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Abstract : This article focuses on the study of Lorentzian para-Sasakian manifolds Mn. It demon-

strates that aW9-semisymmetric Lorentzian para-Sasakian manifold is aW9-flat manifold. Addition-

ally, we explore Lorentzian para-Sasakian manifolds that satisfy the ζ-W9-flat condition, revealing
that they represent a special type of η-Einstein manifold. Furthermore, it is shown that a W9-flat

Lorentzian para-Sasakian manifold is a flat manifold. We also investigate Lorentzian para-Sasakian

manifolds that meet W9-recurrent and φ-W9-semisymmetric conditions, presenting several signifi-
cant results from this analysis. At last, we explore η-Ricci Solitons on Lorentzian para-Sasakian

manifold satisfying W9(ζ,F1) · S = 0.
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1. Introduction

In 1989, Matsumoto [17] introduced the concept of Lorentzian para-
Sasakian manifolds. Shortly thereafter, Mihai and Ros,ca [20] independently
defined the same notion, contributing several important results regarding these
manifolds. The study of Lorentzian para-Sasakian manifolds has continued to
grow, with significant contributions from various researchers. Matsumoto and
Mihai [18] collaborated on further investigations, while Matsumoto, Mihai,
and Roşca [19] collectively explored additional aspects of these manifolds.

Further research was conducted by Mihai, Shaikh, and De [21], who exam-
ined specific properties and characteristics of Lorentzian para-Sasakian man-
ifolds. Additionally, De and Shaikh [10, 9], along with Ozgur [24], also con-
tributed to the body of knowledge surrounding this topic. Their collective
efforts have enriched the understanding of Lorentzian para-Sasakian mani-
folds, leading to new insights and findings in differential geometry.
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The exploration of Lorentzian para-Sasakian manifolds has not only ex-
panded theoretical frameworks but has also opened avenues for applications
in various mathematical contexts. As a result, the study of these manifolds
continues to attract interest from researchers, fostering ongoing investigation
and discovery in the field. Overall, the foundational work laid by Matsumoto
and subsequent contributions like [30, 15, 22, 32, 33] by other scholars has
significantly advanced the study of Lorentzian para-Sasakian manifolds, es-
tablishing a vibrant area of research within differential geometry.

The τ curvature tensor is defined by Tripathi and Gupta [34] as

τ(F1,F2)F3 = a0R(F1,F2)F3 + a1S(F2,F3)F1 + a2S(F1,F3)F2

+ a3S(F1,F2)F3 + a4g(F2,F3)QF1

+ a5g(F1,F3)QF2 + a6g(F1,F2)QF3 (1.1)

+ a7r(g(F2,F3)F1 − g(F1,F3)F2)

where a0, . . . , a7 are some smooth functions on Mn; and R, S, Q and r are
the curvature tensor, the Ricci tensor, the Ricci operator of type (1,1) and
the scalar curvature respectively.

Substituting a0 = 1, a3 = −a4 = 1
n−1 , a1 = a2 = a5 = a6 = a7 = 0 in

(1.1), we obtain

W9(F1,F2)F3 = R(F1,F2)F3+
1

(n− 1)
[S(F1,F2)F3−g(F2,F3)QF1] (1.2)

where R, S and Q are the curvature tensor, the Ricci tensor and the Ricci
operator of type (1,1) respectively.

The properties of W8-curvature tensor have been studied in [29, 27, 31, 15,
25, 28] and geometers obtained certain interesting results. Inspired by their
work, in this paper, we have studied the properties of W9-curvature tensor in
Lorentzian para-Sasakian manifolds.

