

EXTRACTA MATHEMATICAE

Article in press Available online September 16, 2024

c-Continuous polynomials on ℓ_1

HUMBERTO D. CARRIÓN*

Departamento de Matemática, Instituto de Matemática e Estatística Universidade de São Paulo, Caixa Postal 66281 - CEP: 05311-970 - São Paulo, Brasil

leinad@ime.usp.br

Received April 9, 2024 Accepted July 29, 2024 Presented by J.A. Jaramillo

Abstract: In this article we study the *n*-homogeneous polynomials P that are *c*-continuous on bounded subsets of ℓ_1 . We show that P can be decomposed in the form R + Q, where Q and R are *n*-homogeneous polynomials, with R weakly star continuous and Q(x) = 0 for all $x \in \ker u$ for $u = (1, 1, \ldots, 1, \ldots)$. We conclude that $P = \sum_{j=0}^{n} u^{n-j} \otimes R_j$, where R_j is a weakly star continuous *j*-homogeneous polynomial for $j = 0, 1, \ldots, n$.

Key words: Polynomials, Banach, holomorphic, weak.

MSC (2020): 46G20 (primary), 46E50, 46G25, 47H60 (secondary).

1. INTRODUCTION

Let E and F be Banach spaces and Φ be an arbitrary subset of E'. A function $f: E \to F$ is said to be Φ -continuous on bounded subsets of E, if for each bounded set $\Omega \subset E$, $a \in \Omega$ and $\varepsilon > 0$, there are ϕ_1, \ldots, ϕ_p in Φ and $\delta > 0$, such that if $x \in \Omega$, $|\phi_j(x-a)| < \delta$, for $j = 1, 2, \ldots, p$, then $||f(x) - f(a)|| < \varepsilon$. In a similar way we define uniform Φ -continuity on bounded subsets of E.

In [1] is showed that in every Banach space E, every *m*-homogeneus polynomial $P: E \to F$ which is weakly continuous on bounded sets of E is weakly uniformly continuous on bounded sets. The corresponding problem for holomorphic functions is still open.

PROBLEM 1. If $f : E \to \mathbb{C}$ is a holomorphic function which is weakly continuous on bounded sets, is f weakly uniformly continuous?

This problem was raised in 1982 by Aron et al. in [1] and cited in many works, such as [1, 2, 3, 5, 8]. It is obvious that the problem has an affirmative

^{*} The author is grateful to the referee for his rigorous review, corrections and helpful comments in the original manuscript.

answer if E is reflexive. However, Dineen in [6] showed that this problem has an affirmative answer if $E = c_0$ and more generally in [4], it is shown that this problem also has an affirmative answer in every Banach space space with the U property and without a copy of ℓ_1 . In particular, this is true for every Banach space that is an M-ideal in its bidual, such as Banach spaces with a shrinking and unconditional Schauder basis.

The Problem 1 is also so-called "the ℓ_1 -problem", since Aron et al., showed in [1, Example 3.5], that if Problem 1 has an affirmative answer for the space ℓ_1 , then it has an affirmative answer for all Banach spaces E.

Every entire function $f : \ell_1 \to \mathbb{C}$, which is c_0 -continuous on bounded sets of ℓ_1 , is c_0 -uniformly continuous on bounded sets, since every bounded set is relatively $\sigma(\ell_1, c_0)$ -compact. However, it changes if we consider the space c of the convergent sequences and the topology $\sigma(\ell_1, c)$ in ℓ_1 , since the bounded subsets of ℓ_1 are not relatively $\sigma(\ell_1, c)$ -compact. In fact, the sequence of vectors (e_n) of the canonical basis of ℓ_1 does not converge in this topology. Thus we raise the next problem apparently weaker than ℓ_1 -problem.

PROBLEM 2. Is every c-continuous holomorphic function on bounded subsets of ℓ_1 , c-uniformly continuous?

This paper is motivated by the question mentioned above. We focus our attention on polynomials and entire functions on ℓ_1 that are *c*-continuous on bounded sets.

2. Notations

If E is a complex Banach space, B(E) and E' will denote the closed unit ball and the topological dual of E, respectively. For each positive integer m, $\mathcal{L}(^{m}E)$ is the space of continuous m-linear mappings from $E \times \cdots \times E$ to \mathbb{C} and $\mathcal{P}(^{m}E)$ is the space of continuous m-homogeneous polynomials from E to \mathbb{C} . For each polynomial $P \in \mathcal{P}(^{m}E)$, there exists a unique symmetric mapping $\stackrel{\vee}{P} \in \mathcal{L}(^{m}E)$ such that $P(x) = \stackrel{\vee}{P}(x, \ldots, x) = \stackrel{\vee}{P}(x^{m})$. When m = 1, we have that $\mathcal{L}(^{1}E) = \mathcal{P}(^{1}E) = E'$ and for m = 0, $\mathcal{P}(^{0}E)$ and $\mathcal{L}(^{0}E)$ are associated to \mathbb{C} .

The space $\mathcal{L}(^{m}E)$ is a Banach space, under the norm

$$A \in \mathcal{L}(^{m}E) \longmapsto ||A|| = \sup \{ |A(x_1, x_2, \dots, x_m)| : x_j \in E, ||x_j|| \le 1 \},\$$

and therefore for every $x, y \in E$ and every integer positive j, with $0 \le j \le m$,

we have that

$$|A(x^{m-j}, y^j)| \le ||A|| ||x^{m-j}|| ||y^j||.$$

Also, $\mathcal{P}(^{m}E)$ is a Banach space with respect to the norm

$$\|P\| = \sup_{x \in B(E)} |P(x)|$$

and we have that

$$\|P\| \le \left\|\stackrel{\vee}{P}\right\| \le \frac{m^m}{m!} \left\|P\right\|.$$

We refer to [9] or [5] for the general theory of polynomials and holomorphic mappings on Banach spaces.

Let $\Phi \subset E'$ be an arbitrary family. We say that a bounded sequence $(x_n) \subset E$, is Φ -Cauchy if for all $\phi \in \Phi$, the numerical sequence $\phi(x_n)$ converges. We say that $(x_n) \subset E$, is Φ -convergent if there exists $x \in E$ such that $\lim_n \phi(x_n) = \phi(x)$, for every $\phi \in \Phi$. In this case we write $\Phi - \lim_n x_n = x$. For example, in the space ℓ_1 space, the sequence of canonical basis vectors (e_n) is *c*-Cauchy, but (e_n) is not *c*-convergent. We denote by $\mathcal{P}_{\Phi}(^m E)$ the space of all Φ -sequentially continuous polynomials on bounded subsets of E. $\mathcal{P}_{\Phi}(^m E)$ is a norm-closed subspace of $\mathcal{P}(^m E)$.

