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Abstract : In this article we study the n-homogeneous polynomials P that are c-continuous on

bounded subsets of `1. We show that P can be decomposed in the form R + Q, where Q and R

are n-homogeneous polynomials, with R weakly star continuous and Q (x) = 0 for all x ∈ keru for
u = (1, 1, . . . , 1, . . . ).We conclude that P =

∑n
j=0 u

n−j ⊗Rj , where Rj is a weakly star continuous

j-homogeneous polynomial for j = 0, 1, . . . , n.
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1. Introduction

Let E and F be Banach spaces and Φ be an arbitrary subset of E′. A
function f : E → F is said to be Φ-continuous on bounded subsets of E,
if for each bounded set Ω ⊂ E, a ∈ Ω and ε > 0, there are φ1, . . . , φp in
Φ and δ > 0, such that if x ∈ Ω, |φj (x− a)| < δ, for j = 1, 2, . . . , p,
then ‖f (x)− f (a)‖ < ε. In a similar way we define uniform Φ-continuity on
bounded subsets of E.

In [1] is showed that in every Banach space E, every m-homogeneus poly-
nomial P : E → F which is weakly continuous on bounded sets of E is weakly
uniformly continuous on bounded sets. The corresponding problem for holo-
morphic functions is still open.

Problem 1. If f : E → C is a holomorphic function which is weakly
continuous on bounded sets, is f weakly uniformly continuous?

This problem was raised in 1982 by Aron et al. in [1] and cited in many
works, such as [1, 2, 3, 5, 8]. It is obvious that the problem has an affirmative
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comments in the original manuscript.
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answer if E is reflexive. However, Dineen in [6] showed that this problem has
an affirmative answer if E = c0 and more generally in [4], it is shown that
this problem also has an affirmative answer in every Banach space space with
the U property and without a copy of `1. In particular, this is true for every
Banach space that is an M -ideal in its bidual, such as Banach spaces with a
shrinking and unconditional Schauder basis.

The Problem 1 is also so-called “the `1-problem”, since Aron et al., showed
in [1, Example 3.5], that if Problem 1 has an affirmative answer for the space
`1, then it has an affirmative answer for all Banach spaces E.

Every entire function f : `1 → C, which is c0-continuous on bounded sets
of `1, is c0-uniformly continuous on bounded sets, since every bounded set is
relatively σ (`1, c0)-compact. However, it changes if we consider the space c of
the convergent sequences and the topology σ (`1, c) in `1, since the bounded
subsets of `1 are not relatively σ (`1, c)-compact. In fact, the sequence of
vectors (en) of the canonical basis of `1 does not converge in this topology.
Thus we raise the next problem apparently weaker than `1-problem.

Problem 2. Is every c-continuous holomorphic function on bounded sub-
sets of `1, c-uniformly continuous?

This paper is motivated by the question mentioned above. We focus our
attention on polynomials and entire functions on `1 that are c-continuous on
bounded sets.

2. Notations

If E is a complex Banach space, B (E) and E′ will denote the closed unit
ball and the topological dual of E, respectively. For each positive integer m,
L (mE) is the space of continuous m-linear mappings from E × · · · × E to
C and P (mE) is the space of continuous m-homogeneous polynomials from
E to C. For each polynomial P ∈ P (mE), there exists a unique symmetric

mapping
∨
P ∈ L (mE) such that P (x) =

∨
P (x, . . . , x) =

∨
P (xm). When m = 1,

we have that L
(

1E
)

= P
(

1E
)

= E′ and for m = 0, P
(

0E
)

and L
(

0E
)

are
associated to C.

The space L (mE) is a Banach space, under the norm

A ∈ L (mE) 7−→ ‖A‖ = sup {|A (x1, x2, . . . , xm)| : xj ∈ E, ‖xj‖ ≤ 1} ,

and therefore for every x, y ∈ E and every integer positive j, with 0 ≤ j ≤ m,
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we have that ∣∣A (xm−j , yj)∣∣ ≤ ‖A‖∥∥xm−j∥∥∥∥yj∥∥ .
Also, P (mE) is a Banach space with respect to the norm

‖P‖ = supx∈B(E) |P (x)|

and we have that

‖P‖ ≤
∥∥∥∨P∥∥∥ ≤ mm

m!
‖P‖ .

We refer to [9] or [5] for the general theory of polynomials and holomorphic
mappings on Banach spaces.

Let Φ ⊂ E′ be an arbitrary family. We say that a bounded sequence
(xn) ⊂ E , is Φ-Cauchy if for all φ ∈ Φ, the numerical sequence φ (xn)
converges. We say that (xn) ⊂ E , is Φ-convergent if there exists x ∈ E such
that limn φ (xn) = φ (x), for every φ ∈ Φ. In this case we write Φ−limn xn = x.
For example, in the space `1 space, the sequence of canonical basis vectors (en)
is c-Cauchy, but (en) is not c-convergent. We denote by PΦ (mE) the space of
all Φ-sequentially continuous polynomials on bounded subsets of E. PΦ (mE)
is a norm-closed subspace of P (mE).