In 1982, R.S. Hamilton [14] introduced the concept of Ricci flow to iden-
tify a canonical metric on a smooth manifold. The Ricci flow describes the
evolution of metrics on a Riemannian manifold M through the equation:

∂

∂t
g = −2S,

where S represents the Ricci tensor. A special class of solutions to this equa-
tion, known as Ricci solitons, takes the form g = σ(t)ψ∗t g with the initial
condition g(0) = g. Here, ψt denotes a family of diffeomorphisms on M , and
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σ(t) is a time-dependent scaling function. A Ricci soliton extends the concept
of an Einstein metric. Following the definition in [5], a Ricci soliton on a
manifold M is characterized by a triple (g,Z2, ϑ), where g is a Riemannian
metric, Z2 is a vector field referred to as the potential vector field, and ϑ is a
real scalar. These elements satisfy the equation:

LZ2g + 2S + 2ϑg = 0, (1.3)

where LZ2 denotes the Lie derivative. Metrics that satisfy (1.3) are valuable
in physics and are often called quasi-Einstein metrics [7, 6]. Compact Ricci
solitons represent fixed points of the Ricci flow,

∂

∂t
g = −2S,

when the space of metrics is projected onto its quotient by diffeomorphisms
and scalings. These solitons frequently appear as blow-up limits of the Ricci
flow on compact manifolds. Additionally, theoretical physicists have explored
Ricci solitons in connection with string theory. Friedan [13] made the initial
contribution in this area by examining some of its aspects.

Ricci solitons have been extensively explored by various researchers, in-
cluding [11, 12, 14, 16] and many others. As a generalization of Ricci solitons,
Cho and Kimura [8] introduced the concept of η-Ricci solitons, which has also
been studied in [5] for Hopf hypersurfaces in complex space forms.

An η-Ricci soliton is defined by a quadruple (g,Z2, ϑ, Ψ), where Z2 is a
vector field on M , ϑ and Ψ are real constants, and g is a Riemannian or
pseudo-Riemannian metric that satisfies the equation:

LZ2g + 2S + 2ϑg + 2Ψ η ⊗ η = 0. (1.4)

Blaga [2, 3] and Prakasha et al. [26] have made notable contributions to
the study of η-Ricci solitons. When Ψ = 0, the η-Ricci soliton (g,Z2, ϑ, Ψ)
reduces to a standard Ricci soliton (g,Z2, ϑ). On the other hand, if Ψ 6= 0,
the soliton is referred to as a proper η-Ricci soliton. For a detailed survey and
additional references on the geometry of Ricci solitons on pseudo-Riemannian
manifolds, we refer the reader to [1, 4, 23] and the literature cited therein.

The structure of this paper is outlined as follows: Section 2
deals with some preliminary concepts of Lorentzian para-Sasakian manifold.
In Section 3, we discussed W9-semisymmetric Lorentzian para-Sasakian man-
ifold. In Section 4, we discussed ζ-W9 flat Lorentzian para-Sasakian manifold.
Furthurmore, in Section 5, we discussed W9 flat Lorentzian para-Sasakian
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manifold. Moreover, in Section 6, we discussed W9-recurrent Lorentzian para-
Sasakian manifold. In Section 7, we studied φ-W9 semisymmetric Lorentzian
para-Sasakian manifold. Lastly, in Section 8, we explored η-Ricci solitons on
Lorentzian para-Sasakian manifold satisfying W9(ζ,F1) · S = 0.

2. Preliminaries

LetMn be an n-dimensional differentiable manifold equipped with a (1, 1)
tensor field φ, a contravariant vector field ζ, a covariant vector field η, and
a Lorentzian metric g of type (0, 2). For each point p in Mn, the metric
gp defines a non-degenerate inner product on the tangent space TpM × TpM
mapping to R which satisfies the following properties

φ2(F1) = F1 + η(F1)ζ, (2.1)

η(ζ) = −1, (2.2)

g(F1, ζ) = η(F1), (2.3)

g(φF1, φF2) = g(F1,F2) + η(F1)η(F2)

for any vector fields F1 and F2 on Mn. Such a structure (φ, ζ, η, g) is re-
ferred to as a Lorentzian almost paracontact structure, and the manifoldMn

equipped with this structure is called a Lorentzian almost paracontact mani-
fold [17].