The following result is an immediate consequence of [1, Lemma 2.4, Lemma 2.6, Proposition 2.8].

THEOREM 1. Let E be a complex Banach space and Φ be any separable subspace of E'.

- (i) If $P \in \mathcal{P}_{\Phi}(^{m}E)$, then for every bounded Φ -Cauchy sequence (x_{n}) , the sequence of (m-1)-homogeneous polynomials $T_{n}(x) = \overset{\vee}{P}(x_{n}, x^{m-1})$ converges in norm. In particular, if (x_{n}) is Φ -convergent to 0 then (T_{n}) converges in norm to the null polynomial.
- (ii) If $P \in \mathcal{P}_{\Phi}(^{m}E)$ then the *m*-linear mapping $\overset{\vee}{P} : E \times \cdots \times E \to \mathbb{C}$ is Φ -continuous. Besides, for each $a \in E$ and every integer *j* with $0 \leq j \leq m$, the mapping $T_{j}(x) = \overset{\vee}{P}(a^{j}, x^{m-j})$ is Φ -continuous on bounded subsets of *E*.

3. *c*-Continuous polynomials

The canonical basis (e_j) of ℓ_1 is c-Cauchy and therefore by Theorem 1, given a polynomial $P \in \mathcal{P}_c(^m\ell_1)$ the sequence of polynomials $T_k(x) =$

H.D. CARRIÓN

 $\stackrel{\vee}{P}(e_k, x^{m-1})$ converges in the norm. If $P \in \mathcal{P}_{c_0}(^m \ell_1)$, then T_k converges to 0 in norm, since $c_0 - \lim_k e_k = 0$.

If $\phi \in \mathcal{P}({}^{1}\ell_{1}) = \ell_{\infty}$ is *c*-continuous on bounded subsets of ℓ_{1} then $\phi \in c$. In fact, suppose that $\phi = (\phi_{1}, \phi_{2}, ...)$. Since the sequence (e_{k}) is *c*-Cauchy, then by Theorem 1, the sequence $(\phi_{k}) = (\phi(e_{k}))$ converges, that is $(\phi_{k}) \in c$. In the same way, we show that if $\phi \in \mathcal{P}({}^{1}\ell_{1})$ is *c*₀-continuous on bounded subsets of ℓ_{1} , then $\phi \in c_{0}$. However, this last result is a particular case of [7, Theorem V.5.6].

We denote by (e_n^*) the associated sequence of coefficient functionals for the basis (e_n) of ℓ_1 .

PROPOSITION 1. Let (f_n) be a sequence of complex-valued functions defined on ℓ_1 . If (f_n) is pointwise bounded, then for all $x, y \in \ell_1$ the series $\sum_{i=1}^{\infty} e_i^*(x) f_j(y)$ converges. Moreover, we have that:

(i) If $(R_n) \subset \mathcal{P}(^m \ell_1)$ converges to 0 pointwise and

$$P(x) = \sum_{j=1}^{\infty} e_j^*(x) R_j(x),$$

then $P \in \mathcal{P}(^{m+1}\ell_1)$.

(ii) If $\Phi = c$ or $\Phi = c_0$ and $(R_n) \subset P_{\Phi}({}^m\ell_1)$ converges to 0 in norm and

$$P(x) = \sum_{j=1}^{\infty} e_j^*(x) R_j(x)$$

then $P \in \mathcal{P}_{\Phi}(^{m}\ell_{1})$.

Proof. Let (e_j^*) be the coordinate functionals associated with the canonical basis (e_j) of ℓ_1 . For each $y \in \ell_1$ we have $(f_i(y)) \in \ell_\infty$ and therefore $\sum_{j=1}^{\infty} e_j^*(x) f_j(y)$ converges.

(i) Since (R_n) converges to 0 pointwise, then (R_n) is uniformly bounded on $B(\ell_1)$ by [9, Theorem 2.6], that is, $\sup_{j\geq 1} ||R_j|| < \infty$. Thus $|R_j(x)| \leq ||R_j|| ||x||^m$, for all $x \in B(\ell_1)$ and $j \geq 1$. Obviously $R(x) = \sum_{j=1}^{\infty} e_j^*(x) R_j(x)$ is an (m+1)-homogeneous polynomial and

$$|P(x)| = \left|\sum_{j=1}^{\infty} e_j^*(x) R_j(x)\right| \le \sup_{j\ge 1} |R_j(x)| \sum_{j=1}^{\infty} |e_j^*(x)| \le \sup_{j\ge 1} ||R_j|| \, ||x||^{m+1}$$

hence

$$||P|| = \sup_{x \in B(\ell_1)} |P(x)| \le \sup_{j \ge 1} ||R_j||,$$

and therefore it is continuous.

ı.

(ii) For each $k \in \mathbb{N}$ define $T_k(x) := \sum_{j=1}^k e_j^*(x) R_j(x)$. Since $\begin{pmatrix} e_j^* \end{pmatrix} \subset \Phi$ and $(R_j) \subset P_{\Phi}(^m \ell_1)$, then $(T_k) \subset P_{\Phi}(^{m+1} \ell_1)$. Now, for all $x \in B(\ell_1)$ and $m, n \in \mathbb{N}$ with n > m, we have

$$|T_m(x) - T_n(x)| \le \left| \sum_{j=m+1}^n e_j^*(x) R_j(x) \right|$$

$$\le \sup_{j=m+1,\dots,n} |R_j(x)| \sum_{j=m+1}^n |e_j^*(x)|$$

$$\le \sup_{j=m+1,\dots,n} ||R_j|| \, ||x||^{m+1} \le \sup_{j\ge m+1} ||R_j|| \, ||x||^{m+1}$$

and therefore $||T_m - T_n|| \leq \sup_{j \geq m+1} ||R_j||$. Since $\lim ||R_j|| = 0$, it follows that (T_m) is a Cauchy sequence in the space $P_{\Phi}(^m \ell_1)$ and therefore convergent in norm. Since $P(x) = \lim_k T_k(x)$ for all $x \in \ell_1$, it follows that $P \in P_{\Phi}(^m \ell_1)$.

Our interest in the ℓ_1 space is due to the following result.

PROPOSITION 2. Let *E* be a Banach space with a bounded unconditional Schauder basis (b_n) , $m \in \mathbb{N}$ and let $(P_j) \subset \mathcal{P}(^mE)$ be a sequence such that for all $x \neq 0$ we have $\lim_j P_j(x) \neq 0$. If for all $x = \sum_{j=1}^{\infty} x_j b_j \in E$ the function $Q(x) := \sum_{j=1}^{\infty} x_j P_j(x)$ is defined and continuous on *E*, then *E* is isomorphic to ℓ_1 .