The following result is an immediate consequence of [1, Lemma 2.4,
Lemma 2.6, Proposition 2.8].

Theorem 1. Let E be a complex Banach space and Φ be any separable
subspace of E′.

(i) If P ∈ PΦ(mE), then for every bounded Φ-Cauchy sequence (xn), the

sequence of (m− 1)-homogeneous polynomials Tn (x) =
∨
P
(
xn, x

m−1
)

converges in norm. In particular, if (xn) is Φ-convergent to 0 then (Tn)
converges in norm to the null polynomial.

(ii) If P ∈ PΦ (mE) then the m-linear mapping
∨
P : E × · · · × E → C

is Φ-continuous. Besides, for each a ∈ E and every integer j with

0 ≤ j ≤ m, the mapping Tj (x) =
∨
P
(
aj , xm−j

)
is Φ-continuous on

bounded subsets of E.

3. c-Continuous polynomials

The canonical basis (ej) of `1 is c-Cauchy and therefore by Theorem 1,
given a polynomial P ∈ Pc (m`1) the sequence of polynomials Tk (x) =
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∨
P
(
ek, x

m−1
)

converges in the norm. If P ∈ Pc0 (m`1), then Tk converges
to 0 in norm, since c0 − limk ek = 0.

If φ ∈ P
(

1`1
)

= `∞ is c-continuous on bounded subsets of `1 then φ ∈ c.
In fact, suppose that φ = (φ1, φ2, . . . ). Since the sequence (ek) is c-Cauchy,
then by Theorem 1, the sequence (φk) = (φ (ek)) converges, that is (φk) ∈ c.
In the same way, we show that if φ ∈ P

(
1`1
)

is c0-continuous on bounded
subsets of `1, then φ ∈ c0. However, this last result is a particular case of
[7, Theorem V.5.6].

We denote by (e∗n) the associated sequence of coefficient functionals for the
basis (en) of `1.

Proposition 1. Let (fn) be a sequence of complex-valued functions de-
fined on `1. If (fn) is pointwise bounded, then for all x, y ∈ `1 the series∑∞

j=1 e
∗
j (x) fj (y) converges. Moreover, we have that:

(i) If (Rn) ⊂ P (m`1) converges to 0 pointwise and

P (x) =
∞∑
j=1

e∗j (x)Rj (x) ,

then P ∈ P
(
m+1`1

)
.

(ii) If Φ = c or Φ = c0 and (Rn) ⊂ PΦ (m`1) converges to 0 in norm and

P (x) =

∞∑
j=1

e∗j (x)Rj (x) ,

then P ∈ PΦ (m`1) .

Proof. Let
(
e∗j

)
be the coordinate functionals associated with the canon-

ical basis (ej) of `1. For each y ∈ `1 we have (fi (y)) ∈ `∞ and therefore∑∞
j=1 e

∗
j (x) fj (y) converges.

(i) Since (Rn) converges to 0 pointwise, then (Rn) is uniformly bounded
on B(`1) by [9, Theorem 2.6], that is, supj≥1 ‖Rj‖ < ∞. Thus |Rj (x)| ≤
‖Rj‖ ‖x‖m, for all x ∈ B (`1) and j ≥ 1. Obviously R (x) =

∑∞
j=1 e

∗
j (x)Rj (x)

is an (m+ 1)-homogeneous polynomial and

|P (x)| =

∣∣∣∣∣∣
∞∑
j=1

e∗j (x)Rj (x)

∣∣∣∣∣∣ ≤ sup
j≥1
|Rj (x)|

∞∑
j=1

∣∣e∗j (x)
∣∣ ≤ sup

j≥1
‖Rj‖ ‖x‖m+1 ,
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hence
‖P‖ = sup

x∈B(`1)
|P (x)| ≤ sup

j≥1
‖Rj‖ ,

and therefore it is continuous.
(ii) For each k ∈ N define Tk (x) :=

∑k
j=1 e

∗
j (x)Rj (x). Since

(
e∗j

)
⊂ Φ

and (Rj) ⊂ PΦ (m`1), then (Tk) ⊂ PΦ

(
m+1`1

)
. Now, for all x ∈ B (`1) and

m,n ∈ N with n > m, we have

|Tm (x)− Tn (x)| ≤

∣∣∣∣∣∣
n∑

j=m+1

e∗j (x)Rj (x)

∣∣∣∣∣∣
≤ sup

j=m+1,...,n
|Rj (x)|

n∑
j=m+1

∣∣e∗j (x)
∣∣

≤ sup
j=m+1,...,n

‖Rj‖ ‖x‖m+1 ≤ sup
j≥m+1

‖Rj‖ ‖x‖m+1 ,

and therefore ‖Tm − Tn‖ ≤ supj≥m+1 ‖Rj‖. Since lim ‖Rj‖ = 0, it follows
that (Tm) is a Cauchy sequence in the space PΦ (m`1) and therefore con-
vergent in norm. Since P (x) = limk Tk (x) for all x ∈ `1, it follows that
P ∈ PΦ (m`1).

