

EXTRACTA MATHEMATICAE

Article in press Available online September 16, 2024

c-Continuous polynomials on ℓ_1

HUMBERTO D. CARRIÓN^{*}

Departamento de Matemática, Instituto de Matemática e Estatística Universidade de S˜ao Paulo, Caixa Postal 66281 - CEP: 05311-970 - S˜ao Paulo, Brasil

leinad@ime.usp.br

Received April 9, 2024 Accepted July 29, 2024 Presented by J.A. Jaramillo

Abstract: In this article we study the *n*-homogeneous polynomials P that are c-continuous on bounded subsets of ℓ_1 . We show that P can be decomposed in the form $R + Q$, where Q and R are n-homogeneous polynomials, with R weakly star continuous and $Q(x) = 0$ for all $x \in \text{ker } u$ for $u = (1, 1, \ldots, 1, \ldots)$. We conclude that $P = \sum_{j=0}^{n} u^{n-j} \otimes R_j$, where R_j is a weakly star continuous j-homogeneous polynomial for $j = 0, 1, \ldots, n$.

Key words: Polynomials, Banach, holomorphic, weak.

MSC (2020): 46G20 (primary), 46E50, 46G25, 47H60 (secondary).

1. INTRODUCTION

Let E and F be Banach spaces and Φ be an arbitrary subset of E'. A function $f : E \to F$ is said to be Φ -continuous on bounded subsets of E, if for each bounded set $\Omega \subset E$, $a \in \Omega$ and $\varepsilon > 0$, there are ϕ_1, \ldots, ϕ_p in Φ and $\delta > 0$, such that if $x \in \Omega$, $|\phi_i(x-a)| < \delta$, for $j = 1, 2, ..., p$, then $|| f (x) - f (a) || < \varepsilon$. In a similar way we define uniform Φ -continuity on bounded subsets of E.

In [\[1\]](#page-17-0) is showed that in every Banach space E , every m-homogeneus polynomial $P: E \to F$ which is weakly continuous on bounded sets of E is weakly uniformly continuous on bounded sets. The corresponding problem for holomorphic functions is still open.

PROBLEM 1. If $f : E \to \mathbb{C}$ is a holomorphic function which is weakly continuous on bounded sets, is f weakly uniformly continuous?

This problem was raised in 1982 by Aron et al. in [\[1\]](#page-17-0) and cited in many works, such as $[1, 2, 3, 5, 8]$ $[1, 2, 3, 5, 8]$ $[1, 2, 3, 5, 8]$ $[1, 2, 3, 5, 8]$ $[1, 2, 3, 5, 8]$. It is obvious that the problem has an affirmative

[∗] The author is grateful to the referee for his rigorous review, corrections and helpful comments in the original manuscript.

answer if E is reflexive. However, Dineen in $[6]$ showed that this problem has an affirmative answer if $E = c_0$ and more generally in [\[4\]](#page-17-6), it is shown that this problem also has an affirmative answer in every Banach space space with the U property and without a copy of ℓ_1 . In particular, this is true for every Banach space that is an M-ideal in its bidual, such as Banach spaces with a shrinking and unconditional Schauder basis.

The Problem [1](#page-0-0) is also so-called "the ℓ_1 -problem", since Aron et al., showed in [\[1,](#page-17-0) Example 3.5], that if Problem [1](#page-0-0) has an affirmative answer for the space ℓ_1 , then it has an affirmative answer for all Banach spaces E.

Every entire function $f : \ell_1 \to \mathbb{C}$, which is c_0 -continuous on bounded sets of ℓ_1 , is c₀-uniformly continuous on bounded sets, since every bounded set is relatively $\sigma(\ell_1, c_0)$ -compact. However, it changes if we consider the space c of the convergent sequences and the topology $\sigma(\ell_1, c)$ in ℓ_1 , since the bounded subsets of ℓ_1 are not relatively $\sigma(\ell_1, c)$ -compact. In fact, the sequence of vectors (e_n) of the canonical basis of ℓ_1 does not converge in this topology. Thus we raise the next problem apparently weaker than ℓ_1 -problem.

PROBLEM 2. Is every c-continuous holomorphic function on bounded subsets of ℓ_1 , c-uniformly continuous?

This paper is motivated by the question mentioned above. We focus our attention on polynomials and entire functions on ℓ_1 that are c-continuous on bounded sets.

2. NOTATIONS

If E is a complex Banach space, $B(E)$ and E' will denote the closed unit ball and the topological dual of E , respectively. For each positive integer m , $\mathcal{L}(^m E)$ is the space of continuous m-linear mappings from $E \times \cdots \times E$ to $\mathbb C$ and $\mathcal P$ (^mE) is the space of continuous m-homogeneous polynomials from E to $\mathbb C$. For each polynomial $P \in \mathcal P(m, E)$, there exists a unique symmetric mapping $P \in \mathcal{L}(^m E)$ such that $P(x) = P(x, \ldots, x) = P(x^m)$. When $m = 1$, we have that $\mathcal{L}({}^1E) = \mathcal{P}({}^1E) = E'$ and for $m = 0$, $\mathcal{P}({}^0E)$ and $\mathcal{L}({}^0E)$ are associated to C.

The space $\mathcal{L}(^m E)$ is a Banach space, under the norm

$$
A \in \mathcal{L}(^m E) \longrightarrow ||A|| = \sup \left\{ |A(x_1, x_2, \dots, x_m)| : x_j \in E, ||x_j|| \le 1 \right\},\
$$

and therefore for every $x, y \in E$ and every integer positive j, with $0 \leq j \leq m$,

we have that

$$
|A(x^{m-j},y^j)| \leq ||A|| \, ||x^{m-j}|| \, ||y^j|| \, .
$$

Also, $\mathcal{P}(^m E)$ is a Banach space with respect to the norm

$$
||P|| = \sup_{x \in B(E)} |P(x)|
$$

and we have that

$$
\left\|P\right\|\leq \left\|\overset{\vee}{P}\right\|\leq \frac{m^m}{m!}\left\|P\right\|.
$$

We refer to [\[9\]](#page-17-7) or [\[5\]](#page-17-3) for the general theory of polynomials and holomorphic mappings on Banach spaces.

Let $\Phi \subset E'$ be an arbitrary family. We say that a bounded sequence $(x_n) \subset E$, is Φ -Cauchy if for all $\phi \in \Phi$, the numerical sequence $\phi(x_n)$ converges. We say that $(x_n) \subset E$, is Φ -convergent if there exists $x \in E$ such that $\lim_{n} \phi(x_n) = \phi(x)$, for every $\phi \in \Phi$. In this case we write $\Phi - \lim_{n} x_n = x$. For example, in the space ℓ_1 space, the sequence of canonical basis vectors (e_n) is c-Cauchy, but (e_n) is not c-convergent. We denote by $\mathcal{P}_{\Phi}(^m E)$ the space of all Φ -sequentially continuous polynomials on bounded subsets of E. \mathcal{P}_{Φ} (^mE) is a norm-closed subspace of $P(^mE)$.