Proof. In fact, let be $x = \sum_{j=1}^{\infty} x_j b_j \neq 0$ and $(\theta_j) \subset \mathbb{C}$ with $|\theta_j| = 1$ for all $j = 1, 2, \ldots$ such that $\theta_j x_j P_j(x) = |x_j P_j(x)|$, then $\bar{x} = \sum_{j=1}^{\infty} x_j \theta_j b_j \in E$ and therefore

$$Q(\bar{x}) = \sum_{j=1}^{\infty} x_j \theta_j P_j(x) = \sum_{j=1}^{\infty} |x_j| |P_j(x)|.$$

Since $\lim_{j} P_j(x) \neq 0$, then there exists an positive integer j_0 and $\delta > 0$ such that $|P_j(x)| > \delta$, for $j \geq j_0$. Hence we have that

$$Q(\bar{x}) \ge \sum_{j=1}^{j_0} |x_j| |P_j(x)| + \delta \sum_{j=j_0+1}^{\infty} |x_j|.$$

Thus $(x_j) \in \ell_1$. This proves that $(b_j) \succ (e_j)$. Since (b_j) is bounded then $\sum_{j=1}^{\infty} |x_j| < \infty$ implies that $\sum_{j=1}^{\infty} x_j b_j \in E$. Thus, $(e_j) \succ (b_j)$ and therefore E is isomorphic to ℓ_1 .

The conclusion of Proposition 1 (ii) is not true if the sequence (P_j) converges to 0. In fact, if $E = \ell_2$ and $P_j(x_1, x_2, ...) = 1/j$, then $Q(x_1, x_2, ...) = \sum_{j=1}^{\infty} x_j P_j(x) \in \mathcal{P}(^2\ell_2)$.

COROLLARY 1. Let $(R_j) \subset \mathcal{P}_c({}^m\ell_1)$ be a sequence of polynomials convergent in norm. If $P(x) = \sum_{j=1}^{\infty} x_j R_j(x)$ then $P \in \mathcal{P}_c(\ell_1)$.

Proof. Since $\mathcal{P}_c({}^m\ell_1)$ is a closed subspace of $\mathcal{P}({}^m\ell_1)$, then $R = \lim R_j \in \mathcal{P}_c({}^m\ell_1)$. Now, if $u = (1, 1, ...) \in c$ then

$$P(x) = \sum_{j=1}^{\infty} e_j^*(x) (R_j(x) - R(x)) + \sum_{j=1}^{\infty} e_j^*(x) R(x)$$
$$= \sum_{j=1}^{\infty} e_j^*(x) (R_j(x) - R(x)) + u(x) R(x).$$

Since $\lim_{j} ||R_j - R|| = 0$, then by Proposition 1(2) the polynomial

$$Q(x) = \sum_{j=1}^{\infty} e_j^*(x) (R_j(x) - R(x)),$$

is c-continuous on bounded sets. Obviously S(x) := u(x) R(x) is also c-continuous on bounded subsets of ℓ_1 .

LEMMA 1. Let E be a Banach space. If $\phi \in E'$, $R \in P(^{m-1}E)$ and $Q(x) := \phi(x) R(x)$, then for all $x, y \in E$ we have

$$\stackrel{\vee}{Q}\left(x,y^{m-1}\right) = \frac{1}{m}\phi\left(x\right)R\left(y\right) + \left(1 - \frac{1}{m}\right)\phi\left(y\right)\stackrel{\vee}{R}\left(x,y^{m-2}\right).$$

Proof. Let $T: E \times \cdots \times E \to \mathbb{C}$ be the *m*-linear map defined by

$$T(z_1, z_2, \dots, z_m) = \phi(z_1) \overset{\vee}{R} (z_2, z_3, \dots, z_m).$$

Then Q(x) = T(x, x, ..., x), and by [9, Proposition 1.6] we have

$$\begin{split} \stackrel{\vee}{Q}(z_1, z_2, \dots, z_n) &= \frac{1}{m!} \sum_{\sigma \in S_m} T\left(z_{\sigma(1)}, z_{\sigma(2)}, \dots, z_{\sigma(m)}\right) \\ &= \frac{1}{m!} \sum_{\sigma \in S_m} \phi\left(z_{\sigma(1)}\right) \stackrel{\vee}{R} \left(z_{\sigma(2)}, z_{\sigma(3)}, \dots, z_{\sigma(m)}\right) \end{split}$$

If $z_2 = z_3 = \cdots = z_m = z$, then we obtain

$$\phi\left(z_{\sigma(1)}\right) \stackrel{\vee}{R} \left(z_{\sigma(2)}, z_{\sigma(3)}, \dots, z_{\sigma(n)}\right) = \begin{cases} \phi\left(z_1\right) \stackrel{\vee}{R} \left(z, z, \dots, z\right) & \text{if } \sigma(1) = 1, \\ \phi\left(z\right) \stackrel{\vee}{R} \left(z_1, z, \dots, z\right) & \text{if } \sigma(1) \neq 1. \end{cases}$$

Therefore, if $K = \{ \sigma \in S_m : \sigma(1) = 1 \}$, then #K = (m-1)! and

$$\overset{\vee}{Q}(z_1, z^{m-1}) = \frac{1}{m!} \left(\sum_{\sigma \in K} \phi(z_1) \overset{\vee}{R}(z, z, \dots, z) + \sum_{\sigma \in S_m - K} \phi(z) \overset{\vee}{R}(z_1, z, \dots, z) \right)$$

$$= \frac{1}{m!} \left((m-1)! \phi(z_1) R(z) + (m! - (m-1)!) \phi(z) \overset{\vee}{R}(z_1, z^{m-2}) \right)$$

$$= \frac{1}{m} \phi(z_1) R(z) + \left(1 - \frac{1}{m} \right) \phi(z) \overset{\vee}{R}(z_1, z^{m-2}) .$$

LEMMA 2. For $m \ge 1$, let $(R_j) \subset \mathcal{P}(m^{-1}\ell_1)$ be a pointwise convergent sequence to zero and $P(x) = \sum_{j=1}^{\infty} e_j^*(x) R_j(x)$. Then for all $x, y \in \ell_1$ we have

$$\overset{\vee}{P}(x, y^{m-1}) = \frac{1}{m} \sum_{j=1}^{\infty} e_j^*(x) R_j(y) + \left(1 - \frac{1}{m}\right) \sum_{j=1}^{\infty} e_j^*(y) \overset{\vee}{R}_j(x, y^{m-2}).$$