φζ = 0, η(φF1) = 0, Ω(F1,F2) = Ω(F2,F1)

where Ω(F1,F2) = g(F1, φF2).
Let { ei : i = 1, 2, . . . , n} be an orthonormal basis such that en = ζ. Then

the Ricci tensor S and the scalar curvature r are defined by

S(F1,F2) =

n∑
i=1

εig(R(ei,F1)F2, ei)

and

r =
n∑
i=1

εiS(ei, ei)

where we put εi = g(ei, ei), that is, ε1 = ε2 = . . . = εn−1 = 1, εn = −1.
A Lorentzian almost paracontact manifold Mn admitting the structure

(φ, ζ, η, g) is called Lorentzian paracontact manifold if

Ω(F1,F2) =
1

2
((∇F1η)F2 + (∇F2η)F1) .
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A Lorentzian almost paracontact manifoldMn admitting the structure (φ, ζ,
η, g) is called Lorentzian para-Sasakian manifold if [17]

(∇F1φ)F2 = g(φF1, φF2)ζ + η(F2)φ2F1.

In a Lorentzian para-Sasakian manifold the 1-form of η is closed. Also in [17],
it is proved that if an n-dimensional Lorentzian manifold (Mn, g) admits a
timelike unit vector field ζ such that the 1-form η associated to ζ is closed
and satisfies

(∇F1∇F2η)F3 = g(F1,F2)η(F3) + g(F1,F3)η(F2) + 2η(F1)η(F2)η(F3),

thenMn admits a Lorentzian para-Sasakian structure. Further, on Lorentzian
para-Sasakian manifold Mn(φ, ζ, η, g), the following relation holds [17]:

η(R(F1,F2)F3) = [g(F2,F3)η(F1)− g(F1,F3)η(F2)], (2.4)

S(F1, ζ) = (n− 1)η(F1), (2.5)

S(φF1, φF2) = S(F1,F2) + (n− 1)η(F1)η(F2),

R(F1,F2)ζ = [η(F2)F1 − η(F1)F2],

R(ζ,F1)F2 = g(F1,F2)ζ − η(F2)F1,

(∇F1φ)(F2) = [g(F1,F2)ζ + 2η(F1)η(F2)ζ + η(F2)F1],

for all vector fields F1, F2 and F3 on Mn. Here R denotes the curvature
tensor on the manifoldMn and S denotes the Ricci tensor onMn. Although
the vector fields η is closed in an Lorentzian para-Sasakian manifold, we have
([17, 18])

(∇F1η)F2 = Ω(F1,F2),

Ω(F1, ζ) = 0,

∇F1ζ = φF1, (2.6)

for any vector fields F1, F2 on Mn.

Definition 2.1. A Lorentzian para-Sasakian manifold Mn is said to be
η-Einstein manifold if its Ricci tensor S is on the following form:

S(F1,F2) = ϑ1g(F1,F2) + ϑ2η(F1)η(F2),

for any vector fields F1, F2 onMn. Here ϑ1, ϑ2 are smooth functions onMn.
If ϑ2=0, then Mn is an Einstein manifold.
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Definition 2.2. LetW9 be a (1, 3)-type tensor. A semi-Riemannian man-
ifold (Mn, g) is said to be W9-recurrent if it satisfies

(∇Z1W9)(F1,F2)F3 = α(Z1)W9(F1,F2)F3,

for some non zero 1-form α.

Let (M,φ, ζ, η, g) denote an almost paracontact metric manifold. Taking
(1.4) in consideration and writing Lζg in terms of Levi-Civita connection ∇,
we obtain

2S(F1,F2) =− g(∇F1ζ,F2)− g(F1,∇F2ζ)

− 2ϑg(F1,F2)− 2Ψη(F1)η(F2),
(2.7)

for any vector fields F1,F2 on Mn.