The following result is an immediate consequence of [\[1,](#page-17-0) Lemma 2.4, Lemma 2.6, Proposition 2.8].

THEOREM 1. Let E be a complex Banach space and Φ be any separable subspace of E' .

- (i) If $P \in \mathcal{P}_{\Phi}(^m E)$, then for every bounded Φ -Cauchy sequence (x_n) , the sequence of $(m-1)$ -homogeneous polynomials $T_n(x) = \overline{P}(x_n, x^{m-1})$ converges in norm. In particular, if (x_n) is Φ -convergent to 0 then (T_n) converges in norm to the null polynomial.
- (ii) If $P \in \mathcal{P}_{\Phi}(^m E)$ then the m-linear mapping $\overleftrightarrow{P} : E \times \cdots \times E \to \mathbb{C}$ is Φ -continuous. Besides, for each $a \in E$ and every integer j with $0 \leq j \leq m$, the mapping $T_j(x) = \Pr^{\vee}(a^j, x^{m-j})$ is Φ -continuous on bounded subsets of E.

3. c-CONTINUOUS POLYNOMIALS

The canonical basis (e_i) of ℓ_1 is c-Cauchy and therefore by Theorem [1,](#page-2-0) given a polynomial $P \in \mathcal{P}_c(m\ell_1)$ the sequence of polynomials $T_k(x) =$

4 h.D. CARRIÓN

 $P(e_k, x^{m-1})$ converges in the norm. If $P \in \mathcal{P}_{c_0}(m\ell_1)$, then T_k converges to 0 in norm, since $c_0 - \lim_k e_k = 0$.

If $\phi \in \mathcal{P}(\ell_1) = \ell_{\infty}$ is c-continuous on bounded subsets of ℓ_1 then $\phi \in \mathcal{C}$. In fact, suppose that $\phi = (\phi_1, \phi_2, \dots)$. Since the sequence (e_k) is c-Cauchy, then by Theorem [1,](#page-2-0) the sequence $(\phi_k) = (\phi(e_k))$ converges, that is $(\phi_k) \in c$. In the same way, we show that if $\phi \in \mathcal{P}(\ell_1)$ is c₀-continuous on bounded subsets of ℓ_1 , then $\phi \in c_0$. However, this last result is a particular case of [\[7,](#page-17-8) Theorem V.5.6].

We denote by (e_n^*) the associated sequence of coefficient functionals for the basis (e_n) of ℓ_1 .

PROPOSITION 1. Let (f_n) be a sequence of complex-valued functions de- $\sum_{j=1}^{\infty} e_j^*(x) f_j(y)$ converges. Moreover, we have that: fined on ℓ_1 . If (f_n) is pointwise bounded, then for all $x, y \in \ell_1$ the series

(i) If $(R_n) \subset \mathcal{P}(m\ell_1)$ converges to 0 pointwise and

$$
P(x) = \sum_{j=1}^{\infty} e_j^* (x) R_j (x),
$$

then $P \in \mathcal{P}(m+1\ell_1)$.

(ii) If $\Phi = c$ or $\Phi = c_0$ and $(R_n) \subset P_{\Phi}(m\ell_1)$ converges to 0 in norm and

$$
P(x) = \sum_{j=1}^{\infty} e_j^* (x) R_j (x),
$$

then $P \in \mathcal{P}_{\Phi}(^m \ell_1)$.

Proof. Let (e_j^*) be the coordinate functionals associated with the canonical basis (e_j) of ℓ_1 . For each $y \in \ell_1$ we have $(f_i(y)) \in \ell_\infty$ and therefore $\sum_{j=1}^{\infty} e_j^*(x) f_j(y)$ converges.

(i) Since (R_n) converges to 0 pointwise, then (R_n) is uniformly bounded on $B(\ell_1)$ by [\[9,](#page-17-7) Theorem 2.6], that is, $\sup_{j\geq 1} ||R_j|| < \infty$. Thus $|R_j(x)| \leq$ $||R_j|| ||x||^m$, for all $x \in B(\ell_1)$ and $j \geq 1$. Obviously $R(x) = \sum_{j=1}^{\infty} e_j^*(x) R_j(x)$ is an $(m + 1)$ -homogeneous polynomial and

$$
|P(x)| = \left| \sum_{j=1}^{\infty} e_j^*(x) R_j(x) \right| \le \sup_{j \ge 1} |R_j(x)| \sum_{j=1}^{\infty} \left| e_j^*(x) \right| \le \sup_{j \ge 1} \|R_j\| \|x\|^{m+1},
$$

hence

$$
||P|| = \sup_{x \in B(\ell_1)} |P(x)| \le \sup_{j \ge 1} ||R_j||,
$$

and therefore it is continuous.

 $\overline{1}$

(ii) For each $k \in \mathbb{N}$ define $T_k(x) := \sum_{j=1}^k e_j^*(x) R_j(x)$. Since $(e_j^*) \subset \Phi$ and $(R_j) \subset P_{\Phi}(^m \ell_1)$, then $(T_k) \subset P_{\Phi}(^{m+1} \ell_1)$. Now, for all $x \in B(\ell_1)$ and $m, n \in \mathbb{N}$ with $n > m$, we have

$$
|T_m(x) - T_n(x)| \le \left| \sum_{j=m+1}^n e_j^*(x) R_j(x) \right|
$$

$$
\le \sup_{j=m+1,\dots,n} |R_j(x)| \sum_{j=m+1}^n |e_j^*(x)|
$$

$$
\le \sup_{j=m+1,\dots,n} \|R_j\| \|x\|^{m+1} \le \sup_{j\ge m+1} \|R_j\| \|x\|^{m+1}
$$

and therefore $||T_m - T_n|| \leq \sup_{j \geq m+1} ||R_j||$. Since $\lim ||R_j|| = 0$, it follows that (T_m) is a Cauchy sequence in the space $P_{\Phi} ({}^m \ell_1)$ and therefore convergent in norm. Since $P(x) = \lim_k T_k(x)$ for all $x \in \ell_1$, it follows that $P \in P_{\Phi}(\mathbb{P}\ell_1).$

Our interest in the ℓ_1 space is due to the following result.

PROPOSITION 2. Let E be a Banach space with a bounded unconditional Schauder basis (b_n) , $m \in \mathbb{N}$ and let $(P_j) \subset \mathcal{P}(mE)$ be a sequence such that for all $x \neq 0$ we have $\lim_{j} P_j(x) \neq 0$. If for all $x = \sum_{j=1}^{\infty} x_j b_j \in E$ the function $Q(x) := \sum_{j=1}^{\infty} x_j P_j(x)$ is defined and continuous on E, then E is isomorphic to ℓ_1 .