Proof. Let $Q_j(x) = e_j^*(x) R_j(x)$. Lemma 1 implies that for all $x, y \in \ell_1$ we have

$$\overset{\vee}{Q_{j}}(x, y^{m-1}) = \frac{1}{m} e_{j}^{*}(x) R_{j}(y) + \left(1 - \frac{1}{m}\right) e_{j}^{*}(y) \overset{\vee}{R_{j}}(x, y^{m-2}).$$

Since (R_j) converges pointwise to zero, then by [9, Theorem 2.6], (R_j) is bounded in norm. Hence, by Proposition 1, the series $\sum_{j=1}^{\infty} e_j^*(x) R_j(y)$ converges. Let (S_j) be a sequence of (m-1)-homogeneous polynomials defined by $S_j(y) = \overset{\vee}{R_j}(x, y^{m-2})$. Then the sequence (S_j) converges pointwise to zero by the polarization formula [9, Theorem 1.10]. Therefore, by Proposition 1 the series $\sum_{j=1}^{\infty} e_j^*(y) \overset{\vee}{R}_j(x, y^{m-2})$ converges and since

$$P(x) = \sum_{j=1}^{\infty} e_j^*(x) R_j(x) = \sum_{j=1}^{\infty} Q_j(x),$$

it follows by linearity that $\stackrel{\vee}{P}(x, y^{m-1}) = \sum_{j=1}^{\infty} \stackrel{\vee}{Q}_j(x, y^{m-1})$. So

$$\overset{\vee}{P}(x, y^{m-1}) = \sum_{j=1}^{\infty} \frac{1}{m} e_j^*(x) R_j(y) + \sum_{j=1}^{\infty} \left(1 - \frac{1}{m}\right) e_j^*(y) \overset{\vee}{R}_j(x, y^{m-2}).$$

It follows from Lemma 2 that if $P(x) = \sum_{j=1}^{\infty} e_j^*(x) R_j(x)$ and $y = (y_1, y_2, \dots) \in \ell_1$, then

$$\overset{\vee}{P}(e_{k}, y^{m-1}) = \frac{1}{m} R_{k}(y) + \left(1 - \frac{1}{m}\right) \sum_{j=1}^{\infty} e_{j}^{*}(y) \overset{\vee}{R_{j}}(e_{k}, y^{m-2}).$$

We do not know if the converse of Proposition 1(2) is true for all $m \in \mathbb{N}$. However, the following proposition shows that if $\Phi = c_0$, the pointwise convergence of (R_n) is necessary.

PROPOSITION 3. Let $(R_n) \subset \mathcal{P}(^m \ell_1)$, be a sequence of c_0 -continuous polynomials and for each $x \in \ell_1$ define

$$P(x) = \sum_{n=1}^{\infty} e_n^*(x) R_n(x).$$

If P is c_0 -continuous in the bounded subsets of ℓ_1 , then (R_n) converges pointwise to zero.

Proof. We prove the assertion by induction on m. Recall that if (e_k) is the canonical basis of ℓ_1 and $(\phi_j) \subset c_0$ is a bounded sequence such that $\lim_{n\to\infty} \phi_n(e_k) = 0$ for every k, then $\lim_j \phi_j(a) = 0$ for all $a \in \ell_1$.

Consider the bounded sequence $(\phi_n) \subset c_0 = \mathcal{P}_{c_0}({}^1\ell_1)$, and the polynomial $P(x) = \sum_{n=1}^{\infty} e_n^*(x) \phi_n(x)$. Assume that the polynomial P is c_0 -continuous on bounded subsets of ℓ_1 . Then, by Lemma 2, we have

$$\stackrel{\vee}{P}(e_{k}, y) = \frac{1}{2}\phi_{k}(y) + \frac{1}{2}\sum_{j=1}^{\infty}e_{j}^{*}(y)\phi_{j}(e_{k}),$$

thus

(3.1)
$$\stackrel{\vee}{P}(e_k, e_l) = \frac{1}{2} \left(\phi_k \left(e_l \right) + \phi_l \left(e_k \right) \right).$$

As $P \in \mathcal{P}_{c_0}(\ell_1)$, then for each l we have $\lim_k \overset{\vee}{P}(e_k, e_l) = 0$, also for each l we have $\lim_k \phi_l(e_k) = 0$ because $\phi_l \in c_0$. Thus, Equation 3.1 implies that for each l we have $\lim_k \phi_k(e_l) = 0$ and therefore for all $a \in \ell_1$, we have $\lim \phi_n(a) = 0$. This shows the assertion for m = 1.

We assume the assertion true for m. Let $(R_n) \in P_{c_0}(^{m+1}\ell_1)$ be a bounded sequence and $P(x) = \sum_{n=1}^{\infty} e_n^*(x) R_n(x)$. Assume that $P \in \mathcal{P}_{c_0}(^{m+2}\ell_1)$. By Lemma 2, we have

(3.2)
$$\overset{\vee}{P}(e_k, y^{m+1}) = \frac{1}{m+2} R_k(y) + \left(1 - \frac{1}{m+2}\right) \sum_{j=1}^{\infty} e_j^*(y) \overset{\vee}{R_j}(e_k, y^m).$$

As $P \in P_{c_0}(m^{+2}\ell_1)$, then by Theorem 1, the polynomial $T_k(y) = \stackrel{\vee}{P}(e_k, y^m)$ is c_0 -continuous on bounded subsets of ℓ_1 . Also by hypothesis $R_k \in P_{c_0}(m\ell_1)$, thus the identity 3.2 implies that for each k, the polynomial

$$S_k(y) := \sum_{j=1}^{\infty} y_j \overset{\vee}{R_j} \left(e_k, y^{m-1} \right),$$

is c_0 -continuous on bounded subsets of ℓ_1 . By Theorem 1, for each k, j, the polynomial $U_j(y) = \overset{\vee}{R_j}(e_k, y^{m-1})$ is c_0 - continuous on bounded subsets of ℓ_1 . Also, by [9, Theorem 2.2] we have

$$\sup_{j} \|U_{j}\| \leq \sup_{j} \left\| \overset{\vee}{R_{j}} \right\| < \frac{m^{m}}{m!} \sup_{j} \|R_{j}\| < \infty.$$

Thus, $(U_j) \subset \mathcal{P}_{c_0}(^{m-1}\ell_1)$ is a bounded sequence and by induction hypothesis, given k and $y \in \ell_1$, we have

(3.3)
$$\lim_{j} \overset{\vee}{R_{j}} \left(e_{k}, y^{m-1} \right) = 0.$$

For each j and $x \in \ell_1$ define $\psi_j(x) = \overset{\vee}{R_j}(x, y^{m-1})$. Since $R_j \in \mathcal{P}_{c_0}(^{m+1}\ell_1)$ then we have that $(\psi_j) \subset c_0$ by Theorem 1, and

$$\|\psi_j\| \le \frac{m^m}{m!} \sup_j \|R_j\| \|y\|^{m-1} < \infty$$
 for all $j \ge 1$.