Our interest in the `1 space is due to the following result.

Proposition 2. Let E be a Banach space with a bounded unconditional
Schauder basis (bn), m ∈ N and let (Pj) ⊂ P (mE) be a sequence such that
for all x 6= 0 we have limj Pj (x) 6= 0. If for all x =

∑∞
j=1 xjbj ∈ E the

function Q (x) :=
∑∞

j=1 xjPj (x) is defined and continuous on E, then E is
isomorphic to `1.

Proof. In fact, let be x =
∑∞

j=1 xjbj 6= 0 and (θj) ⊂ C with |θj | = 1 for all
j = 1, 2, . . . such that θjxjPj (x) = |xjPj (x)|, then x̄ =

∑∞
j=1 xjθjbj ∈ E and

therefore

Q (x̄) =
∞∑
j=1

xjθjPj (x) =
∞∑
j=1

|xj | |Pj (x)| .

Since limj Pj (x) 6= 0, then there exists an positive integer j0 and δ > 0 such
that |Pj (x)| > δ, for j ≥ j0. Hence we have that

Q (x̄) ≥
j0∑
j=1

|xj | |Pj (x)|+ δ

∞∑
j=j0+1

|xj | .
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Thus (xj) ∈ `1. This proves that (bj) � (ej). Since (bj) is bounded then∑∞
j=1 |xj | < ∞ implies that

∑∞
j=1 xjbj ∈ E. Thus, (ej) � (bj) and therefore

E is isomorphic to `1.

The conclusion of Proposition 1 (ii) is not true if the sequence (Pj) con-
verges to 0. In fact, if E = `2 and Pj (x1, x2, . . . ) = 1/j, then Q (x1, x2, . . . ) =∑∞

j=1 xjPj (x) ∈ P
(

2`2
)
.

Corollary 1. Let (Rj) ⊂ Pc (m`1) be a sequence of polynomials conver-
gent in norm. If P (x) =

∑∞
j=1 xjRj (x) then P ∈ Pc (`1).

Proof. Since Pc (m`1) is a closed subspace of P (m`1), then R = limRj ∈
Pc (m`1). Now, if u = (1, 1, . . . ) ∈ c then

P (x) =
∞∑
j=1

e∗j (x) (Rj (x)−R (x)) +

∞∑
j=1

e∗j (x)R (x)

=
∞∑
j=1

e∗j (x) (Rj (x)−R (x)) + u (x)R (x) .

Since limj ‖Rj −R‖ = 0, then by Proposition 1(2) the polynomial

Q (x) =
∞∑
j=1

e∗j (x) (Rj (x)−R (x)) ,

is c-continuous on bounded sets. Obviously S (x) := u (x)R (x) is also c-
continuous on bounded subsets of `1.

Lemma 1. Let E be a Banach space. If φ ∈ E′, R ∈ P
(
m−1E

)
and

Q (x) := φ (x)R (x), then for all x, y ∈ E we have

∨
Q
(
x, ym−1

)
=

1

m
φ (x)R (y) +

(
1− 1

m

)
φ (y)

∨
R
(
x, ym−2

)
.

Proof. Let T : E × · · · × E → C be the m-linear map defined by

T (z1, z2, . . . , zm) = φ (z1)
∨
R (z2, z3, . . . , zm) .
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Then Q (x) = T (x, x, . . . , x), and by [9, Proposition 1.6] we have

∨
Q (z1, z2, . . . , zn) =

1

m!

∑
σ∈Sm

T
(
zσ(1), zσ(2), . . . , zσ(m)

)
=

1

m!

∑
σ∈Sm

φ
(
zσ(1)

) ∨
R
(
zσ(2), zσ(3), . . . , zσ(m)

)
.

If z2 = z3 = · · · = zm = z, then we obtain

φ
(
zσ(1)

) ∨
R
(
zσ(2), zσ(3), . . . , zσ(n)

)
=

φ (z1)
∨
R (z, z . . . , z) if σ(1) = 1,

φ (z)
∨
R (z1, z, . . . , z) if σ(1) 6= 1.

Therefore, if K = {σ ∈ Sm : σ (1) = 1}, then #K = (m− 1)! and

∨
Q
(
z1, z

m−1
)

=
1

m!

(∑
σ∈K

φ (z1)
∨
R (z, z . . . , z) +

∑
σ∈Sm−K

φ (z)
∨
R (z1, z, . . . , z)

)
=

1

m!

(
(m− 1)!φ (z1)R (z) + (m!− (m− 1)!)φ (z)

∨
R
(
z1, z

m−2
))

=
1

m
φ (z1)R (z) +

(
1− 1

m

)
φ (z)

∨
R
(
z1, z

m−2
)
.

