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Abstract : In this paper, we are interested in the study of certain operators in non-Archimedean

normed spaces of finite dimension. We introduce the notion of p-delta function, then we characterize

the simple operators, the similarities and the expansions. We show if E has an orthogonal basis,
then each injective operator on E is the composition of an isometry and an expansion.
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1. Introduction

We consider the family of n-dimensional non-Archimedean normed spaces
over a non-Archimedean valued field K. We discuss some geometrical aspects
of these spaces related to the notions of orthogonality and t-orthogonality.
Then, we study some particular and important operators on these spaces. It
is very known that all n-dimensional non-Archimedean normed spaces over K
are linearly homeomorphic to Kn. And one of the fundamental facts in the
theory of non-Archimedean normed spaces states that every finite-dimensional
normed space over a spherically complete valued field K has an orthogonal
basis. But, if K is not spherically complete, finite-dimensional normed spaces
over K without any orthogonal basis exist [5, p. 68]. However, every finite-
dimensional normed space E over K admits a t-orthogonal basis (Theorem
2.5). Therefore, using these geometrical aspects of finite-dimensional normed
space E over a non-Archimedean valued field K, we will introduce the notion
of p-delta function similarly to volume function, which is analogous to the
natural volume function in a real Hilbert space, introduced by van Rooij in
[6]. Then, we characterize three families of operators defined on E; namely,
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similarities, isometries and expansions.

For more details in non-Archimedean normed spaces, we refer to [3] , [4]
and [5]. And for more information on the subject, we refer to [1] and [2].

2. Preliminaries

Throughout the present paper, K will denote a non-Archimedean com-
plete valued field with a non-trivial absolute value. K is said to be spherically
complete if every shrinking sequence of closed balls in K has a non-empty
intersection. Clearly the spherical completion implies completion, but the
converse is not true in general [4]. Normed spaces over K are defined in a nat-
ural way. We say that a norm ∥ · ∥ on a K-vector space E is non-Archimedean
if it satisfies the strong triangle inequality: ∥x + y∥ ≤ max{∥x∥, ∥y∥} for all
x, y ∈ E.

We say that a normed space is non-Archimedean if its topology is defined
by a non-Archimedean norm.

Let E be a non-Archimedean normed space. E is spherically complete if
every shrinking sequence of closed balls in E has a non-empty intersection.
For any subset A of E, [A] will denote the linear hull of A in E.

Let t ∈]0, 1], nonzero elements x and y of E are called t-orthogonal if
d(x, [y]) ≥ t · ∥x∥, where d(x, [y]) = inf{∥x − z∥ : z ∈ [y]} is the distance
of x to [y]. We write x⊥ty. If t = 1, we say that x and y are orthogonal,
and we write x⊥y. We check easily that x⊥ty if, and only if, ∥αx + βy∥ ≥
t ·max{∥αx∥, ∥βy∥} for each α, β ∈ K.

We say that a family of nonzero elements (xi)i∈I of E is t-orthogonal if for
each i ∈ I, xi⊥txj for all j ∈ I\{i}.

Clearly, (xi)i∈I is t-orthogonal if, and only if, for each distinct i1, . . . , in ∈
I, and for each λ1, . . . , λn ∈ K, ∥

∑n
k=1 λkxik∥ ≥ t ·max1≤k≤n ∥λkxik∥. If, in

addition, E = [xi : i ∈ I], we say that (xi)i∈I is a t-orthogonal basis of E.

If (xi)i∈I is a t-orthogonal basis of E, for every x ∈ E, there is a unique
family (λi)i∈I ∈ KI such that: x =

∑
i∈I λixi and ∥x∥ ≥ t · supi∈I∥λixi∥.

We note that if (xi)i∈I is a t-orthogonal family in E, then (xi)i∈I is a
linearly independent family; and if (λi)i∈I is a family of nonzero elements of
K, then (λixi)i∈I is also a t-orthogonal family in E. In particular, if we take
π ∈ K with 0 < |π| < 1, then we can choose (λi)i∈I such that |π| ≤ ∥λixi∥ ≤ 1
for all i ∈ I.

As a consequence, if (xi)i∈I is a t-orthogonal basis of E, without loss of
generality, we can suppose that (xi)i∈I satisfies |π| ≤ ∥xi∥ ≤ 1 for all i ∈ I.
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From now on, (E, ∥.∥) will be a non-Archimedean normed space of dimen-
sion n ≥ 2.

It is well known that:

(1) E is linearly homeomorphic to Kn;

(2) E is a Banach space;

(3) All linear functionals f : E → K are continuous;

(4) All subspaces are closed.

An operator on E is a linear function T : E → E. All operators on E are
bounded.