Equation 3.3 implies that for each k we have that $\lim_{j} \psi_{j}(e_{k}) = 0$ and therefore for all $x \in \ell_{1}$ we have $\lim_{j} \psi_{j}(x) = 0$. In particular $\lim_{j} \psi_{j}(y) = 0$, that is $\lim R_{j}(y) = 0$. This proves our assertion for m + 1, and the proof is complete.

We recall that if $\psi \in c \subset \ell_{\infty}$ then $\psi = \lambda u + \phi$, where $\phi \in c_0$, $u = (1, 1, \ldots, 1, \ldots) \in c$ and $\lambda \in \mathbb{C}$. Now, for each j we have $\|\psi\| \ge |\psi(e_j)| = |\lambda u(e_j) + \phi(e_j)| = |\lambda_j + \phi_j(e_k)|$ and letting $j \to \infty$ we have $\|\psi\| \ge |\lambda|$. Therefore, if $(\lambda_j) \subset \mathbb{C}$, $(\phi_j) \subset c_0$ and $\lim_j \|\lambda_j u + \phi_j\| = 0$ then $\lim_j \lambda_j = 0$ and $\lim_j \|\phi_j\| = 0$. This result can be generalized to polynomials in the space $\mathcal{P}_c({}^m\ell_1)$.

THEOREM 2. Let $(Q_j) \subset \mathcal{P}_c(^m\ell_1)$ and $(R_j) \subset \mathcal{P}_{c_0}(^m\ell_1)$ be sequences of polynomials such that $Q_j(x) = 0$ for all $x \in \ker u$. If $\lim_j ||Q_j + R_j|| = 0$, then $\lim_j ||R_j|| = 0$ and $\lim_j ||Q_j|| = 0$.

Proof. Let $P_j = Q_j + R_j$ then $P_j \in P_c(^m \ell_1)$ for every j. Now, if $z \in \ker u$ then

$$\left|P_{j}\left(z\right)\right| = \left|R_{j}\left(z\right)\right|.$$

Thus

$$\sup_{x \in B(\ell_1) \cap \ker u} |R_j(x)| = \sup_{x \in B(\ell_1) \cap \ker u} |P_j(x)| \le \sup_{x \in B(\ell_1)} ||P_j(x)|| = ||P_j||.$$

Therefore

(3.4)
$$\lim_{j \to \infty} \sup_{x \in B(\ell_1) \cap \ker u} |R_j(x)| = 0.$$

If $x = \sum_{j=1}^{\infty} \alpha_j e_j \in B(\ell_1)$, then for every *n* we have

$$x = \sum_{j=1}^{\infty} \alpha_j \left(e_j - e_{j+n} \right) + \sum_{j=1}^{\infty} \alpha_j e_{j+n}.$$

Note that

$$y_{n} := \sum_{j=1}^{\infty} \alpha_{j} \left(e_{j} - e_{j+n} \right) \in 2B\left(\ell_{1}\right) \cap \ker u, \quad \text{and} \quad z_{n} := \sum_{j=1}^{\infty} \alpha_{j} e_{n+j} \in B\left(\ell_{1}\right).$$

By Leibniz's formula [9, Theorem 1.8], we have

$$R_{j}(x) = R_{j}(y_{n} + z_{n}) = R_{j}(y_{n}) + \sum_{k=0}^{m-1} {\binom{n}{k}} \overset{\vee}{R_{j}} \left(y_{n}^{k}, z_{n}^{m-k}\right)$$

Since $R_j \in P_{c_0}(\ell_1)$, $||z_n|| \leq 2$ for every n, and $c_0 - \lim_n z_n = 0$, then by Theorem 1, for each $k = 0, 1, \ldots, m - 1$, we have

$$\lim_{n} \left(\sup_{y \in B(\ell_1)} \left| \overset{\vee}{R}_j \left(y^k, z_n^{m-k} \right) \right| \right) = 0.$$

Thus, for each k = 0, 1, ..., m - 1, and $\varepsilon > 0$, there exists $n_0, n_1, ..., n_{m-1}$ such that

$$\sup_{x \in B(\ell_1)} \left| \overset{\vee}{R_j} \left(x^k, z_n^{m-k} \right) \right| < \frac{\varepsilon}{2^{m+1}}, \text{ for all } n \ge n_k, \ k = 0, 1, \dots, m-1,$$

and therefore

 $\sup_{x \in B(\ell_1)} \left| \stackrel{\vee}{R_j} \left(x^k, z_n^{m-k} \right) \right| < \frac{\varepsilon}{2^{m+1}}, \text{ for all } n \ge \max\left\{ n_0, n_1, \dots, n_{m-1} \right\}.$

Thus, for all $n \ge \max\{n_0, n_1, \ldots, n_{m-1}\}$, we obtain

$$|R_{j}(x)| = \left| R_{j}(y_{n}) + \sum_{k=0}^{m-1} {m \choose k} \stackrel{\vee}{R_{j}} \left(y_{n}^{k}, z_{n}^{m-k} \right) \right|$$

$$= |R_{j}(y_{n})| + \sum_{k=0}^{m-1} {m \choose k} \left| \stackrel{\vee}{R_{j}} \left(y_{n}^{k}, z_{n}^{m-k} \right) \right|$$

$$(3.5) \qquad \leq \sup_{y \in 2B(\ell_{1}) \cap \ker u} |R_{j}(y)| + \sum_{k=0}^{m-1} {m \choose k} \sup_{x \in B(\ell_{1})} \left| \stackrel{\vee}{R_{j}} \left(x^{k}, z_{n}^{m-k} \right) \right|$$

$$\leq \sup_{y \in 2B(\ell_{1}) \cap \ker u} |R_{j}(y)| + \sum_{k=0}^{m-1} {m \choose k} \frac{\varepsilon}{2^{m+1}}$$

$$= \sup_{y \in 2B(\ell_{1}) \cap \ker u} |R_{j}(y)| + \frac{\varepsilon}{2}.$$

By 3.4 we have $\lim_{j \to y_j \in B(\ell_1) \cap \ker u} |R_j(y)| = 0$, hence there exists j_0 such that for $j \ge j_0$ we have

$$\sup_{y \in 2B(\ell_1) \cap \ker u} |R_j(y)| < \frac{\varepsilon}{2},$$

By relation 3.5 we obtain

$$|R_j(x)| < \varepsilon$$
, for all $x \in B(\ell_1)$ and $j \ge j_0$.

Thus for all $j \ge j_0$, $||R_j||_{B(\ell_1)} < \varepsilon$. This shows that $\lim_j ||R_j|| = 0$. Now $Q_j = P_j - R_j$, implies that $\lim_j ||Q_j|| \le \lim_j ||P_j|| + \lim_j ||R_j|| = 0$.