Proof. In fact, let be $x = \sum_{j=1}^{\infty} x_j b_j \neq 0$ and $(\theta_j) \subset \mathbb{C}$ with $|\theta_j| = 1$ for all $j = 1, 2, \ldots$ such that $\theta_j x_j P_j(x) = |x_j P_j(x)|$, then $\bar{x} = \sum_{j=1}^{\infty} x_j \dot{\theta}_j b_j \in E$ and therefore

$$
Q\left(\bar{x}\right) = \sum_{j=1}^{\infty} x_j \theta_j P_j\left(x\right) = \sum_{j=1}^{\infty} |x_j| |P_j\left(x\right)|.
$$

Since $\lim_{j} P_j(x) \neq 0$, then there exists an positive integer j₀ and $\delta > 0$ such that $|P_i(x)| > \delta$, for $j \geq j_0$. Hence we have that

$$
Q(\bar{x}) \geq \sum_{j=1}^{j_0} |x_j| |P_j(x)| + \delta \sum_{j=j_0+1}^{\infty} |x_j|.
$$

,

 $\sum_{j=1}^{\infty} |x_j| < \infty$ implies that $\sum_{j=1}^{\infty} x_j b_j \in E$. Thus, $(e_j) > (b_j)$ and therefore Thus $(x_i) \in \ell_1$. This proves that $(b_i) \succ (e_i)$. Since (b_i) is bounded then E is isomorphic to ℓ_1 .

The conclusion of Proposition [1](#page-3-0) (ii) is not true if the sequence (P_j) converges to 0. In fact, if $E = \ell_2$ and $P_j (x_1, x_2, \dots) = 1/j$, then $Q(x_1, x_2, \dots) =$ $\sum_{j=1}^{\infty} x_j P_j(x) \in \mathcal{P}(2\ell_2).$

COROLLARY 1. Let $(R_j) \subset \mathcal{P}_c(m\ell_1)$ be a sequence of polynomials convergent in norm. If $P(x) = \sum_{j=1}^{\infty} x_j R_j(x)$ then $P \in \mathcal{P}_c(\ell_1)$.

Proof. Since $P_c(^m \ell_1)$ is a closed subspace of $P(^m \ell_1)$, then $R = \lim R_j \in$ $\mathcal{P}_c(^{m}\ell_1)$. Now, if $u = (1, 1, ...) \in c$ then

$$
P(x) = \sum_{j=1}^{\infty} e_j^* (x) (R_j (x) - R(x)) + \sum_{j=1}^{\infty} e_j^* (x) R(x)
$$

=
$$
\sum_{j=1}^{\infty} e_j^* (x) (R_j (x) - R(x)) + u(x) R(x).
$$

Since $\lim_j ||R_j - R|| = 0$, then by Proposition [1\(](#page-3-0)2) the polynomial

$$
Q(x) = \sum_{j=1}^{\infty} e_j^*(x) (R_j(x) - R(x)),
$$

is c-continuous on bounded sets. Obviously $S(x) := u(x) R(x)$ is also ccontinuous on bounded subsets of ℓ_1 .

LEMMA 1. Let E be a Banach space. If $\phi \in E'$, $R \in P(\ell^{m-1}E)$ and $Q(x) := \phi(x) R(x)$, then for all $x, y \in E$ we have

$$
\bigotimes_{i=1}^{N} (x, y^{m-1}) = \frac{1}{m} \phi(x) R(y) + \left(1 - \frac{1}{m}\right) \phi(y) R(x, y^{m-2}).
$$

Proof. Let $T: E \times \cdots \times E \to \mathbb{C}$ be the *m*-linear map defined by

$$
T(z_1, z_2, \ldots, z_m) = \phi(z_1) \overset{\vee}{R}(z_2, z_3, \ldots, z_m).
$$

Then $Q(x) = T(x, x, \ldots, x)$, and by [\[9,](#page-17-7) Proposition 1.6] we have

$$
\varphi(z_1, z_2, \dots, z_n) = \frac{1}{m!} \sum_{\sigma \in S_m} T(z_{\sigma(1)}, z_{\sigma(2)}, \dots, z_{\sigma(m)})
$$

$$
= \frac{1}{m!} \sum_{\sigma \in S_m} \phi(z_{\sigma(1)}) \overset{\vee}{R}(z_{\sigma(2)}, z_{\sigma(3)}, \dots, z_{\sigma(m)}) .
$$

If $z_2 = z_3 = \cdots = z_m = z$, then we obtain

$$
\phi(z_{\sigma(1)})\overset{\vee}{R}(z_{\sigma(2)},z_{\sigma(3)},\ldots,z_{\sigma(n)}) = \begin{cases} \phi(z_1)\overset{\vee}{R}(z,z\ldots,z) & \text{if } \sigma(1)=1, \\ \phi(z)\overset{\vee}{R}(z_1,z,\ldots,z) & \text{if } \sigma(1)\neq 1. \end{cases}
$$

Therefore, if $K = \{ \sigma \in S_m : \sigma(1) = 1 \}$, then $\#K = (m-1)!$ and

$$
\check{Q}(z_1, z^{m-1}) = \frac{1}{m!} \Big(\sum_{\sigma \in K} \phi(z_1) \, \check{R}(z, z \dots, z) + \sum_{\sigma \in S_m - K} \phi(z) \, \check{R}(z_1, z, \dots, z) \Big) \n= \frac{1}{m!} \Big((m-1)! \phi(z_1) \, R(z) + (m! - (m-1)!) \, \phi(z) \, \check{R}(z_1, z^{m-2}) \Big) \n= \frac{1}{m} \phi(z_1) \, R(z) + \left(1 - \frac{1}{m} \right) \phi(z) \, \check{R}(z_1, z^{m-2}) \, .
$$

LEMMA 2. For $m \geq 1$, let $(R_j) \subset \mathcal{P}(m-1)$ be a pointwise convergent sequence to zero and $P(x) = \sum_{j=1}^{\infty} e_j^*(x) R_j(x)$. Then for all $x, y \in \ell_1$ we have

$$
\overset{\vee}{P}(x,y^{m-1}) = \frac{1}{m} \sum_{j=1}^{\infty} e_j^*(x) R_j(y) + \left(1 - \frac{1}{m}\right) \sum_{j=1}^{\infty} e_j^*(y) R_j(x,y^{m-2}).
$$

Proof. Let $Q_j(x) = e_j^*(x) R_j(x)$. Lemma [1](#page-5-0) implies that for all $x, y \in \ell_1$ we have

$$
\bigcirc_{j}^{V} (x, y^{m-1}) = \frac{1}{m} e_{j}^{*} (x) R_{j} (y) + \left(1 - \frac{1}{m}\right) e_{j}^{*} (y) R_{j}^{V} (x, y^{m-2}).
$$