Lemma 2. For m ≥ 1, let (Rj) ⊂ P
(
m−1`1

)
be a pointwise convergent

sequence to zero and P (x) =
∑∞

j=1 e
∗
j (x)Rj (x). Then for all x, y ∈ `1 we

have

∨
P
(
x, ym−1

)
=

1

m

∞∑
j=1

e∗j (x)Rj (y) +

(
1− 1

m

) ∞∑
j=1

e∗j (y)
∨
Rj
(
x, ym−2

)
.

Proof. Let Qj (x) = e∗j (x)Rj (x). Lemma 1 implies that for all x, y ∈ `1
we have

∨
Qj
(
x, ym−1

)
=

1

m
e∗j (x)Rj (y) +

(
1− 1

m

)
e∗j (y)

∨
Rj
(
x, ym−2

)
.

Since (Rj) converges pointwise to zero, then by [9, Theorem 2.6], (Rj) is
bounded in norm. Hence, by Proposition 1, the series

∑∞
j=1 e

∗
j (x)Rj (y) con-

verges. Let (Sj) be a sequence of (m− 1)-homogeneous polynomials defined

by Sj (y) =
∨
Rj
(
x, ym−2

)
. Then the sequence (Sj) converges pointwise to zero
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by the polarization formula [9, Theorem 1.10]. Therefore, by Proposition 1

the series
∑∞

j=1 e
∗
j (y)

∨
Rj
(
x, ym−2

)
converges and since

P (x) =

∞∑
j=1

e∗j (x)Rj (x) =

∞∑
j=1

Qj (x) ,

it follows by linearity that
∨
P
(
x, ym−1

)
=
∑∞

j=1

∨
Qj
(
x, ym−1

)
. So

∨
P
(
x, ym−1

)
=

∞∑
j=1

1

m
e∗j (x)Rj (y) +

∞∑
j=1

(
1− 1

m

)
e∗j (y)

∨
Rj
(
x, ym−2

)
.

It follows from Lemma 2 that if P (x) =
∑∞

j=1 e
∗
j (x)Rj (x) and y =

(y1, y2, . . . ) ∈ `1, then

∨
P
(
ek, y

m−1
)

=
1

m
Rk (y) +

(
1− 1

m

) ∞∑
j=1

e∗j (y)
∨
Rj
(
ek, y

m−2
)
.

We do not know if the converse of Proposition 1(2) is true for all m ∈
N. However, the following proposition shows that if Φ = c0, the pointwise
convergence of (Rn) is necessary.

Proposition 3. Let (Rn) ⊂ P (m`1), be a sequence of c0-continuous poly-
nomials and for each x ∈ `1 define

P (x) =

∞∑
n=1

e∗n (x)Rn (x) .

If P is c0-continuous in the bounded subsets of `1, then (Rn) converges
pointwise to zero.

Proof. We prove the assertion by induction on m. Recall that if (ek) is
the canonical basis of `1 and (φj) ⊂ c0 is a bounded sequence such that
limn→∞ φn (ek) = 0 for every k, then limj φj (a) = 0 for all a ∈ `1.

Consider the bounded sequence (φn) ⊂ c0 = Pc0
(

1`1
)
, and the polynomial

P (x) =
∑∞

n=1 e
∗
n (x)φn (x). Assume that the polynomial P is c0-continuous

on bounded subsets of `1. Then, by Lemma 2, we have

∨
P (ek, y) =

1

2
φk (y) +

1

2

∞∑
j=1

e∗j (y)φj (ek) ,
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thus

(3.1)
∨
P (ek, el) =

1

2
(φk (el) + φl (ek)) .

As P ∈ Pc0 (`1), then for each l we have limk

∨
P (ek, el) = 0, also for each l we

have limk φl (ek) = 0 because φl ∈ c0. Thus, Equation 3.1 implies that for each
l we have limk φk (el) = 0 and therefore for all a ∈ `1, we have limφn (a) = 0.
This shows the assertion for m = 1.

We assume the assertion true for m. Let (Rn) ∈ Pc0
(
m+1`1

)
be a bounded

sequence and P (x) =
∑∞

n=1 e
∗
n (x)Rn (x). Assume that P ∈ Pc0

(
m+2`1

)
. By

Lemma 2, we have

(3.2)
∨
P
(
ek, y

m+1
)

=
1

m+ 2
Rk (y) +

(
1− 1

m+ 2

) ∞∑
j=1

e∗j (y)
∨
Rj (ek, y

m) .

As P ∈ Pc0
(
m+2`1

)
, then by Theorem 1, the polynomial Tk (y) =

∨
P (ek, y

m)
is c0-continuous on bounded subsets of `1. Also by hypothesis Rk ∈ Pc0 (m`1),
thus the identity 3.2 implies that for each k, the polynomial

Sk (y) :=

∞∑
j=1

yj
∨
Rj
(
ek, y

m−1
)
,

is c0-continuous on bounded subsets of `1. By Theorem 1, for each k, j, the

polynomial Uj (y) =
∨
Rj
(
ek, y

m−1
)

is c0- continuous on bounded subsets of `1.
Also, by [9, Theorem 2.2] we have

sup
j
‖Uj‖ ≤ sup

j

∥∥∥ ∨Rj∥∥∥ < mm

m!
sup
j
‖Rj‖ <∞.