THEOREM 3. Every polynomial $P \in \mathcal{P}_c(^m\ell_1)$ can be decomposed in the form P = Q + R, where $Q \in P_c(^{m-1}\ell_1)$ with Q(x) = 0 for all $x \in \ker u$ and $R \in P_{c_0}(^{m-1}\ell_1)$.

Proof. For m = 1 the statement is obvious. Suppose it is true for m-1. Let $P \in \mathcal{P}_c(^m\ell_1)$ and for each j consider the polynomials $T_j(x) = \overset{\vee}{P}(e_j, x^{m-1})$. Then by Theorem 1 we have that $T_j \in P_c(^{m-1}\ell_1)$ and by induction hypothesis we have

$$\stackrel{\vee}{P}(e_j, x^{m-1}) = T_j(x) = Q_j(x) + R_j(x),$$

where $Q_j \in P_c(^{m-1}\ell_1)$, $R_j \in P_{c_0}(^{m-1}\ell_1)$ and $Q_j(x) = 0$ for all $x \in \ker u$ for all j. Since (e_j) is c-Cauchy, then (T_j) converges in norm to a polynomial $\overline{P} \in P_c(^{m-1}\ell_1)$ and by induction hypothesis we have $\overline{P} = \overline{Q} + \overline{R}$, with $\overline{Q} \in P_c(\ell_1)$, $\overline{R} \in P_{c_0}(\ell_1)$ and $\overline{Q}(x) = 0$ for all $x \in \ker u$. By Lemma 2 $\lim_j R_j = \overline{R}$ and $\lim_j Q_j = \overline{Q}$ in norm. So

$$P(x) = \sum_{j=1}^{\infty} e_j^*(x) \stackrel{\vee}{P}(e_j, x^{m-1}) = \sum_{j=1}^{\infty} e_j^*(x) (Q_j(x) + R_j(x))$$

And therefore

$$P(x) = \sum_{j=1}^{\infty} e_j^*(x) \left(Q_j(x) - \bar{Q}(x) \right) + \sum_{j=1}^{\infty} e_j^*(x) \bar{Q}(x) + \sum_{j=1}^{\infty} e_j^*(x) \left(R_j(x) - \bar{R}(x) \right) + \sum_{j=1}^{\infty} e_j^*(x) \bar{R}(x) = \sum_{j=1}^{\infty} e_j^*(x) \left(Q_j(x) - \bar{Q}(x) \right) + \bar{Q}(x) u(x) + \sum_{j=1}^{\infty} e_j^*(x) \left(R_j(x) - \bar{R}(x) \right) + \bar{R}(x) u(x) = \sum_{j=1}^{\infty} e_j^*(x) \left(Q_j(x) - \bar{Q}(x) \right) + \left(\bar{Q}(x) + \bar{R}(x) \right) u(x) + \sum_{j=1}^{\infty} e_j^*(x) \left(R_j(x) - \bar{R}(x) \right) .$$

Since $\lim_{j} \left\| Q_{j}(x) - \overline{Q}(x) \right\| = 0$, the polynomial

$$x \longmapsto \sum_{j=1}^{\infty} e_j^*(x) \left(Q_j(x) - \bar{Q}(x) \right)$$

is c-continuous on bounded subsets of ℓ_1 by Proposition 1 and vanishes on ker u. Also the polynomial $x \mapsto (\bar{Q}(x) + \bar{R}(x)) u(x)$ vanishes on ker u. Since $\lim_{j} ||R_j(x) - \bar{R}(x)|| = 0$, and $R_j, \bar{R} \in \mathcal{P}_{c_0}(^{m-1}\ell_1)$, Proposition 1 implies that $x \mapsto \sum_{j=1}^{\infty} e_j^*(x) (R_j(x) - \bar{R}(x))$ is a c_0 -continuous polynomial on bounded subsets of ℓ_1 .

We define

$$Q(x) = (\bar{Q}(x) + \bar{R}(x)) u(x) + \sum_{j=1}^{\infty} e_j^*(x) (Q_j(x) - \bar{Q}(x)),$$
$$R(x) = \sum_{j=1}^{\infty} e_j^*(x) (R_j(x) - \bar{R}(x)).$$

LEMMA 3. Let E be a Banach space, $\phi \in E'$ and $Q \in \mathcal{P}(^{m}E)$ be a polynomial such that Q(x) = 0 for all $x \in \ker \phi$. Then there exists a polynomial $R \in P(^{m-1}E)$ such that $Q = \phi R$.

Proof. Pick $a \in E$ such that $\phi(a) = 1$ and define the map $T : E \to E$ by $T(x) = \phi(x) a - x$. Then T is a continuous linear operator and $T(x) \in \ker \phi$ for all $x \in E$. By Leibniz's formula, we have

$$\begin{split} Q\left(x\right) &= Q\left(\phi\left(x\right)a - T\left(x\right)\right) \\ &= \sum_{j=0}^{m} \binom{m}{j} \left(-1\right)^{m-j} \overset{\vee}{Q} \left(\left(\phi\left(x\right)a\right)^{j}, (T\left(x\right))^{m-j}\right) \\ &= \sum_{j=1}^{m} \binom{m}{j} \left(-1\right)^{m-j} \overset{\vee}{Q} \left(\left(\phi\left(x\right)a\right)^{j}, (T\left(x\right))^{m-j}\right) + Q\left(T\left(x\right)\right) \\ &= \sum_{j=1}^{m} \binom{m}{j} \left(-1\right)^{m-j} \phi^{j}\left(x\right) \overset{\vee}{Q} \left(a^{j}, (T\left(x\right))^{m-j}\right) \\ &= \phi\left(x\right) \sum_{j=1}^{m} \binom{m}{j} \left(-1\right)^{m-j} \phi^{j-1}\left(x\right) \overset{\vee}{Q} \left(a^{j}, (T\left(x\right))^{m-j}\right). \end{split}$$

Note that for each j the map $x \mapsto \phi^{j-1}(x) \overset{\vee}{Q} \left(a^j, (T(x))^{m-j} \right)$ is an (m-1)-homogeneous polynomial. So

$$R(x) := \sum_{j=0}^{m-1} \binom{m}{j} (-1)^{m-j} \phi^{j-1}(x) \overset{\vee}{Q} \left(a^{j}, (T(x))^{m-j} \right),$$

is a continuous (m-1)-homogeneous polynomial and

$$Q(x) = \phi(x) R(x).$$

COROLLARY 2. Let $Q \in \mathcal{P}_c(^m\ell_1)$ such that Q(x) = 0 for all $x \in \ker u$, then there exists $R \in \mathcal{P}_c(^{m-1}\ell_1)$ such that Q(x) = u(x)R(x) for all $x \in \ell_1$.