Using (2.6) in (2.7), we have

S(F1,F2) = −g(φF1,F2)− ϑg(F1,F2)− Ψη(F1)η(F2). (2.8)

Setting F2 = ζ in (2.8), we obtain

S(F1, ζ) = (Ψ − ϑ)η(F1). (2.9)

Putting F1 = ζ in (2.9), we have

S(ζ, ζ) = ϑ− Ψ.

By virtue of (2.9), we have

QF1 = (Ψ − ϑ)F1.

By virtue of (2.5) in (2.9), we obtain

Ψ − ϑ = n− 1. (2.10)

3. Lorentzian para-Sasakian manifold admitting
W9-semisymmetric condition

In this section, we examine Lorentzian para-Sasakian manifold admitting
W9-semisymmetric condition.
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Definition 3.1. A Lorentzian para-Sasakian manifold is said to be W9-
semisymmetric if it satisfies

R(F1,F2)W9(F3,Z1)Z2 = 0, (3.1)

for all vector fields F1,F2,F3 and Z1 on Mn.

Taking inner product of (3.1) with ζ, we obtain

R(F1,F2,W9(F3,Z1)Z2, ζ) = 0. (3.2)

Using (2.4) in (3.2),we have

η(F1)W9(F2,F3,Z1,Z2)− η(F2)W9(F1,F3,Z1,Z2) = 0.

Since, η(F1) 6= 0 and η(F2) 6= 0, then it follows that

W9(F2,F3,Z1,Z2) = 0 and W9(F1,F3,Z1,Z2) = 0,

Hence from above discussion, we state the following theorem.

Theorem 3.1. Let Mn be an n-dimensional Lorentzian para-Sasakian
manifold admitting W9-semisymmetric condition, then the manifold is W9-
flat.

4. ζ-W9 flat Lorentzian para-Sasakian manifold

In this section, we examine Lorentzian para-Sasakian manifold admitting
ζ-W9 flatness condition.

Definition 4.1. A Lorentzian para-Sasakian manifold is said to be ζ-W9

flat if it satisfies
W9(F1,F2)ζ = 0, (4.1)

for any vector fields F1,F2 on Mn.

By virtue of (1.2) and using (4.1), we have

η(F2)F1 − η(F1)F2 +
1

(n− 1)
[S(F1,F2)ζ − η(F2)QF1] = 0. (4.2)

Further, taking inner product of (4.2) with ζ and using (2.2), (2.3), we obtain

S(F1,F2) = −(n− 1)η(F1)η(F2).

Hence from above discussion, we state the following theorem.
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Theorem 4.1. Let Mn be an n-dimensional Lorentzian para-Sasakian
manifold satisfying ζ-W9 flat condition, then the manifold is a special type of
η-Einstein manifold.

5. Lorentzian para-Sasakian manifold admitting
W9-flat condition

In this section, we examine Lorentzian para-Sasakian manifold admitting
W9-flat condition.

Definition 5.1. A Lorentzian para-Sasakian manifold is said to be W9-
flat if it satisfies

W9(F1,F2)F3 = 0, (5.1)

for any vector fields F1, F2 and F3 on Mn.

Taking inner product of (1.2) with ζ and using (5.1), we obtain

R(F1,F2,F3, ζ) =
1

(n− 1)
[g(F2,F3)S(F1, ζ)− S(F1,F2)g(F3, ζ)]. (5.2)

By virtue of (2.3) and (2.5) in (5.2), we have

R(F1,F2,F3, ζ) = g(F2,F3)η(F1)− g(F1,F2)η(F3). (5.3)

But in Lorentzian para-Sasakian manifold, we have

R(F1,F2,F3, ζ) = g(F2,F3)η(F1)− g(F1,F3)η(F2). (5.4)

For (5.3) and (5.4) to hold simultaneously, we must have

R(F1,F2,F3, ζ) = 0.

Hence from above discussion, we state the following theorem.

Theorem 5.1. Let Mn be an n-dimensional Lorentzian para-Sasakian
manifold satisfying W9-flat condition, then the manifold is flat.