Thus, (Uj) ⊂ Pc0
(
m−1`1

)
is a bounded sequence and by induction hypothesis,

given k and y ∈ `1, we have

(3.3) lim
j

∨
Rj
(
ek, y

m−1
)

= 0.

For each j and x ∈ `1 define ψj (x) =
∨
Rj
(
x, ym−1

)
. Since Rj ∈ Pc0

(
m+1`1

)
then we have that (ψj) ⊂ c0 by Theorem 1, and

‖ψj‖ ≤
mm

m!
sup
j
‖Rj‖ ‖y‖m−1 <∞ for all j ≥ 1.
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Equation 3.3 implies that for each k we have that limj ψj (ek) = 0 and therefore
for all x ∈ `1 we have limj ψj (x) = 0. In particular limj ψj (y) = 0, that
is limRj (y) = 0. This proves our assertion for m + 1, and the proof is
complete.

We recall that if ψ ∈ c ⊂ `∞ then ψ = λu + φ, where φ ∈ c0, u =
(1, 1, . . . , 1, . . . ) ∈ c and λ ∈ C. Now, for each j we have ‖ψ‖ ≥ |ψ (ej)| =
|λu (ej) + φ (ej)| = |λj + φj (ek)| and letting j → ∞ we have ‖ψ‖ ≥ |λ|.
Therefore, if (λj) ⊂ C, (φj) ⊂ c0 and limj ‖λju+ φj‖ = 0 then limj λj = 0
and limj ‖φj‖ = 0. This result can be generalized to polynomials in the space
Pc (m`1).

Theorem 2. Let (Qj) ⊂ Pc (m`1) and (Rj) ⊂ Pc0 (m`1) be sequences of
polynomials such that Qj (x) = 0 for all x ∈ keru. If limj ‖Qj +Rj‖ = 0,
then limj ‖Rj‖ = 0 and limj ‖Qj‖ = 0.

Proof. Let Pj = Qj +Rj then Pj ∈ Pc (m`1) for every j. Now, if z ∈ keru
then

|Pj (z)| = |Rj (z)| .
Thus

sup
x∈B(`1)∩keru

|Rj (x)| = sup
x∈B(`1)∩keru

|Pj (x)| ≤ sup
x∈B(`1)

‖Pj (x)‖ = ‖Pj‖ .

Therefore

(3.4) lim
j→∞

sup
x∈B(`1)∩keru

|Rj (x)| = 0.

If x =
∑∞

j=1 αjej ∈ B (`1), then for every n we have

x =

∞∑
j=1

αj (ej − ej+n) +
∞∑
j=1

αjej+n.

Note that

yn :=

∞∑
j=1

αj (ej − ej+n) ∈ 2B (`1) ∩ keru, and zn :=

∞∑
j=1

αjen+j ∈ B (`1) .

By Leibniz’s formula [9, Theorem 1.8], we have

Rj (x) = Rj (yn + zn) = Rj (yn) +

m−1∑
k=0

(
n
k

)
∨
Rj

(
ykn, z

m−k
n

)
.
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Since Rj ∈ Pc0 (`1), ‖zn‖ ≤ 2 for every n, and c0 − limn zn = 0, then by
Theorem 1, for each k = 0, 1, . . . ,m− 1, we have

lim
n

(
sup

y∈B(`1)

∣∣∣∣∨Rj (yk, zm−kn

)∣∣∣∣
)

= 0.

Thus, for each k = 0, 1, . . . ,m − 1, and ε > 0, there exists n0, n1, . . . , nm−1

such that

sup
x∈B(`1)

∣∣∣∣∨Rj (xk, zm−kn

)∣∣∣∣ < ε

2m+1
, for all n ≥ nk, k = 0, 1, . . . ,m− 1,

and therefore

sup
x∈B(`1)

∣∣∣∣∨Rj (xk, zm−kn

)∣∣∣∣ < ε

2m+1
, for all n ≥ max {n0, n1, . . . , nm−1} .

Thus, for all n ≥ max {n0, n1, . . . , nm−1}, we obtain

|Rj (x)| =

∣∣∣∣∣Rj (yn) +
m−1∑
k=0

(
m
k

)
∨
Rj

(
ykn, z

m−k
n

)∣∣∣∣∣
= |Rj (yn)|+

m−1∑
k=0

(
m
k

) ∣∣∣∣∨Rj (ykn, zm−kn

)∣∣∣∣
≤ sup

y∈2B(`1)∩keru
|Rj (y)|+

m−1∑
k=0

(
m
k

)
sup

x∈B(`1)

∣∣∣∣∨Rj (xk, zm−kn

)∣∣∣∣(3.5)

≤ sup
y∈2B(`1)∩keru

|Rj (y)|+
m−1∑
k=0

(
m
k

)
ε

2m+1

= sup
y∈2B(`1)∩keru

|Rj (y)|+ ε

2
.