Proof. We define the map $T : \ell_1 \to \ell_1$ by $T(x) = u(x)e_1 - x$, then T is obviously a c-continuous linear operator and $T(x) \in \ker u$ for all $x \in \ell_1$. By Lemma 3 we have

$$Q(x) = Q(u(x)e_1 - T(x)) = u(x)\sum_{j=1}^m \binom{m}{j} u^{j-1}(x) \overset{\vee}{Q} \left(e_1^j, (T(x))^{m-j}\right).$$

Since $Q \in \mathcal{P}_c(^m \ell_1)$ then for each j = 1, 2, ..., m, the polynomial $S_j : \ell_1 \to \mathbb{C}$ given by $S_j(z) = \overset{\vee}{Q} \left(e_1^j, z^{m-j} \right)$, is *c*-continuous on bounded subsets of ℓ_1 . Therefore $S_j \circ T \in \mathcal{P}_c(\ell_1)$ for j = 1, 2, ..., m and we have that

$$R(x) = \sum_{j=1}^{m-1} {m \choose j} u^{j-1}(x) (S_j \circ T)(x)$$
$$= \sum_{j=1}^{m-1} {m \choose j} u^{j-1}(x) \overset{\vee}{Q} (e_1^j, (T(x))^{m-j}),$$

is a *c*-continuous polynomial on bounded sets, and Q = uR.

THEOREM 4. If $P \in \mathcal{P}_c(^m \ell_1)$, then for j = 0, 1, 2, ..., m there are polynomials $R_j \in P_{c_0}(^j \ell_1)$, such that

$$P(x) = R_0(x) u^m(x) + u^{m-1}(x) R_1(x) + \dots + u(x) R_{m-1}(x) + R_m(x).$$

Proof. By Theorem 3 we have $P = Q_m + R_m$, where $Q_m \in \mathcal{P}_c(^m\ell_1)$, $R_m \in \mathcal{P}_{c_0}(^m\ell_1)$ and Q(x) = 0 for all $x \in \ker u$. By Lemma 3, $Q_m = uS_{m-1}$ with $S_{m-1} \in \mathcal{P}_c(^m\ell_1)$. Thus, we have

$$P = uS_{m-1} + R_m.$$

Since $S_{m-1} \in \mathcal{P}_c(^{m-1}\ell_1)$, then by Theorem 3 we have $S_{m-1} = Q_{m-1} + R_{m-1}$, where $Q_{m-1} \in P_c(^{m-1}\ell_1)$, $Q_{m-1}(x) = 0$ for all $x \in \ker u$ and $R_{m-1} \in P_{c_0}(^{m-1}\ell_1)$ and therefore

$$P = u (Q_{m-1} + R_{m-1}) + R_m (x)$$

= $uQ_{m-1} + R_{m-1}u + R_m (x)$.

By Lemma 3 we have that $Q_{m-1} = uS_{m-2}$, with $S_{m-2} \in \mathcal{P}_c(^m\ell_1)$. Therefore we have

$$P(x) = u(x)^{2} S_{m-2} + R_{m-1}u + R_{m}(x)$$

Proceeding in this way we find for each j = 0, 1, 2, ..., m, the polynomials $R_j \in \mathcal{P}_{c_0}(j\ell_1)$, and $S_j \in \mathcal{P}_c(j\ell_1)$, such that

$$P(x) = u^{m}R_{0} + R_{1}u^{m-1} + \dots + R_{m-1}u + R_{m}(x),$$

where $R_0 := S_0$.

4. *c*-Continuous entire functions

Let Ω be an open subset of complex Banach space E. A mapping $f: \Omega \subset E \to \mathbb{C}$ is said to be holomorphic, if for each $a \in \Omega$ there exists a ball $B(a,r) \subset \Omega$ and a sequence of polynomials (P_m) with $P_m \in \mathcal{P}(^m\ell_1)$, m = 0, 1, 2..., such that $f(x) = \sum_{m=0}^{\infty} P_m(x)$ uniformly for $x \in B(a, r)$. We denote by $\mathcal{H}(\Omega)$ the vector space of all holomorphic mappings from Ω into \mathbb{C} . A holomorphic function $f \in \mathcal{H}(E)$ is said to be of bounded type if it maps bounded sets into bounded sets. We denote by $\mathcal{H}_b(E)$ the space of the holomorphic functions on E of bounded type.

Let $\Phi \subset E'$, we denote by $\mathcal{H}_{\Phi}(E)$ the space of all functions $f \in \mathcal{H}(E)$ that are Φ -continuous on bounded subsets of E, and by $\mathcal{H}_{\Phi u}(E)$ the space of all functions $f \in \mathcal{H}(E)$ that are uniformly Φ -continuous on bounded subsets of E.

In 1982 Aron et al. in [1] have shown that the ℓ_1 problem has a positive answer if $\mathcal{H}_{\ell_{\infty}}(\ell_1) \subset \mathcal{H}_b(\ell_1)$. On the other hand, it is obviously that

 $\mathcal{H}_{c_0}(\ell_1) \subset \mathcal{H}_b(\ell_1)$ because every bounded set of ℓ_1 is relatively $\sigma(\ell_1, c_0)$ compact, but bounded subsets of ℓ_1 are not necessarily relatively $\sigma(\ell_1, c)$ compact. These considerations have motivated us to raise the following
question.

PROBLEM 3. If $f : \ell_1 \to \mathbb{C}$ is a holomorphic function which is *c*-continuous on bounded sets, is f of bounded type?

An affirmative answer to this problem would answer affirmatively Problem 2.

We denote by $\mathcal{P}_{c_0}^{(m)}(\ell_1)$ the space of all polynomials of the form $Q = \sum_{j=0}^{m} Q_j$, with $Q_j \in \mathcal{P}_{c_0}(j\ell_1)$ for all $j = 0, 1, 2, \ldots, m$. If $U_m(x) := \sum_{j=0}^{m} u^{m-j}(x)$, for all $x \in \ell_1$, we define the *m*-homogeneous polynomial $U \otimes Q \in \mathcal{P}_c(^m\ell_1)$ by

$$(U \otimes Q)(x) = \sum_{j=0}^{m} u^{m-j}(x)Q_j(x).$$

We denote by $\mathcal{P}_{f^*}({}^{m}\ell_1)$ the space of continuous polynomials of finite type that are c_0 -continuous on bounded subsets of ℓ_1 .

