0) + G2(0,1) + G2(2,0)
----
branching to H of K(0):
A1xA1 (0,0)
branching to H of K(nu1):
A1xA1 (1,1) + A1xA1 (2,0)
branching to H of K(nu2):
A1xA1 (2,0) + A1xA1 (3,1) + A1xA1 (0,2)
branching to H of K(2nu1):
A1xA1 (0,0) + A1xA1 (1,1) + A1xA1 (2,2) + A1xA1 (3,1)
+ A1xA1 (4,0)

Here, for non-negative integers a, b, G2(a,b) and A1xA1(a,b) means in our
notation τaν1+bν2 and σa ⊗ σb respectively.
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For any τ ∈ K̂, dimV H
τ is the number of times that the trivial representa-

tion σ0⊗ σ0 of H appears in τ |H . It follows immediately from (4.6) and (4.7)
that

dimV H
πω3

= dimV H
τ0 + dimV H

τν1
= 1,

dimV H
πω1+ω3

= dimV H
τν1

+ dimV H
τν2

+ dimV H
τ2ν1

= 1.
(4.8)

Consequently, we are in the situation of Remark 2.1 for πω3 and πω1+ω3 .
Moreover, using (4.3), we have that πω3

(
−Cask,B|k

)
acts on V H

πω3
and V H

πω1+ω3

by multiplication by the scalars

λτ0B|k = 0 and λ
τ2ν1
B|k =

14

15
respectively.

Long and tedious calculations using (4.4) give

Υπω1⊗πω3
(wi) =

9

40
wi for i = 1, 2,

where w1 and w2 are as in Lemma 4.3. Equivalently, Υπω1⊗πω3
|(Vπω1

⊗Vπω3
)H =

9
40 Id(Vπω1

⊗Vπω3
)H . Moreover, (4.5) forces Υπω1

and Υπω3
acts by the scalar 9

40

on V H
πω1

and V H
πω3

respectively. In other words, υπω3 = υπω1+ω3 = 9
40 in the

notation of Remark 2.1.
We are now ready to obtain explicit expressions for the eigenvalues λ

πω3
1 (r)

and λ
πω1+ω3
1 (r) via the formula λπ1 (r) =

(
λπB − υπ − λτB|k

)
r2

1 + υπ r2
2 + λτB|k r

2
3

in (2.5) for any r = (r1, r2, r3) ∈ R3
>0:

λ
πω3
1 (r) =

(
21

40
− 9

40

)
r2

1 +
9

40
r2

2 =
3

10
r2

1 +
9

40
r2

2,

λ
πω1+ω3
1 (r) =

(
49

40
− 9

40
− 14

15

)
r2

1 +
9

40
r2

2 +
14

15
r2

3

=
1

15
r2

1 +
9

40
r2

2 +
14

15
r2

3.

(4.9)

4.6. Spectral uniqueness for Gr3

(
R8
)
. We are now ready to prove

Theorem 1.2 for Gr3

(
R8
)
, namely, every symmetric metric on Gr3

(
R8
)
'

G/H, with G = Spin(7) and H = SO(4), is spectrally unique within the space
of G-invariant metrics on Gr3

(
R8
)
.

According to [7, §6], the symmetric metrics on G/H ' Gr3

(
R8
)

are{
ḡt := g(

√
12t,
√

4t,
√

3t) : t > 0
}
.
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Remark 4.5. In the notation in [7], p1 and p2 are interchanged and Q =
10 Bg, so x1 = 10

r2
2
, x2 = 10

r2
1
, and x3 = 10

r2
3
.

The standard symmetric space
(

SO(8)
SO(5)×SO(3) , gBso(8)

)
is isometric to ḡt for

t =
√

5/18. One has λ1

(
SO(8)

SO(5)×SO(3) , gBso(8)

)
= 5

4 ; it is attained at the repre-

sentation
∧3 C8 of SO(8), so its multiplicity is

(
8
3

)
= 56 (see [20, Table A.2]).

Note that λπω1

(√
10/3,

√
10/9,

√
5/6
)

= λπω1+ω3

(√
10/3,

√
10/9,

√
5/6
)

= 5
4

and dimπω1 + dimπω1+ω3 = 7 + 49 = 56, which implies that any eigen-
value of the Laplace-Beltrami operator of (Gr3

(
R8
)
, ḡt) coming from π ∈

Ĝr {1G, πω1 , πω1+ω3} is strictly greater than λ1(Gr3

(
R8
)
, ḡt), for any t > 0.