By 3.4 we have limj supy∈B(`1)∩keru |Rj (y)| = 0, hence there exists j0 such
that for j ≥ j0 we have

sup
y∈2B(`1)∩keru

|Rj (y)| < ε

2
,

By relation 3.5 we obtain

|Rj (x)| < ε, for all x ∈ B (`1) and j ≥ j0.

Thus for all j ≥ j0, ‖Rj‖B(`1) < ε. This shows that limj ‖Rj‖ = 0. Now

Qj = Pj −Rj , implies that limj ‖Qj‖ ≤ limj ‖Pj‖+ limj ‖Rj‖ = 0.
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Theorem 3. Every polynomial P ∈ Pc (m`1) can be decomposed in the
form P = Q+ R, where Q ∈ Pc

(
m−1`1

)
with Q (x) = 0 for all x ∈ keru and

R ∈ Pc0
(
m−1`1

)
.

Proof. Form = 1 the statement is obvious. Suppose it is true form−1. Let

P ∈ Pc (m`1) and for each j consider the polynomials Tj (x) =
∨
P
(
ej , x

m−1
)
.

Then by Theorem 1 we have that Tj ∈ Pc
(
m−1`1

)
and by induction hypothesis

we have
∨
P
(
ej , x

m−1
)

= Tj (x) = Qj (x) +Rj (x) ,

where Qj ∈ Pc
(
m−1`1

)
, Rj ∈ Pc0

(
m−1`1

)
and Qj (x) = 0 for all x ∈ keru

for all j. Since (ej) is c-Cauchy, then (Tj) converges in norm to a polynomial
P ∈ Pc

(
m−1`1

)
and by induction hypothesis we have P = Q + R, with

Q ∈ Pc (`1), R̄ ∈ Pc0 (`1) and Q (x) = 0 for all x ∈ keru. By Lemma 2
limj Rj = R and limj Qj = Q in norm. So

P (x) =
∞∑
j=1

e∗j (x)
∨
P
(
ej , x

m−1
)

=
∞∑
j=1

e∗j (x) (Qj (x) +Rj (x))

And therefore

P (x) =
∞∑
j=1

e∗j (x)
(
Qj (x)− Q̄ (x)

)
+
∞∑
j=1

e∗j (x) Q̄ (x)

+
∞∑
j=1

e∗j (x)
(
Rj (x)− R̄ (x)

)
+
∞∑
j=1

e∗j (x) R̄ (x)

=

∞∑
j=1

e∗j (x)
(
Qj (x)− Q̄ (x)

)
+ Q̄ (x)u (x)

+

∞∑
j=1

e∗j (x)
(
Rj (x)− R̄ (x)

)
+ R̄ (x)u (x)

=
∞∑
j=1

e∗j (x)
(
Qj (x)− Q̄ (x)

)
+
(
Q̄ (x) + R̄ (x)

)
u (x)

+
∞∑
j=1

e∗j (x)
(
Rj (x)− R̄ (x)

)
.
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Since limj

∥∥Qj (x)− Q̄ (x)
∥∥ = 0, the polynomial

x 7−→
∞∑
j=1

e∗j (x)
(
Qj (x)− Q̄ (x)

)
is c-continuous on bounded subsets of `1 by Proposition 1 and vanishes on
keru. Also the polynomial x 7→

(
Q̄ (x) + R̄ (x)

)
u (x) vanishes on keru. Since

limj

∥∥Rj (x)− R̄ (x)
∥∥ = 0, and Rj , R̄ ∈ Pc0

(
m−1`1

)
, Proposition 1 implies

that x 7→
∑∞

j=1 e
∗
j (x)

(
Rj (x)− R̄ (x)

)
is a c0-continuous polynomial on

bounded subsets of `1.

We define

Q (x) =
(
Q̄ (x) + R̄ (x)

)
u (x) +

∞∑
j=1

e∗j (x)
(
Qj (x)− Q̄ (x)

)
,

R (x) =

∞∑
j=1

e∗j (x)
(
Rj (x)− R̄ (x)

)
.

Lemma 3. Let E be a Banach space, φ ∈ E′ and Q ∈ P (mE) be a poly-
nomial such that Q (x) = 0 for all x ∈ kerφ. Then there exists a polynomial
R ∈ P

(
m−1E

)
such that Q = φR.