6. Lorentzian para-Sasakian manifold satisfying
W9-recurrent condition

In this section, we examine Lorentzian para-Sasakian manifold satisfying
W9-recurrent condition.
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Definition 6.1. A Lorentzian para-Sasakian manifold (Mn, g) is said to
be W9-recurrent if it satisfies

(∇Z1W9)(F1,F2)F3 = α(Z1)W9(F1,F2)F3,

for some non zero 1-form α.

Taking inner product of (1.2) with ζ, we have

W9(F1,F2,F3, ζ) = R(F1,F2,F3, ζ) (6.1)

+
1

(n− 1)

[
S(F1,F2)η(F3)− g(F2,F3)S(F1, ζ)

]
.

Taking covariant derivative of (6.1) with respect to Z1 and using (1.2), we get

∇Z1W9(F1,F2,F3, ζ) = ∇Z1R(F1,F2,F3, ζ) (6.2)

+
1

(n− 1)

[
∇Z1S(F1,F2)g(F3, ζ)−∇Z1S(F1, ζ)g(F2,F3)

]
.

But, since it is known that

∇Z1S(F1,F2) = α(Z1)S(F1,F2), (6.3)

and

∇Z1W9(F1,F2,F3, ζ) = α(Z1)W9(F1,F2,F3, ζ). (6.4)

Therefore, using (6.3),(6.4) in (6.2), we obtain

∇Z1R(F1,F2,F3, ζ) = α(Z1)R(F1,F2,F3, ζ).

Hence from above discussion, we state the following theorem.

Theorem 6.1. Let Mn be an n-dimensional Lorentzian para-Sasakian
manifold satifying W9-recurrent condition.Then for the same recurrence pa-
rameter, the manifold is recurrent.

7. Lorentzian para-Sasakian manifold satisfying
φ-W9-semisymmetric condition

In this section, we examine Lorentzian para-Sasakian manifold satisfying
φ-W9-semisymmetric condition.
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Definition 7.1. A Lorentzian para-Sasakian manifold (Mn, g) is said to
satisfy φ-W9-semisymmetric condition if

(W9(F1,F2) · φ)F3 = 0, (7.1)

for any vector fields F1,F2 and F3 on Mn.

From (7.1), we have

W9(F1,F2)φF3 − φW9(F1,F2)F3 = 0. (7.2)

Replacing F3 by φF3 in (1.2) and using in (7.2), we obtain

g(F2, φF3)F1 − g(F1, φF3)F2 + g(F1,F3)φF2

− 1

(n− 1)
[g(F2, φF3)QF1] = 0.

(7.3)

Taking inner product of (7.3) with Z3 and on simplification, we get

g(F2, φF3)g(F1,Z3)− g(F1, φF3)g(F2,Z3)

+g(F1,F3)g(φF2,Z3)− 1

(n− 1)
g(F2, φF3)S(F1,Z3) = 0.

(7.4)

Replacing F3 by φF3 in (7.4) and using (2.1), we obtain[
g(F2,F3) + η(F2)η(F3)

][
1− 1

(n− 1)
S(F1,Z3)

]
−
[
g(F1,F3) + η(F1)η(F3)

]
g(F2,Z3) + g(F1, φF3)g(φF2,Z3) = 0.

Let {ei : i = 1, 2, . . . , n} be an orthonormal basis such that en = ζ. Sub-
stituting F1 = Z3 = ei and taking summation over i, where 1 ≤ i ≤ n, we
obtain [

1− r

(n− 1)

][
g(F2,F3) + η(F2)η(F3)

]
= 0. (7.5)

From (7.5), we arrive at following cases:

Case I: If
[
1− r

(n−1)

]
= 0, then we have r = (n− 1).

Case II: If g(F2,F3) + η(F2)η(F3) = 0, then replacing F2 by QF2, we have

S(F2,F3) = −(n− 1)η(F2)η(F3).

Hence from above discussion, we state the following theorem.