Since (R_j) converges pointwise to zero, then by [\[9,](#page-17-7) Theorem 2.6], (R_j) is bounded in norm. Hence, by Proposition [1,](#page-3-0) the series $\sum_{j=1}^{\infty} e_j^*(x) R_j(y)$ converges. Let (S_j) be a sequence of $(m-1)$ -homogeneous polynomials defined by $S_j(y) = R_j(x, y^{m-2})$. Then the sequence (S_j) converges pointwise to zero

by the polarization formula [\[9,](#page-17-7) Theorem 1.10]. Therefore, by Proposition [1](#page-3-0) the series $\sum_{j=1}^{\infty} e_j^*(y) \bigtimes_{j=1}^{N} (x, y^{m-2})$ converges and since

$$
P(x) = \sum_{j=1}^{\infty} e_j^*(x) R_j(x) = \sum_{j=1}^{\infty} Q_j(x),
$$

it follows by linearity that $\overset{\vee}{P}(x, y^{m-1}) = \sum_{j=1}^{\infty}$ $\stackrel{\vee}{Q}_j(x,y^{m-1})$. So

$$
\stackrel{\vee}{P}(x,y^{m-1}) = \sum_{j=1}^{\infty} \frac{1}{m} e_j^*(x) R_j(y) + \sum_{j=1}^{\infty} \left(1 - \frac{1}{m}\right) e_j^*(y) \stackrel{\vee}{R}_j(x,y^{m-2}).
$$

It follows from Lemma [2](#page-6-0) that if $P(x) = \sum_{j=1}^{\infty} e_j^*(x) R_j(x)$ and $y =$ $(y_1, y_2, \dots) \in \ell_1$, then

$$
\overset{\vee}{P}(e_k, y^{m-1}) = \frac{1}{m} R_k(y) + \left(1 - \frac{1}{m}\right) \sum_{j=1}^{\infty} e_j^*(y) \overset{\vee}{R_j}(e_k, y^{m-2}).
$$

We do not know if the converse of Proposition [1\(](#page-3-0)2) is true for all $m \in$ N. However, the following proposition shows that if $\Phi = c_0$, the pointwise convergence of (R_n) is necessary.

PROPOSITION 3. Let $(R_n) \subset \mathcal{P}(m\ell_1)$, be a sequence of c_0 -continuous polynomials and for each $x \in \ell_1$ define

$$
P(x) = \sum_{n=1}^{\infty} e_n^*(x) R_n(x).
$$

If P is c₀-continuous in the bounded subsets of ℓ_1 , then (R_n) converges pointwise to zero.

Proof. We prove the assertion by induction on m. Recall that if (e_k) is the canonical basis of ℓ_1 and $(\phi_j) \subset c_0$ is a bounded sequence such that $\lim_{n\to\infty}\phi_n(e_k) = 0$ for every k, then $\lim_j \phi_j(a) = 0$ for all $a \in \ell_1$.

Consider the bounded sequence $(\phi_n) \subset c_0 = \mathcal{P}_{c_0}(\lbrace 1 \ell_1 \rbrace)$, and the polynomial $P(x) = \sum_{n=1}^{\infty} e_n^*(x) \phi_n(x)$. Assume that the polynomial P is c₀-continuous on bounded subsets of ℓ_1 . Then, by Lemma [2,](#page-6-0) we have

$$
P(e_k, y) = \frac{1}{2}\phi_k(y) + \frac{1}{2}\sum_{j=1}^{\infty} e_j^*(y) \phi_j(e_k),
$$

thus

(3.1)
$$
\overset{\vee}{P}(e_k, e_l) = \frac{1}{2} (\phi_k(e_l) + \phi_l(e_k)).
$$

As $P \in \mathcal{P}_{c_0}(\ell_1)$, then for each l we have $\lim_{k \to \infty} \overline{P}(e_k, e_l) = 0$, also for each l we have $\lim_{k} \phi_l (e_k) = 0$ because $\phi_l \in c_0$. Thus, Equation [3.1](#page-8-0) implies that for each l we have $\lim_{k} \phi_k (e_l) = 0$ and therefore for all $a \in \ell_1$, we have $\lim \phi_n (a) = 0$. This shows the assertion for $m = 1$.

We assume the assertion true for m. Let $(R_n) \in P_{c_0}$ $({}^{m+1}\ell_1)$ be a bounded sequence and $P(x) = \sum_{n=1}^{\infty} e_n^*(x) R_n(x)$. Assume that $P \in \mathcal{P}_{c_0}(m+2\ell_1)$. By Lemma [2,](#page-6-0) we have

(3.2)
$$
\stackrel{\vee}{P}(e_k, y^{m+1}) = \frac{1}{m+2} R_k(y) + \left(1 - \frac{1}{m+2}\right) \sum_{j=1}^{\infty} e_j^*(y) \stackrel{\vee}{R_j}(e_k, y^m).
$$

As $P \in P_{c_0}(m+2\ell_1)$, then by Theorem [1,](#page-2-0) the polynomial $T_k(y) = \bigvee^{\vee}(e_k, y^m)$ is c₀-continuous on bounded subsets of ℓ_1 . Also by hypothesis $R_k \in P_{c_0}(^m \ell_1)$, thus the identity [3.2](#page-8-1) implies that for each k , the polynomial

$$
S_k(y) := \sum_{j=1}^{\infty} y_j \, \stackrel{\vee}{R}_j \left(e_k, y^{m-1} \right),
$$

is c_0 -continuous on bounded subsets of ℓ_1 . By Theorem [1,](#page-2-0) for each k, j , the polynomial $U_j(y) = \overset{\vee}{R_j}(e_k, y^{m-1})$ is c_0 - continuous on bounded subsets of ℓ_1 . Also, by [\[9,](#page-17-7) Theorem 2.2] we have

$$
\sup_{j} \|U_{j}\| \le \sup_{j} \left\|\overset{\vee}{R}_{j}\right\| < \frac{m^{m}}{m!} \sup_{j} \|R_{j}\| < \infty.
$$

Thus, $(U_j) \subset \mathcal{P}_{c_0} \left(\binom{m-1}{1} \right)$ is a bounded sequence and by induction hypothesis, given k and $y \in \ell_1$, we have

(3.3)
$$
\lim_{j} \stackrel{\vee}{R}_{j} (e_k, y^{m-1}) = 0.
$$

For each j and $x \in \ell_1$ define $\psi_j(x) = \bigwedge_{j=1}^{N} (x, y^{m-1})$. Since $R_j \in \mathcal{P}_{c_0}$ $({}^{m+1}\ell_1)$ then we have that $(\psi_j) \subset c_0$ by Theorem [1,](#page-2-0) and

$$
\|\psi_j\| \le \frac{m^m}{m!} \sup_j \|R_j\| \|y\|^{m-1} < \infty \quad \text{for all } j \ge 1.
$$