Theorem 4.6. Any G-invariant metric on Gr3

(
R8
)
' G/H isospectral to

a symmetric metric on Gr3

(
R8
)
is in fact isometric to such symmetric metric.

Proof. Suppose that Spec
(

Gr3

(
R8
)
, gr
)

= Spec
(

Gr3

(
R8
)
, ḡt
)

for some
r = (r1, r2, r3) ∈ R3

>0 and t > 0. Without loosing generality, we can assume
that t = 1, that is, ḡ1 = gr0 with r0 =

(√
12, 2,

√
3
)
. The goal is to show

that r = r0.
The multiplicity of the eigenvalue λ̄1 := λ1

(
Gr3

(
R8
)
, ḡ1

)
in the spectrum

Spec
(

Gr3

(
R8
)
, ḡ1

)
is 56. Therefore λ̄1 is in Spec

(
Gr3

(
R8
)
, gr
)

with multi-
plicity 56, thus (2.1) forces

56 =
∑

π∈ĜH : λ̄1∈Spec(π(−Cgr ))|
VHπ

dimVπ aπ, (4.10)

where aπ denotes the multiplicity of λ̄1 in Spec(π(−Cgr))|V Hπ , so 0 ≤ aπ ≤
dimV H

π . One can easily check that the only irreducible representations of G
of dimension at most 56 with dimH

π > 0 are 1G, π2ω1 , πω3 , πω1+ω3 , and π2ω3 .
We know that the eigenvalue associated to the trivial representation 1G is 0.
Furthermore, dimV H

πω3
= dimV H

πω1+ω3
= 1 by (4.8) and one can check that

dimV H
π2ω1

= 1 and dimV H
π2ω3

= 2. Now, Equation (4.10) becomes

56 = dimVπ2ω1
aπ2ω1

+ dimVπω3
aπω3

+ dimVπω1+ω3
aπω1+ω3

+ dimVπ2ω3
aπ2ω3

= 27aπ2ω1
+ 8aπω3

+ 48aπω1+ω3
+ 35aπ2ω3

with 0 ≤ aπ2ω1
, aπω3

, aπω1+ω3
≤ 1 and 0 ≤ aπ2ω3

≤ 2, which clearly implies
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that aπω3
= aπω1+ω3

= 1 and aπ2ω1
= aπ2ω3

= 0. Hence

λ̄1 = λπ1 (
√

12, 2,
√

3) = λπ1 (r) for π ∈ {πω3 , πω1+ω3}.

By (4.9), we have that{
9
2 = 3

10 r
2
1 + 9

40 r
2
2,

9
2 = 1

15 r
2
1 + 9

40 r
2
2 + 14

15 r
2
3,

⇐⇒

{
9
2 = 3

10 r
2
1 + 9

40 r
2
2,

r2
1 = 4 r2

3.
(4.11)

We now analyze the volume, which is also determined by the spectra. We
have that

vol(Gr3

(
R8
)
, gr) = rdim p1

1 rdim p2
2 rdim p3

3 vol(Gr3

(
R8
)
, g(1,1,1))

= r4
1r

3
2r

8
3 vol(Gr3

(
R8
)
, g(1,1,1)).

Now, since vol(Gr3

(
R8
)
, gr) = vol(Gr3

(
R8
)
, gr0), we obtain r4

1r
3
2r

8
3 = 122 · 8 ·

34 = 27 · 36. Substituting r2
1 = 4r2

3 in it, we can assert that

r3
2 r

12
3 = 2336 =⇒ r2 r

4
3 = 18. (4.12)

It follows form (4.11) that

r2
3 =

1

4
r2

1 =
1

4

10

3

(
9

2
− 9

40
r2

2

)
=

3

16
(20− r2

2). (4.13)

By replacing this expression for r2
3 in (4.12), we get 0 = r2

9
28 (20− r2

2)2 − 18,
so 0 = r2(20− r2

2)2 − 29.

It is a simple calculus exercise to show that the polynomial f(x) := x(20−
x)2 − 29 has two positive roots: x1 = 2 and x2 u 5.44915345. The second
one gives r2 u 5.44915345, and (4.13) implies r2

3 u −1.817488 < 0, which is
not possible. We conclude that r2 = 2, thus r2

3 = 3 by (4.13) and r2
1 = 12 by

(4.11), and the proof is complete.