Theorem 7.1. Let Mn be an n-dimensional Lorentzian para-Sasakian
manifold satifying φ-W9-semisymmetric condition. Then either the scalar cur-
vature r = (n− 1) or Mn is a special type of η-Einstein manifold.
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8. η-Ricci solitons on Lorentzian para-Sasakian
manifold satisfying W9(ζ,F1) · S = 0

In this section, we examine η-Ricci solitons on Lorentzian para-Sasakian
manifold satisfying W9(ζ,F1) ·S = 0. The condition that must be satisfied by
S is given as [2]

S(W9(ζ,F1)F2,F3) + S(F2,W9(ζ,F1)F3) = 0, (8.1)

for any vector fields F1, F2 and F3 on Mn.
By virtue of (1.2), we obtain

S(W9(ζ,F1)F2,F3) = (Ψ − ϑ)

[
1−

(
Ψ − ϑ
n− 1

)]
η(F3)g(F1,F2)

+ η(F2)g(φF1,F3) + ϑη(F2)g(F1,F3) (8.2)

+ Ψη(F1)η(F2)η(F3) +

[
Ψ − ϑ
n− 1

]
η(F1)S(F2,F3),

and

S(F2,W9(ζ,F1)F3) = (Ψ − ϑ)

[
1−

(
Ψ − ϑ
n− 1

)]
η(F2)g(F1,F3)

+ η(F3)g(φF1,F2) + ϑη(F3)g(F1,F2) (8.3)

+ Ψη(F1)η(F2)η(F3) +

[
Ψ − ϑ
n− 1

]
η(F1)S(F2,F3).

Using (8.2) and (8.3) in (8.1), we have[
Ψ − ϑ
n− 1

]
[S(F2,F3) + (Ψ − ϑ)η(F2)η(F3)] = 0. (8.4)

By (8.4), we infer following cases:

Case I: If
[
Ψ−ϑ
n−1

]
= 0, then we have Ψ = ϑ.

Case II: If
[
Ψ−ϑ
n−1

]
6= 0, then we have

S(F2,F3) = −(Ψ − ϑ)η(Y )η(F3).

Using (2.10), we have

S(F2,F3) = −(n− 1)η(F2)η(F3).

Hence from above discussion, we state the following theorem.
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Theorem 8.1. Let Mn be an n-dimensional Lorentzian para-Sasakian
manifold and (g, ζ, ϑ, Ψ) be the η-Ricci soliton on Mn, then either ϑ = Ψ or
Mn is a special type of an η-Einstein manifold.

9. Conclusion

This paper provides an in-depth study of various aspects of Lorentzian
para-Sasakian manifolds, focusing on specific curvature conditions and sym-
metrical properties. In Section 2, we introduced preliminary concepts essen-
tial for understanding the structure of Lorentzian para-Sasakian manifolds.
Section 3 explored the notion of W9-semisymmetry, which is pivotal in char-
acterizing these manifolds under certain curvature constraints. Section 4 dis-
cussed ζ-W9 flat Lorentzian para-Sasakian manifolds, revealing conditions un-
der which the curvature vanishes along the Reeb vector field ζ.

In Section 5, we examined W9 flat manifolds, establishing the criteria for
their curvature tensor to satisfy specific flatness conditions. Section 6 delved
into W9-recurrent structures, highlighting how these recurrence properties af-
fect the geometric behavior of the manifold. Moving forward, Section 7 an-
alyzed φ-W9 semisymmetric Lorentzian para-Sasakian manifolds, focusing on
the interplay between the structure tensor φ and curvature.

Finally, Section 8 investigated η-Ricci solitons on Lorentzian para-Sasakian
manifolds, particularly under the condition W9(ζ,F1) · S = 0. This section
underscores the relevance of solitons in the evolution of geometric flows on
these manifolds.

Throughout the paper, we explored various curvature conditions and their
impact on the geometric properties of Lorentzian para-Sasakian manifolds.
These findings contribute to a deeper understanding of such manifolds, poten-
tially leading to further research in geometric structures and their applications
in mathematical physics.
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