We note Sm the set of all permutations σ of {1, . . . ,m} for each m ≥ 2.

Theorem 2.1. (Principle of van Rooij) Let t ∈]0, 1], let x, y be ele-
ments of E such that ∥x+ y∥ ≥ t · ∥x∥. Then ∥x+ y∥ ≥ t · ∥y∥.

Proof. See [4, Theorem 2.2.1].

Theorem 2.2. Let t ∈]0, 1], let e1, . . . , en be distinct non-zero vectors.
The following are equivalent:

(i) {e1, . . . , en} is a t-orthogonal system;

(ii) For all λ1, . . . , λn ∈ K, ∥
∑n

k=1 λkek∥ ≥ t ·max1≤k≤n ∥λkek∥;
(iii) For all j ∈ {1, . . . , n− 1}, ej+1⊥t[e1, . . . , ej ].

Proof. Analogous to the proof of [4, Theorem 2.2.7].

Lemma 2.3. Let F be a closed subspace of E and t ∈]0, 1[. For each
a ∈ E\F , there exists e ∈ E such that: [a] + F = [e] + F and e⊥tF .

Proof. Let r = d(a, F ). Since F is closed, r > 0. Let z ∈ F such that
∥a − z∥ ≤ r

t . Let e = a − z, then [a] + F = [e] + F . On the other hand,
d(e, F ) = d(a− z, F ) = r ≥ t.∥e∥.

For all x ∈ F and λ ∈ K, ∥λe + x∥ ≥ d(λe, F ) = |λ|d(e, F ) ≥ t · ∥λe∥.
Then, by the van Rooij principle (Theorem 2.1), ∥λe+x∥ ≥ t·max{∥λe∥, ∥x∥}.
Hence, e⊥tF .

Remark 2.4. (1) If e satisfies the conditions of the Lemma 2.3, it is the
same for all λe with λ ∈ K\{0}. Then, for all α ∈]0, 1[, we can choose e such
that α ≤ ∥e∥ ≤ 1.

(2) If F is spherically complete, we can choose e such that e⊥F .
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Using this lemma, we prove the following interesting theorem, see [4, The-
orem 2.3.7] for another proof.

Theorem 2.5. For each t ∈]0, 1[, there exists {e1, . . . , en} a t-orthogonal
basis of E.

Proof. Let e1 ∈ E\{0}, and set F1 = [e1]. Let a ∈ E\F1. By Lemma 2.3,
there exists e2 ∈ E such that [a] + F1 = [e2] + F1 and d(e2, F1) ≥ t · ∥e2∥.
Then, [a, e1] = [e1, e2] and e2⊥tF1. Hence, {e1, e2} is a t-orthogonal system
in E. Now set F2 = [e1, e2]. If dim(E) > 2, there is b ∈ E\F2, and by Lemma
2.3, there exists e3 ∈ E such that [b] + F2 = [e3] + F2 and d(e3, F2) ≥ t · ∥e3∥.
Then, [b, e1, e2] = [e1, e2, e3] and e3⊥tF2. Hence, {e1, e2, e3} is a t-orthogonal
system in E. Continuing like this we construct {e1, . . . , en} a t-orthogonal
system in E. And the result follows since each t-orthogonal system in E is
linearly independent.

Theorem 2.6. Let t ∈]0, 1[, then each one-dimensional subspace of E is
t-orthocomplemented in E.

Proof. Let F = [x1] be a one-dimensional subspace of E. Using Lemma
2.3 as in the proof of Theorem 2.5, we construct {x1, . . . , xn} a t-orthogonal
basis of E. Then, G = [x2, . . . , xn] is an orthocomplement subspace of F in
E.

Theorem 2.7. If E has an orthogonal basis, then each one-dimensional
subspace of E is orthocomplemented in E.

Proof. Let {e1, . . . , en} be an orthogonal basis of E and F = [x] a one-
dimensional subspace of E.

Let x =
∑n

i=1 λiei with ∥x∥ = max1≤i≤n ∥λiei∥ = ∥λjej∥ (1 ≤ j ≤ n).

Let G = [e1, . . . , ej−1, ej+1, . . . , en]. For each y =
∑n

i=1,i ̸=j λiei ∈ G we
have:

∥x− y∥ = ∥(λ1 − α1)e1 + · · ·+ (λj−1 − αj−1)ej−1 + λjej

+ (λj+1 − αj+1)ej+1 + · · ·+ (λn − αn)en∥
= max

{
∥(λ1 − α1)e1∥, . . . , ∥(λj−1 − αj−1)ej−1∥, ∥λjej∥,

∥(λj+1 − αj+1)ej+1∥, . . . , ∥(λn − αn)en∥
}

≥ ∥λjej∥ = ∥x∥
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Then, x⊥G. And

[x] +G = [λ1e1 + . . .+ λnen] +G = [ej ] + [e1, . . . , ej−1, ej+1, . . . , en] = E.