Equation [3.3](#page-8-2) implies that for each k we have that $\lim_{i} \psi_i(e_k) = 0$ and therefore for all $x \in \ell_1$ we have $\lim_j \psi_j(x) = 0$. In particular $\lim_j \psi_j(y) = 0$, that is $\lim R_i(y) = 0$. This proves our assertion for $m + 1$, and the proof is complete. \blacksquare

We recall that if $\psi \in c \subset \ell_{\infty}$ then $\psi = \lambda u + \phi$, where $\phi \in c_0$, $u =$ $(1, 1, \ldots, 1, \ldots) \in c$ and $\lambda \in \mathbb{C}$. Now, for each j we have $\|\psi\| \geq |\psi(e_j)| =$ $|\lambda u(e_j) + \phi(e_j)| = |\lambda_j + \phi_j(e_k)|$ and letting $j \to \infty$ we have $\|\psi\| \ge |\lambda|$. Therefore, if $(\lambda_j) \subset \mathbb{C}$, $(\phi_j) \subset c_0$ and $\lim_j ||\lambda_j u + \phi_j || = 0$ then $\lim_j \lambda_j = 0$ and $\lim_{i} ||\phi_i|| = 0$. This result can be generalized to polynomials in the space $\mathcal{P}_c\left(^m\ell_1\right)$.

THEOREM 2. Let $(Q_j) \subset \mathcal{P}_c(m\ell_1)$ and $(R_j) \subset \mathcal{P}_{c_0}(m\ell_1)$ be sequences of polynomials such that $Q_i(x) = 0$ for all $x \in \ker u$. If $\lim_i ||Q_i + R_j|| = 0$, then $\lim_{j} ||R_{j}|| = 0$ and $\lim_{j} ||Q_{j}|| = 0$.

Proof. Let $P_j = Q_j + R_j$ then $P_j \in P_c({}^{m}\ell_1)$ for every j. Now, if $z \in \text{ker } u$ then

$$
|P_j(z)| = |R_j(z)|.
$$

Thus

$$
\sup_{x\in B(\ell_1)\cap \ker u}|R_j(x)|=\sup_{x\in B(\ell_1)\cap \ker u}|P_j(x)|\leq \sup_{x\in B(\ell_1)}\|P_j(x)\|=\|P_j\|.
$$

Therefore

(3.4)
$$
\lim_{j \to \infty} \sup_{x \in B(\ell_1) \cap \ker u} |R_j(x)| = 0.
$$

If $x = \sum_{j=1}^{\infty} \alpha_j e_j \in B(\ell_1)$, then for every n we have

$$
x = \sum_{j=1}^{\infty} \alpha_j (e_j - e_{j+n}) + \sum_{j=1}^{\infty} \alpha_j e_{j+n}.
$$

Note that

$$
y_n := \sum_{j=1}^{\infty} \alpha_j (e_j - e_{j+n}) \in 2B(\ell_1) \cap \ker u, \text{ and } z_n := \sum_{j=1}^{\infty} \alpha_j e_{n+j} \in B(\ell_1).
$$

By Leibniz's formula [\[9,](#page-17-7) Theorem 1.8], we have

$$
R_j(x) = R_j(y_n + z_n) = R_j(y_n) + \sum_{k=0}^{m-1} {n \choose k} \overset{\vee}{R}_j \left(y_n^k, z_n^{m-k} \right).
$$

Since $R_j \in P_{c_0}(\ell_1)$, $||z_n|| \leq 2$ for every n, and $c_0 - \lim_{n \to \infty} z_n = 0$, then by Theorem [1,](#page-2-0) for each $k = 0, 1, \ldots, m - 1$, we have

$$
\lim_{n} \left(\sup_{y \in B(\ell_1)} \left| \overset{\vee}{R}_j \left(y^k, z_n^{m-k} \right) \right| \right) = 0.
$$

Thus, for each $k = 0, 1, \ldots, m - 1$, and $\varepsilon > 0$, there exists $n_0, n_1, \ldots, n_{m-1}$ such that

$$
\sup_{x\in B(\ell_1)}\left|\stackrel{\vee}{R}_j\left(x^k, z_n^{m-k}\right)\right| < \frac{\varepsilon}{2^{m+1}}, \quad \text{for all } n \ge n_k, \ k = 0, 1, \dots, m-1,
$$

and therefore

sup $x \in B(\ell_1)$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $\overrightarrow{R}_j\left(x^k, z_n^{m-k}\right)$ $\langle \frac{\varepsilon}{2^{m+1}}, \text{ for all } n \ge \max\{n_0, n_1, \ldots, n_{m-1}\}.$

Thus, for all $n \geq \max\{n_0, n_1, \ldots, n_{m-1}\}\,$, we obtain

$$
|R_j(x)| = \left| R_j(y_n) + \sum_{k=0}^{m-1} {m \choose k} \widetilde{R}_j \left(y_n^k, z_n^{m-k} \right) \right|
$$

\n
$$
= |R_j(y_n)| + \sum_{k=0}^{m-1} {m \choose k} \left| \widetilde{R}_j \left(y_n^k, z_n^{m-k} \right) \right|
$$

\n(3.5)
\n
$$
\leq \sup_{y \in 2B(\ell_1) \cap \ker u} |R_j(y)| + \sum_{k=0}^{m-1} {m \choose k} \sup_{x \in B(\ell_1)} \left| \widetilde{R}_j \left(x^k, z_n^{m-k} \right) \right|
$$

\n
$$
\leq \sup_{y \in 2B(\ell_1) \cap \ker u} |R_j(y)| + \sum_{k=0}^{m-1} {m \choose k} \frac{\varepsilon}{2^{m+1}}
$$

\n
$$
= \sup_{y \in 2B(\ell_1) \cap \ker u} |R_j(y)| + \frac{\varepsilon}{2}.
$$

By [3.4](#page-9-0) we have $\lim_j \sup_{y \in B(\ell_1) \cap \ker u} |R_j(y)| = 0$, hence there exists j₀ such that for $j \geq j_0$ we have

$$
\sup_{y\in 2B(\ell_1)\cap \ker u}|R_j(y)| < \frac{\varepsilon}{2},
$$

By relation [3.5](#page-10-0) we obtain

$$
|R_j(x)| < \varepsilon, \text{ for all } x \in B(\ell_1) \text{ and } j \ge j_0.
$$

Thus for all $j \ge j_0$, $||R_j||_{B(\ell_1)} < \varepsilon$. This shows that $\lim_j ||R_j|| = 0$. Now $Q_j = P_j - R_j$, implies that $\lim_{j} ||Q_j|| \leq \lim_{j} ||P_j|| + \lim_{j} ||R_j|| = 0.$