Proof. Pick a ∈ E such that φ (a) = 1 and define the map T : E → E by
T (x) = φ (x) a− x. Then T is a continuous linear operator and T (x) ∈ kerφ
for all x ∈ E. By Leibniz’s formula, we have

Q (x) = Q (φ (x) a− T (x))

=

m∑
j=0

(
m
j

)
(−1)m−j

∨
Q
(

(φ (x) a)j , (T (x))m−j
)

=

m∑
j=1

(
m
j

)
(−1)m−j

∨
Q
(

(φ (x) a)j , (T (x))m−j
)

+Q (T (x))

=
m∑
j=1

(
m
j

)
(−1)m−j φj (x)

∨
Q
(
aj , (T (x))m−j

)
= φ (x)

m∑
j=1

(
m
j

)
(−1)m−j φj−1 (x)

∨
Q
(
aj , (T (x))m−j

)
.
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Note that for each j the map x 7→ φj−1 (x)
∨
Q
(
aj , (T (x))m−j

)
is an (m− 1)-

homogeneous polynomial. So

R (x) :=
m−1∑
j=0

(
m
j

)
(−1)m−j φj−1 (x)

∨
Q
(
aj , (T (x))m−j

)
,

is a continuous (m− 1)-homogeneous polynomial and

Q (x) = φ (x)R (x) .

Corollary 2. Let Q ∈ Pc (m`1) such that Q (x) = 0 for all x ∈ keru,
then there exists R ∈ Pc

(
m−1`1

)
such that Q (x) = u (x)R (x) for all x ∈ `1.

Proof. We define the map T : `1 → `1 by T (x) = u (x) e1 − x, then T is
obviously a c-continuous linear operator and T (x) ∈ keru for all x ∈ `1. By
Lemma 3 we have

Q (x) = Q (u (x) e1 − T (x)) = u (x)
m∑
j=1

(
m
j

)
uj−1 (x)

∨
Q
(
ej1, (T (x))m−j

)
.

Since Q ∈ Pc (m`1) then for each j = 1, 2, . . . ,m, the polynomial Sj : `1 → C

given by Sj (z) =
∨
Q
(
ej1, z

m−j
)

, is c-continuous on bounded subsets of `1.

Therefore Sj ◦ T ∈ Pc (`1) for j = 1, 2, . . . ,m and we have that

R (x) =
m−1∑
j=1

(
m
j

)
uj−1 (x) (Sj ◦ T ) (x)

=

m−1∑
j=1

(
m
j

)
uj−1 (x)

∨
Q
(
ej1, (T (x))m−j

)
,

is a c-continuous polynomial on bounded sets, and Q = uR.

Theorem 4. If P ∈ Pc (m`1), then for j = 0, 1, 2, . . . ,m there are polyno-
mials Rj ∈ Pc0

(
j`1
)
, such that

P (x) = R0 (x)um (x) + um−1 (x)R1 (x) + · · ·+ u (x)Rm−1 (x) +Rm (x) .
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Proof. By Theorem 3 we have P = Qm + Rm, where Qm ∈ Pc (m`1),
Rm ∈ Pc0 (m`1) and Q (x) = 0 for all x ∈ keru. By Lemma 3, Qm = uSm−1

with Sm−1 ∈ Pc (m`1). Thus, we have

P = uSm−1 +Rm.

Since Sm−1 ∈ Pc
(
m−1`1

)
, then by Theorem 3 we have Sm−1 = Qm−1 +

Rm−1, where Qm−1 ∈ Pc
(
m−1`1

)
, Qm−1 (x) = 0 for all x ∈ keru and Rm−1 ∈

Pc0
(
m−1`1

)
and therefore

P = u (Qm−1 +Rm−1) +Rm (x)

= uQm−1 +Rm−1u+Rm (x) .

By Lemma 3 we have that Qm−1 = uSm−2, with Sm−2 ∈ Pc (m`1). Therefore
we have

P (x) = u (x)2 Sm−2 +Rm−1u+Rm (x) .

Proceeding in this way we find for each j = 0, 1, 2, . . . ,m, the polynomials
Rj ∈ Pc0

(
j`1
)
, and Sj ∈ Pc

(
j`1
)
, such that

P (x) = umR0 +R1u
m−1 + · · ·+Rm−1u+Rm (x) ,

where R0 := S0.

4. c-Continuous entire functions

Let Ω be an open subset of complex Banach space E. A mapping
f : Ω ⊂ E → C is said to be holomorphic, if for each a ∈ Ω there exists
a ball B (a, r) ⊂ Ω and a sequence of polynomials (Pm) with Pm ∈ P (m`1),
m = 0, 1, 2 . . . , such that f (x) =

∑∞
m=0 Pm (x) uniformly for x ∈ B (a, r).

We denote by H(Ω) the vector space of all holomorphic mappings from Ω into
C. A holomorphic function f ∈ H (E) is said to be of bounded type if it
maps bounded sets into bounded sets. We denote by Hb(E) the space of the
holomorphic functions on E of bounded type.

Let Φ ⊂ E′, we denote by HΦ(E) the space of all functions f ∈ H(E)
that are Φ-continuous on bounded subsets of E, and by HΦu (E) the space
of all functions f ∈ H(E) that are uniformly Φ-continuous on bounded
subsets of E.