LEMMA 4. If $R(x) \in \mathcal{P}_{c_0}^{(m)}(\ell_1)$, then given $\varepsilon > 0$ there exists a polynomial $Q = \sum_{j=0}^{m} Q_j$ with $Q_j \in \mathcal{P}_{f^*}(j\ell_1)$ such that $\|U_m \otimes (R-Q)\| < \varepsilon$.

Proof. If $x \in \ell_1$, we denote by

$$q^{n}(x) = \sum_{j=1}^{n} e_{j}^{*}(x) e_{j}$$
 and $q_{n}(x) = \sum_{j=n+1}^{\infty} e_{j}^{*}(x) e_{j}.$

Then $x = q^n(x) + q_{n+1}(x)$. Now, if $\phi = (\phi_j)_{j \in \mathbb{N}} \in c_0$, then $\lim_n \max_{i \ge n} |\phi_i| = 0$. As $\max_{i \ge n} |\phi_i| = \sup_{x \in B(\ell_1)} \phi(q_n(x))$ we have $\lim_n \sup_{x \in B(\ell_1)} \phi(q_n(x)) = 0$. That is

(4.1)
$$\lim_{n} \sup_{x \in B(\ell_1)} \phi\left(x - q^n\left(x\right)\right) = 0.$$

Let $R = \sum_{j=0}^{m} R_j$, with $R_j \in \mathcal{P}_{c_0}(j\ell_1)$. Then by [1], for each $j = 0, 1, 2, \ldots, m$, the polynomial R_j is c_0 -uniformly continuous on bounded sets. By 4.1, this implies that given $\varepsilon > 0$, there exists an n_0 such that $|R_j(x) - R_j(q^n(x))| < \varepsilon$

 $\varepsilon/(m+2)$, for all $n \ge n_0$, $x \in B(\ell_1)$ and j = 0, 1, 2..., m. Thus $||R_j - R_j q^n|| \le \varepsilon/(m+2)$ for $n \ge n_0$ and j = 0, 1, ..., m. Therefore we have

$$\begin{aligned} \left\| u^{m-j} \otimes \left(R_j - R_j q^n \right) \right\| &= \sup_{x \in B(\ell_1)} \left| u^{m-j} \left(x \right) \left(R_j \left(x \right) - R_j q^n \left(x \right) \right) \right| \\ &\leq \sup_{x \in B(\ell_1)} \left| R_j \left(x \right) - R_j q^n \left(x \right) \right| \\ &= \left\| R_j - R_j q^n \right\| \leq \frac{\varepsilon}{m+2}. \end{aligned}$$

Thus, for $n \ge n_0$ we have

$$\|R - Rq^n\| = \left\|\sum_{j=0}^m U_m \otimes (R - Rq^n)\right\| \le \sum_{j=0}^m \|R - Rq^n\| < \varepsilon.$$

Since $R \in \mathcal{P}_{c_0}(^m)(\ell_1)$ and $q^n : \ell_1 \to \ell_1$ is a finite range operator, we have that $Rq^n \in \mathcal{P}_{f^*}(^m\ell_1)$.

If $f = \sum_{n=0}^{\infty} P_n \subset H_b(\ell_1)$ is a holomorphic function of bounded type with $P_n \in P_c({}^n\ell_1)$ for all $n \in \mathbb{N}$, then using the same arguments as in [1], it is not difficult to show that $f \in H_c(\ell_1)$.

PROPOSITION 4. The following statements are equivalent.

- (i) Every holomorphic function $f \in H_c(\ell_1)$ of the form $f = \sum_{m=0}^{\infty} U_m \otimes Q_m$ with $Q_m \in \mathcal{P}_{c_0}^{(m)}(\ell_1)$ is of bounded type.
- (ii) Every holomorphic function $f \in H_c(\ell_1)$ of the form $f = \sum_{m=0}^{\infty} U_m \otimes Q_m \in H_c(\ell_1)$ with $Q_m \in \mathcal{P}_{f^*}^{(m)}(\ell_1)$, is of bounded type.

Proof. The implication (i) \Rightarrow (ii) is obvious since $\mathcal{P}_{f^*}(^m\ell_1) \subset \mathcal{P}_{c_0}(^m\ell_1)$. Let us prove (ii) \Rightarrow (i). Let $f = \sum_{m=0}^{\infty} U_m \otimes Q_m \in H_b(\ell_1)$ with $Q_m \in \mathcal{P}_{c_0}^{(m)}(\ell_1)$ for every m. Since $Q_m \in \mathcal{P}_{c_0}(^m\ell_1)$, by Lemma 4 there exists a $R_m \in \mathcal{P}_{f^*}^{(m)}(\ell_1)$, such that $\|U_m \otimes (Q_m - R_m)\|^{1/m} < \frac{1}{m^m}$. Thus $\lim \|U_m \otimes (Q_m - R_m)\|^{1/m} = 0$ and by [6, p. 206], the holomorphic function $g = \sum U_m \otimes (Q_m - R_m)$ is of bounded type and therefore $g \in H_c(\ell_1)$. Then $f - g = \sum U_m \otimes R_m \in H_c(\ell_1)$. By hypothesis $h = f - g \in H_b(\ell_1)$ and therefore $f = g + h \in H_b(\ell_1)$.

H.D. CARRIÓN

References

- R.M. ARON, C. HERVÉS, M. VALDIVIA, Weakly continuous mappings on Banach spaces, J. Functional Analysis 52 (1983), 189–203.
- [2] R.M. ARON, C. HERVES, Weakly Sequentially Continuous Analytic Functions on a Banach Space, in "Functional analysis, holomorphy and approximation theory, II (Rio de Janeiro, 1981), Notas Mat. 92, North-Holland Math. Stud. 86, North-Holland Publishing Co., Amsterdam, 1984, 23–38.
- [3] C. BOYD, S. DINEEN, P. RUEDA, Weakly uniformly continuous holomorphic functions and the approximation property, *Indag. Math.* 12 (2) (2001), 147– 156.
- [4] H. CARRIÓN, Entire functions on Banach spaces with the U-property, Bull. Lond. Math. Soc. 54 (1) (2022), 126-144.
- [5] S. DINEEN, "Complex analysis on infinite-dimensional spaces", Springer-Verlag London, Ltd, London, 1999.
- [6] S. DINEEN, Entire functions on c_0 , J. Funct. Anal. **52** (1983), 205–218.
- [7] N. DUNFORD, J. SCHWARTZ, "Linear Operators, Part I: General Theory", Pure Appl. Math. Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958.
- [8] M. GONZÁLEZ, J.M. GUTIÉRREZ, Factorization of weakly continuous holomorphic mappings, *Studia Math.* 118 (2) (1996), 117–133.
- [9] J. MUJICA, "Complex analysis in Banach spaces", Notas Mat. 107, North-Holland Math. Stud. 120, North-Holland Publishing Co., Amsterdam, 1986.