4.7. Homogeneous Einstein metrics on Gr3

(
R8
)
. We have that the

Einstein symmetric metric gBso(8)
on SO(8)

SO(5)×SO(3) is ν-stable according to Cao

and He [4]. Kerr proved in [7] that there are (up to scaling) two additional
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G-invariant Einstein metrics g1, g2 on Gr3

(
R8
)
. The approximate values of

the parameters x = (x1, x2, x3) and r = (r1, r2, r3) (see Remark 4.5 for their
relation) are as follows:

g1 g2

x1 0.902191989660862 0.369813422882157

x2 0.425178535419486 1.10029990844058

x3 1 1

r2
1 23.5195316013163 9.08843118434199

r2
2 11.0841152599449 27.0406626186377

r2
3 10 10

By using the formula for the scalar curvature in [7, p. 168], we obtain that

scal(Gr3

(
R8
)
, g1) u 75.1030942567225,

scal(Gr3

(
R8
)
, g2) u 68.5963932678592.

Dividing by dim Gr3

(
R8
)

= 15, we obtain E1 u 5.00687295044817 and E2 u
4.57309288452394 of g1 and g2 respectively.

Although we do not have an explicit expression for the first Laplace eigen-
value of g1 and g2, we have that

λ1(Gr3

(
R8
)
, g1) ≤ λπω3 (r(g1)) u 9.54978541388250

< 10.0137459008963 u 2E1,

λ1(Gr3

(
R8
)
, g2) ≤ λπω3 (r(g2)) u 8.81067844449609

< 9.14618576904789 u 2E2.

We conclude that the Einstein manifolds (Gr3

(
R8
)
, g1) and (Gr3

(
R8
)
, g2) are

ν-unstable, and therefore dynamically unstable.

Remark 4.7. With a similar strategy as in Subsection 4.5, the authors
obtained that
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λ
π2ω1
1 (r) =

7

15
r2

1 +
14

15
r2

3,

λ
π2ω3
1 (r) =

7

30
r2

1 +
9

30
r2

2 +
7

15
r2

3

− 1

30

√
121r4

1 + 81r4
2 + 196r4

3 − 90r2
1r

2
2 − 92r2

1r
2
3 − 180r2

2r
2
3,

λ
π2ω3
2 (r) =

7

30
r2

1 +
9

30
r2

2 +
7

15
r2

3

+
1

30

√
121r4

1 + 81r4
2 + 196r4

3 − 90r2
1r

2
2 − 92r2

1r
2
3 − 180r2

2r
2
3.

The case π2ω3 was particularly hard because dimV H
π2ω3

= 2. Moreover, the

eigenbasis of π2ω3(−Cgr)|V Hπ2ω3

depends on r. That is, there are eigenvectors

in V H
π2ω3

of the Casimir operators π2ω3

(
−Casg,B

)
and π2ω3

(
−Cask,B|k

)
, that

are not eigenvectors of Υπ2ω3
.

The smallest positive eigenvalue λ1(Gr3

(
R8
)
, gr) of the Laplace-Beltrami

operator associated to (Gr3

(
R8
)
, gr) might be equal to

min{λπω3
1 (r), λ

πω1+ω3
1 (r), λ

π2ω3
1 (r)}.

To establish it, one has to show that

λπi (r) ≥ min{λπω3
1 (r), λ

πω1+ω3
1 (r), λ

π2ω3
1 (r)}

for every 1 ≤ i ≤ dimV H
π and π ∈ ĜH . The difficult cases are those π ∈ Ĝ

satisfying dimV H
π > 1 (e.g. π2ω3), since it is not easy to determine V H

π and
either the eigenbasis for π(−Cgr)|V Hπ due to the same reason explained in the
previous paragraph.
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[13] E.A. Lauret, J.S. Rodŕıguez, Spectrally distinguishing symmetric spaces
I, Math. Z. 350 (2025), article no. 42.
DOI: 10.1007/s00209-025-03739-1.

[14] T. Levasseur, S.P. Smith, Primitive ideals and nilpotent orbits in type
G2, J. Algebra 114 (1988), 81 – 105.
DOI: 10.1016/0021-8693(88)90214-1.

http://dx.doi.org/10.2307/2154253
https://doi.org/10.1007/s12220-021-00826-7
http://dx.doi.org/10.1515/crelle-2013-0096
https://doi.org/10.1090/memo/0215
http://dx.doi.org/10.5802/aif.2567
http://dx.doi.org/10.1090/S0002-9947-96-01512-7
http://dx.doi.org/10.2969/aspm/01810303
https://doi.org/10.1007/s00526-014-0748-3
http://dx.doi.org/10.1112/blms.12213
http://dx.doi.org/10.1007/s00031-018-9486-5
https://doi.org/10.1007/s00209-025-03739-1
http://dx.doi.org/10.1016/0021-8693(88)90214-1


30 e.a. lauret, j.s. rodŕıguez
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