In 1982 Aron et al. in [1] have shown that the `1 problem has a posi-
tive answer if H`∞ (`1) ⊂ Hb (`1). On the other hand, it is obviously that
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Hc0 (`1) ⊂ Hb (`1) because every bounded set of `1 is relatively σ (`1, c0)-
compact, but bounded subsets of `1 are not necessarily relatively σ (`1, c)-
compact. These considerations have motivated us to raise the following
question.

Problem 3. If f : `1 → C is a holomorphic function which is c-continuous
on bounded sets, is f of bounded type?

An affirmative answer to this problem would answer affirmatively
Problem 2.

We denote by P(m)
c0 (`1) the space of all polynomials of the form

Q =
∑m

j=0Qj , with Qj ∈ Pc0
(
j`1
)

for all j = 0, 1, 2, . . . ,m. If Um (x) :=∑m
j=0 u

m−j (x), for all x ∈ `1, we define the m-homogeneous polynomial
U ⊗Q ∈ Pc (m`1) by

(U ⊗Q) (x) =

m∑
j=0

um−j(x)Qj(x).

We denote by Pf∗ (m`1) the space of continuous polynomials of finite type
that are c0-continuous on bounded subsets of `1.

Lemma 4. If R (x) ∈ P(m)
c0 (`1), then given ε > 0 there exists a polynomial

Q =
∑m

j=0Qj with Qj ∈ Pf∗
(
j`1
)

such that ‖Um ⊗ (R−Q)‖ < ε.

Proof. If x ∈ `1, we denote by

qn (x) =

n∑
j=1

e∗j (x) ej and qn (x) =

∞∑
j=n+1

e∗j (x) ej .

Then x = qn (x)+ qn+1 (x). Now, if φ = (φj)j∈N ∈ c0, then limn maxi≥n |φi| =
0. As maxi≥n |φi| = supx∈B(`1) φ (qn (x)) we have limn supx∈B(`1) φ (qn (x)) =
0. That is

(4.1) lim
n

sup
x∈B(`1)

φ (x− qn (x)) = 0.

Let R =
∑m

j=0Rj , with Rj ∈ Pc0
(
j`1
)
. Then by [1], for each j = 0, 1, 2, . . . ,m,

the polynomial Rj is c0-uniformly continuous on bounded sets. By 4.1, this
implies that given ε > 0, there exists an n0 such that |Rj (x)−Rj (qn (x))| <
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ε/ (m+ 2), for all n ≥ n0, x ∈ B (`1) and j = 0, 1, 2 . . . ,m. Thus ‖Rj −Rjqn‖
≤ ε/ (m+ 2) for n ≥ n0 and j = 0, 1, . . . ,m. Therefore we have∥∥um−j ⊗ (Rj −Rjqn)

∥∥ = sup
x∈B(`1)

∣∣um−j (x) (Rj (x)−Rjqn (x))
∣∣

≤ sup
x∈B(`1)

|Rj (x)−Rjqn (x)|

= ‖Rj −Rjqn‖ ≤
ε

m+ 2
.

Thus, for n ≥ n0 we have

‖R−Rqn‖ =

∥∥∥∥∥∥
m∑
j=0

Um ⊗ (R−Rqn)

∥∥∥∥∥∥ ≤
m∑
j=0

‖R−Rqn‖ < ε.

Since R ∈ Pc0 (m) (`1) and qn : `1 → `1 is a finite range operator, we have
that Rqn ∈ Pf∗ (m`1).

If f =
∑∞

n=0 Pn ⊂ Hb (`1) is a holomorphic function of bounded type with
Pn ∈ Pc (n`1) for all n ∈ N, then using the same arguments as in [1], it is not
difficult to show that f ∈ Hc (`1).

Proposition 4. The following statements are equivalent.

(i) Every holomorphic function f ∈ Hc (`1) of the form f =
∑∞

m=0 Um⊗Qm
with Qm ∈ P(m)

c0 (`1) is of bounded type.

(ii) Every holomorphic function f ∈ Hc (`1) of the form f =
∑∞

m=0 Um ⊗
Qm ∈ Hc (`1) with Qm ∈ P(m)

f∗ (`1), is of bounded type.

Proof. The implication (i) ⇒ (ii) is obvious since Pf∗ (m`1) ⊂ Pc0 (m`1).

Let us prove (ii)⇒ (i). Let f =
∑∞

m=0 Um⊗Qm ∈ Hb (`1) with Qm ∈ P(m)
c0 (`1)

for every m. Since Qm ∈ Pc0 (m`1), by Lemma 4 there exists a Rm ∈ P(m)
f∗ (`1),

such that ‖Um ⊗ (Qm −Rm)‖1/m < 1
mm . Thus lim ‖Um ⊗ (Qm −Rm)‖1/m =

0 and by [6, p. 206], the holomorphic function g =
∑
Um ⊗ (Qm −Rm) is of

bounded type and therefore g ∈ Hc (`1). Then f − g =
∑
Um⊗Rm ∈ Hc (`1).

By hypothesis h = f − g ∈ Hb (`1) and therefore f = g + h ∈ Hb (`1).
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