THEOREM 3. Every polynomial $P \in \mathcal{P}_c^{\{m\ell\}}$ can be decomposed in the form $P = Q + R$, where $Q \in P_c({}^{m-1}\ell_1)$ with $Q(x) = 0$ for all $x \in \text{ker } u$ and $R \in P_{c_0} \left(\binom{m-1}{1} \right).$

Proof. For $m = 1$ the statement is obvious. Suppose it is true for $m-1$. Let $P \in \mathcal{P}_c(^{m}\ell_1)$ and for each j consider the polynomials $T_j(x) = \bigvee^{\vee} (e_j, x^{m-1}).$ Then by Theorem [1](#page-2-0) we have that $T_j \in P_c\left(\binom{m-1}{1}\right)$ and by induction hypothesis we have

$$
\stackrel{\vee}{P}(e_j, x^{m-1}) = T_j(x) = Q_j(x) + R_j(x),
$$

where $Q_j \in P_c\left(\binom{m-1}{1}, R_j \in P_{c_0}\left(\binom{m-1}{1}\right) \text{ and } Q_j(x) = 0 \text{ for all } x \in \ker u$ for all j. Since (e_j) is c-Cauchy, then (T_j) converges in norm to a polynomial $\overline{P} \in P_c\left(\mathbb{P}^{-1}\ell_1\right)$ and by induction hypothesis we have $\overline{P} = \overline{Q} + \overline{R}$, with $\overline{Q} \in P_c(\ell_1), \ \overline{R} \in P_{c_0}(\ell_1) \text{ and } \overline{Q}(x) = 0 \text{ for all } x \in \text{ker } u.$ By Lemma [2](#page-9-1) $\lim_{i} R_i = \overline{R}$ and $\lim_{i} Q_i = \overline{Q}$ in norm. So

$$
P(x) = \sum_{j=1}^{\infty} e_j^*(x) P(e_j, x^{m-1}) = \sum_{j=1}^{\infty} e_j^*(x) (Q_j(x) + R_j(x))
$$

And therefore

$$
P(x) = \sum_{j=1}^{\infty} e_j^* (x) (Q_j (x) - \bar{Q}(x)) + \sum_{j=1}^{\infty} e_j^* (x) \bar{Q}(x)
$$

+
$$
\sum_{j=1}^{\infty} e_j^* (x) (R_j (x) - \bar{R}(x)) + \sum_{j=1}^{\infty} e_j^* (x) \bar{R}(x)
$$

=
$$
\sum_{j=1}^{\infty} e_j^* (x) (Q_j (x) - \bar{Q}(x)) + \bar{Q}(x) u (x)
$$

+
$$
\sum_{j=1}^{\infty} e_j^* (x) (R_j (x) - \bar{R}(x)) + \bar{R}(x) u (x)
$$

=
$$
\sum_{j=1}^{\infty} e_j^* (x) (Q_j (x) - \bar{Q}(x)) + (\bar{Q}(x) + \bar{R}(x)) u (x)
$$

+
$$
\sum_{j=1}^{\infty} e_j^* (x) (R_j (x) - \bar{R}(x)).
$$

Since $\lim_{j} \|Q_j(x) - \overline{Q}(x)\| = 0$, the polynomial

$$
x \longmapsto \sum_{j=1}^{\infty} e_j^* (x) (Q_j (x) - \bar{Q} (x))
$$

is c-continuous on bounded subsets of ℓ_1 by Proposition [1](#page-3-0) and vanishes on ker u. Also the polynomial $x \mapsto (\bar{Q}(x) + \bar{R}(x)) u(x)$ vanishes on ker u. Since $\lim_j \|R_j(x) - \bar{R}(x)\| = 0$, and $R_j, \bar{R} \in \mathcal{P}_{c_0}(m-1\ell_1)$, Proposition [1](#page-3-0) implies that $x \mapsto \sum_{j=1}^{\infty} e_j^*(x) (R_j(x) - R(x))$ is a c₀-continuous polynomial on bounded subsets of ℓ_1 .

We define

$$
Q(x) = (\bar{Q}(x) + \bar{R}(x)) u(x) + \sum_{j=1}^{\infty} e_j^*(x) (Q_j(x) - \bar{Q}(x)),
$$

$$
R(x) = \sum_{j=1}^{\infty} e_j^*(x) (R_j(x) - \bar{R}(x)).
$$

LEMMA 3. Let E be a Banach space, $\phi \in E'$ and $Q \in \mathcal{P}(^m E)$ be a polynomial such that $Q(x) = 0$ for all $x \in \text{ker }\phi$. Then there exists a polynomial $R \in P(m^{-1}E)$ such that $Q = \phi R$.

Proof. Pick $a \in E$ such that $\phi(a) = 1$ and define the map $T : E \to E$ by $T(x) = \phi(x) a - x$. Then T is a continuous linear operator and $T(x) \in \text{ker } \phi$ for all $x \in E$. By Leibniz's formula, we have

$$
Q(x) = Q(\phi(x) a - T(x))
$$

= $\sum_{j=0}^{m} {m \choose j} (-1)^{m-j} \check{Q} ((\phi(x) a)^j, (T(x))^{m-j})$
= $\sum_{j=1}^{m} {m \choose j} (-1)^{m-j} \check{Q} ((\phi(x) a)^j, (T(x))^{m-j}) + Q(T(x))$
= $\sum_{j=1}^{m} {m \choose j} (-1)^{m-j} \phi^j(x) \check{Q} (a^j, (T(x))^{m-j})$
= $\phi(x) \sum_{j=1}^{m} {m \choose j} (-1)^{m-j} \phi^{j-1}(x) \check{Q} (a^j, (T(x))^{m-j}).$

Г

Note that for each j the map $x \mapsto \phi^{j-1}(x) \overset{\vee}{Q}(a^j, (T(x))^{m-j})$ is an $(m-1)$ homogeneous polynomial. So

$$
R(x) := \sum_{j=0}^{m-1} {m \choose j} (-1)^{m-j} \phi^{j-1}(x) \, \overset{\vee}{Q} \left(a^j, (T(x))^{m-j} \right),
$$

is a continuous $(m-1)$ -homogeneous polynomial and

$$
Q(x) = \phi(x) R(x).
$$

COROLLARY 2. Let $Q \in \mathcal{P}_c^m(\ell_1)$ such that $Q(x) = 0$ for all $x \in \text{ker } u$, then there exists $R \in \mathcal{P}_c\left({}^{m-1}\ell_1\right)$ such that $Q(x) = u(x) R(x)$ for all $x \in \ell_1$.