Therefore, G is an orthocomplemented subspace of F in E.

Lemma 2.8. Let F ⊂ G be two subspaces of E and π : E → E/F the
canonical surjection. On E/F we consider the non-Archimedean norm defined
as follows: ∥π(x)∥q = d(x, F ). Then, d(x,G) = d(π(x), π(G)) ∀x ∈ E.

Proof. Let x ∈ E. It’s about showing:

α = inf
z∈G

∥x+ z∥ = inf
z∈G

∥π(x+ z)∥q = β.

Let z ∈ G, ∥π(x+ z)∥q = d(x+ z, F ) ≤ ∥x+ z∥. Then, β ≤ α. To show α ≤ β
it suffices to check that for each r > 0, β < r ⇒ α ≤ r. Let r > 0 such that
β < r. And let ϵ > 0 such that β = infz∈G ∥π(x + z)∥q = r − ϵ. Then, there
exists zϵ ∈ G such that ∥π(x+ zϵ)∥q < β+ ϵ = r. So, d(x+ zϵ, F ) < r. Hence,
there exists yϵ ∈ F such that ∥x+zϵ+yϵ∥ < r. Since zϵ+yϵ ∈ G, d(x,G) ≤ r.
Then, α ≤ r, and the result follows.

An operator T on E is said simple if there exists a linear functional φ :
E → K and a vector z ∈ E such that: Tx = x+ φ(x) · z for all x ∈ E. Then,
we say that T is a (φ, z)-simple operator.

Proposition 2.9. Let T be a (φ, z)-simple operator on E. Then, det(T )
= 1 + φ(z). Hence, T is a bijection if, and only if, φ(z) ̸= −1.

Proof. We have Tx = x + φ(x).z for all x ∈ E. If z = 0, then T = idE
and det(T ) = 1.

If z ̸= 0, let B = (z, z2, . . . , zn) be a basis of E. The matrix of T in the
basis B is: 

1 + φ(z) φ(z2) φ(z3) . . . . . . φ(zn)

0 1 0 . . . . . . 0
... 0

. . .
. . . 0

...
...

. . .
. . .

. . .
...

...
...

. . . 1 0

0 0 . . . . . . 0 1


Therefore, det(T ) = 1 + φ(z).
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We note that if T is not a bijective (φ, z)-simple operator on E, then
z ∈ Ker(T ).

Observe that elementary operations (on a fixed basis) are particular cases
of simple operators (in fact, simple operators have elementary matrices in
some basis). Moreover, it is trivial that any bijective operator in a finite-
dimensional vector space E is the composition of elementary operations (as
any invertible matrix can be reduced to the identity by multiplying by el-
ementary matrices, and the inverses of these elementary matrices are again
elementary). Therefore, it is evident that any bijective operator on E is the
composition of simple operators.

3. p-delta functions

For each p ≥ 2 we define the p-delta function as follows:

δpE(x1, . . . , xp) =

p−1∏
i=1

d(xi, [xi+1, . . . , xp]) · ∥xp∥ ∀x1, . . . , xp ∈ E.

We easily verify that for each λ ∈ K, i ∈ {1, . . . , p} and x1, . . . , xp ∈ E

δpE(x1, . . . , xi−1, λxi, xi+1, . . . , xp) = |λ| δpE(x1, . . . , xp)

and

δpE(x1, . . . , xp) ≤
p∏

i=1

∥xi∥.

Proposition 3.1. Let x1, . . . , xp ∈ E, then we have:

(1) δpE(x1, . . . , xp) = 0 if, and only if, {x1, . . . , xp} is linearly dependent.

(2) δpE(x1, . . . , xp) =
∏p

i=1 ∥xi∥ if, and only if, {x1, . . . , xp} is an orthogonal
system.

Proof. (1) δpE(x1, . . . , xp) = 0⇔ ∥xp∥ = 0 or there exists i ∈ {1, . . . , p−1}
such that d(xi, [xi+1, . . . , xp]) = 0 ⇔ xp = 0 or there exists i ∈ {1, . . . , p− 1}
such that xi ∈ [xi+1, . . . , xp] ⇔ {x1, . . . , xp} is linearly dependent.