Proof. We define the map $T : \ell_1 \to \ell_1$ by $T (x) = u (x) e_1 - x$, then T is obviously a c-continuous linear operator and $T(x) \in \text{ker } u$ for all $x \in \ell_1$. By Lemma [3](#page-12-0) we have

$$
Q(x) = Q(u(x) e_1 - T(x)) = u(x) \sum_{j=1}^{m} {m \choose j} u^{j-1}(x) Q(e_1^j, (T(x))^{m-j}).
$$

Since $Q \in \mathcal{P}_c(^{m} \ell_1)$ then for each $j = 1, 2, ..., m$, the polynomial $S_j : \ell_1 \to \mathbb{C}$ given by $S_j(z) = \overset{\vee}{Q} \left(e_1^j\right)$ $\binom{j}{1}, z^{m-j}$, is c-continuous on bounded subsets of ℓ_1 . Therefore $S_j \circ T \in \mathcal{P}_c(\ell_1)$ for $j = 1, 2, \ldots, m$ and we have that

$$
R(x) = \sum_{j=1}^{m-1} {m \choose j} u^{j-1}(x) (S_j \circ T) (x)
$$

=
$$
\sum_{j=1}^{m-1} {m \choose j} u^{j-1}(x) \bigotimes_{i=1}^{N} (e_1^{j}, (T(x))^{m-j}),
$$

is a c-continuous polynomial on bounded sets, and $Q = uR$.

THEOREM 4. If $P \in \mathcal{P}_c^{\{m\ell_1\}}$, then for $j = 0, 1, 2, \ldots, m$ there are polynomials $R_j \in P_{c_0}(i\ell_1)$, such that

$$
P(x) = R_0(x) u^m(x) + u^{m-1}(x) R_1(x) + \cdots + u(x) R_{m-1}(x) + R_m(x).
$$

Г

Proof. By Theorem [3](#page-10-1) we have $P = Q_m + R_m$, where $Q_m \in \mathcal{P}_c(m\ell_1)$, $R_m \in \mathcal{P}_{c_0}(m\ell_1)$ and $Q(x) = 0$ for all $x \in \text{ker } u$. By Lemma [3,](#page-12-0) $Q_m = uS_{m-1}$ with $S_{m-1} \in \mathcal{P}_c(m\ell_1)$. Thus, we have

$$
P = uS_{m-1} + R_m.
$$

Since $S_{m-1} \in \mathcal{P}_c\left({}^{m-1}\ell_1\right)$, then by Theorem [3](#page-10-1) we have $S_{m-1} = Q_{m-1} +$ R_{m-1} , where $Q_{m-1} \in P_c\left(\binom{m-1}{1}, Q_{m-1}(x) = 0$ for all $x \in \text{ker } u$ and $R_{m-1} \in$ $P_{c_0}\left(^{m-1}\ell_1\right)$ and therefore

$$
P = u (Q_{m-1} + R_{m-1}) + R_m (x)
$$

= $uQ_{m-1} + R_{m-1}u + R_m (x)$.

By Lemma [3](#page-12-0) we have that $Q_{m-1} = uS_{m-2}$, with $S_{m-2} \in \mathcal{P}_c^{\{m\}}(1)$. Therefore we have

$$
P(x) = u(x)^{2} S_{m-2} + R_{m-1}u + R_{m}(x).
$$

Proceeding in this way we find for each $j = 0, 1, 2, \ldots, m$, the polynomials $R_j \in \mathcal{P}_{c_0}({}^j\ell_1), \text{ and } S_j \in \mathcal{P}_{c}({}^j\ell_1), \text{ such that}$

$$
P(x) = um R0 + R1 um-1 + \dots + Rm-1 u + Rm (x),
$$

where $R_0 := S_0$.

4. c-CONTINUOUS ENTIRE FUNCTIONS

Let Ω be an open subset of complex Banach space E. A mapping $f: \Omega \subset E \to \mathbb{C}$ is said to be holomorphic, if for each $a \in \Omega$ there exists a ball $B(a,r) \subset \Omega$ and a sequence of polynomials (P_m) with $P_m \in \mathcal{P}(m\ell_1)$, $m = 0, 1, 2...$, such that $f(x) = \sum_{m=0}^{\infty} P_m(x)$ uniformly for $x \in B(a, r)$. We denote by $\mathcal{H}(\Omega)$ the vector space of all holomorphic mappings from Ω into C. A holomorphic function f ∈ $H(E)$ is said to be of bounded type if it maps bounded sets into bounded sets. We denote by $\mathcal{H}_b(E)$ the space of the holomorphic functions on E of bounded type.

Let $\Phi \subset E'$, we denote by $\mathcal{H}_{\Phi}(E)$ the space of all functions $f \in \mathcal{H}(E)$ that are Φ -continuous on bounded subsets of E, and by $\mathcal{H}_{\Phi_u}(E)$ the space of all functions $f \in \mathcal{H}(E)$ that are uniformly Φ -continuous on bounded subsets of E .

In 1982 Aron et al. in [\[1\]](#page-17-0) have shown that the ℓ_1 problem has a positive answer if $\mathcal{H}_{\ell_{\infty}}(\ell_1) \subset \mathcal{H}_{b}(\ell_1)$. On the other hand, it is obviously that

 $\mathcal{H}_{c_0}(\ell_1) \subset \mathcal{H}_b(\ell_1)$ because every bounded set of ℓ_1 is relatively $\sigma(\ell_1, c_0)$ compact, but bounded subsets of ℓ_1 are not necessarily relatively $\sigma(\ell_1, c)$ compact. These considerations have motivated us to raise the following question.

PROBLEM 3. If $f : \ell_1 \to \mathbb{C}$ is a holomorphic function which is c-continuous on bounded sets, is f of bounded type?

An affirmative answer to this problem would answer affirmatively Problem [2.](#page-1-0)

We denote by $\mathcal{P}_{c_0}^{(m)}(\ell_1)$ the space of all polynomials of the form $Q = \sum_{j=0}^{m} Q_j$, with $Q_j \in \mathcal{P}_{c_0}(i\ell_1)$ for all $j = 0, 1, 2, ..., m$. If $U_m(x) :=$ $\sum_{j=0}^m u^{m-j}(x)$, for all $x \in \ell_1$, we define the m-homogeneous polynomial $U \otimes Q \in \mathcal{P}_c(^{m} \ell_1)$ by

$$
(U \otimes Q)(x) = \sum_{j=0}^{m} u^{m-j}(x) Q_j(x).
$$

We denote by $\mathcal{P}_{f^*}(m\ell_1)$ the space of continuous polynomials of finite type that are c_0 -continuous on bounded subsets of ℓ_1 .

LEMMA 4. If $R(x) \in \mathcal{P}_{c_0}^{(m)}(\ell_1)$, then given $\varepsilon > 0$ there exists a polynomial $Q = \sum_{j=0}^{m} Q_j$ with $Q_j \in \mathcal{P}_{f^*} (i\ell_1)$ such that $||U_m \otimes (R - Q)|| < \varepsilon$.

Proof. If $x \in \ell_1$, we denote by

$$
q^{n}(x) = \sum_{j=1}^{n} e_{j}^{*}(x) e_{j}
$$
 and $q_{n}(x) = \sum_{j=n+1}^{\infty} e_{j}^{*}(x) e_{j}$.

Then $x = q^n(x) + q_{n+1}(x)$. Now, if $\phi = (\phi_j)_{j \in \mathbb{N}} \in c_0$, then $\lim_n \max_{i \ge n} |\phi_i|$ 0. As $\max_{i\geq n} |\phi_i| = \sup_{x\in B(\ell_1)} \phi(q_n(x))$ we have $\lim_n \sup_{x\in B(\ell_1)} \phi(q_n(x)) =$ 0. That is

(4.1)
$$
\lim_{n} \sup_{x \in B(\ell_1)} \phi(x - q^n(x)) = 0.
$$

Let $R = \sum_{j=0}^{m} R_j$, with $R_j \in \mathcal{P}_{c_0} (i \ell_1)$. Then by [\[1\]](#page-17-0), for each $j = 0, 1, 2, \ldots, m$, the polynomial R_j is c_0 -uniformly continuous on bounded sets. By [4.1,](#page-15-0) this implies that given $\varepsilon > 0$, there exists an n_0 such that $|R_j(x) - R_j(q^n(x))|$

 $\varepsilon/(m+2)$, for all $n \ge n_0, x \in B(\ell_1)$ and $j = 0, 1, 2 \ldots, m$. Thus $||R_j - R_j q^n||$ $\leq \varepsilon/(m+2)$ for $n \geq n_0$ and $j = 0, 1, \ldots, m$. Therefore we have

$$
||u^{m-j} \otimes (R_j - R_j q^n)|| = \sup_{x \in B(\ell_1)} |u^{m-j}(x) (R_j (x) - R_j q^n (x))|
$$

\n
$$
\leq \sup_{x \in B(\ell_1)} |R_j (x) - R_j q^n (x)|
$$

\n
$$
= ||R_j - R_j q^n|| \leq \frac{\varepsilon}{m+2}.
$$

Thus, for $n \geq n_0$ we have

$$
||R - Rq^n|| = \left\|\sum_{j=0}^m U_m \otimes (R - Rq^n)\right\| \le \sum_{j=0}^m ||R - Rq^n|| < \varepsilon.
$$

Since $R \in \mathcal{P}_{c_0}(m) (\ell_1)$ and $q^n : \ell_1 \to \ell_1$ is a finite range operator, we have that $Rq^n \in \mathcal{P}_{f^*}(^m \ell_1).$

If $f = \sum_{n=0}^{\infty} P_n \subset H_b(\ell_1)$ is a holomorphic function of bounded type with $P_n \in P_c(\sqrt[n]{\ell_1})$ for all $n \in \mathbb{N}$, then using the same arguments as in [\[1\]](#page-17-0), it is not difficult to show that $f \in H_c(\ell_1)$.

PROPOSITION 4. The following statements are equivalent.

- (i) Every holomorphic function $f \in H_c(\ell_1)$ of the form $f = \sum_{m=0}^{\infty} U_m \otimes Q_m$ with $Q_m \in \mathcal{P}_{c_0}^{(m)}(\ell_1)$ is of bounded type.
- (ii) Every holomorphic function $f \in H_c(\ell_1)$ of the form $f = \sum_{m=0}^{\infty} U_m \otimes$ $Q_m \in H_c(\ell_1)$ with $Q_m \in \mathcal{P}_{f^*}^{(m)}(\ell_1)$, is of bounded type.

Proof. The implication (i) \Rightarrow (ii) is obvious since $\mathcal{P}_{f^*}(^m \ell_1) \subset \mathcal{P}_{c_0}(^m \ell_1)$. Let us prove (ii) \Rightarrow (i). Let $f = \sum_{m=0}^{\infty} U_m \otimes Q_m \in H_b(\ell_1)$ with $Q_m \in \mathcal{P}_{c_0}^{(m)}(\ell_1)$ for every m. Since $Q_m \in \mathcal{P}_{c_0}$ $({}^m\ell_1)$, by Lemma [4](#page-15-1) there exists a $R_m \in \mathcal{P}_{f^*}^{(m)}(\ell_1)$, such that $||U_m \otimes (Q_m - R_m)||^{1/m} < \frac{1}{m^m}$. Thus $\lim ||U_m \otimes (Q_m - R_m)||^{1/m} =$ 0 and by [\[6,](#page-17-5) p. 206], the holomorphic function $g = \sum U_m \otimes (Q_m - R_m)$ is of bounded type and therefore $g \in H_c(\ell_1)$. Then $f - g = \sum U_m \otimes R_m \in H_c(\ell_1)$. By hypothesis $h = f - g \in H_b(\ell_1)$ and therefore $f = g + h \in H_b(\ell_1)$.

18 h.D. CARRIÓN

REFERENCES

- [1] R.M. ARON, C. HERVÉS, M. VALDIVIA, Weakly continuous mappings on Banach spaces, J. Functional Analysis 52 (1983), 189 – 203.
- [2] R.M. Aron, C. Herves, Weakly Sequentially Continuous Analytic Functions on a Banach Space, in "Functional analysis, holomorphy and approximation theory, II (Rio de Janeiro, 1981), Notas Mat. 92, North-Holland Math. Stud. 86, North-Holland Publishing Co., Amsterdam, 1984, 23-38.
- [3] C. BOYD, S. DINEEN, P. RUEDA, Weakly uniformly continuous holomorphic functions and the approximation property, *Indag. Math.* $12(2)(2001)$, $147-$ 156.
- [4] H. CARRION, Entire functions on Banach spaces with the U-property, Bull. Lond. Math. Soc. $54(1)$ (2022) , $126-144$.
- [5] S. Dineen, "Complex analysis on infinite-dimensional spaces", Springer-Verlag London, Ltd, London, 1999.
- [6] S. DINEEN, Entire functions on c_0 , J. Funct. Anal. **52** (1983), 205 – 218.
- [7] N. DUNFORD, J. SCHWARTZ, "Linear Operators, Part I: General Theory", Pure Appl. Math. Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958.
- $[8]$ M. GONZÁLEZ, J.M. GUTIÉRREZ, Factorization of weakly continuous holomorphic mappings, *Studia Math.* **118** (2) (1996), 117 – 133.
- [9] J. Mujica, "Complex analysis in Banach spaces", Notas Mat. 107, North-Holland Math. Stud. 120, North-Holland Publishing Co., Amsterdam, 1986.