(2) Suppose that δpE(x1, . . . , xp) =
∏p

i=1 ∥xi∥. Since d(xi, [xi+1, . . . , xp]) ≤
∥xi∥ for all i ∈ {1, . . . , p − 1}, we must have d(xi, [xi+1, . . . , xp]) = ∥xi∥ for
all i ∈ {1, . . . , p − 1}. Then, xi ⊥ [xi+1, . . . , xp] for all i ∈ {1, . . . , p − 1}.
Therefore, {x1, . . . , xp} is an orthogonal system.
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Conversely, if {x1, . . . , xp} is an orthogonal system , then

d(xi, [xi+1, . . . , xp]) = ∥xi∥ ∀ i ∈ {1, . . . , p− 1}.

Therefore, δpE(x1, . . . , xp) =
∏p

i=1 ∥xi∥.

As a consequence of Proposition 3.1, we have δpE = 0 for all p > n.

Proposition 3.2. Let t ∈]0, 1[. If {e1, . . . , ep} is a t-orthogonal system
in E, then:

δpE(e1, . . . , ep) ≥ tp−1
p∏

i=1

∥ei∥.

Proof. δpE(e1, . . . , ep) =
∏p−1

i=1 d(ei, [ei+1, . . . , ep]) ·∥e∥p. For each i = 1, . . . ,
p− 1 we have:

d(ei, [ei+1, . . . , ep]) = inf
{∥∥∥ei +∑p

j=i+1
λjej

∥∥∥ : λi+1, . . . , λp ∈ K
}
.

Since {e1, . . . , ep} is a t-orthogonal system, ei⊥t[ei+1, . . . , ep] for all i = 1, . . . ,
p− 1. Then,∥∥∥ei +∑p

j=i+1
λjej

∥∥∥ ≥ t ·max
{
∥ei∥

∥∥∥∑p

j=i+1
λjej

∥∥∥} ≥ t · ∥ei∥.

Therefore, δpE(e1, . . . , ep) ≥ tp−1
∏p

i=1 ∥ei∥.

Lemma 3.3. Let x, y ∈ E, then δ2E(x, y) = δ2E(y, x).

Proof. Let Φ(u, v) = d(u,[v])
∥u∥ for all u, v ∈ E\{0}. It’s about showing

Φ(x, y) = Φ(y, x).
For this, it is enough to show

Φ(x, y) = inf
{ ∥αx+ βy∥
max{∥αx∥, ∥βy∥}

: α, β ∈ K\{0}
}
.

For each α, β ∈ K\{0}}, we have:

∥αx+ βy∥ ≥ d(αx, [βy]) = |α| d(x, [y]) = |α| ∥x∥Φ(x, y) = ∥αx∥Φ(x, y).

Since Φ(x, y) ∈]0, 1], by the van Rooij principle (Theorem 2.1),

∥αx+ βy∥ ≥ Φ(x, y) ·max{∥αx∥, ∥βy∥}.
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Then, Φ(x, y) ≤ ∥αx+βy∥
max{∥αx∥,∥βy∥} . Therefore,

Φ(x, y) ≤ inf

{
∥αx+ βy∥

max{∥αx∥, ∥βy∥}
: α, β ∈ K\{0}

}
.

On the other hand,

Φ(x, y) =
d(x, [y])

∥x∥
= inf

{
∥x+ βy∥

∥x∥
: β ∈ K\{0}

}
≥ inf

{
∥x+ βy∥

max{∥αx∥, ∥βy∥}
: α, β ∈ K\{0}

}
≥ inf

{
∥αx+ βy∥

max{∥αx∥, ∥βy∥}
: α, β ∈ K\{0}

}
.

Then, Φ(x, y) = inf
{ ∥αx+βy∥
max{∥αx∥,∥βy∥} : α, β ∈ K\{0}

}
. And the result follows.

Proposition 3.4. Let x1, . . . , xp ∈ E, then for each i ∈ {2, . . . , p− 1} we
have:

δpE(x1, . . . , xi−1, xi+1, xi, xi+2, . . . , xp) = δpE(x1, . . . , xp).

Proof. If one of the vectors x1, . . . , xp is null, the result is trivial. Then,
suppose all these vectors are nonzero. For i = p− 1, we have:

δpE(x1, . . . , xp−2, xp, xp−1) = ∥xp−1∥
{
d(x1, [x2, . . . , xp]) · d(x2, [x3, . . . , xp])

· . . . · d(xp−2, [xp, xp−1]) · d(xp, [xp−1])
}
.

By Lemma 3.3, δ2E(xp−1, xp) = δ2E(xp, xp−1), so

∥xp−1∥ · d(xp, [xp−1]) = ∥xp∥ · d(xp−1, [xp]).

Then,

δpE(x1, . . . , xp−2, xp, xp−1) = ∥xp∥
{
d(x1, [x2, . . . , xp])

· . . . · d(xp−2, [xp−1, xp]) · d(xp−1, [xp])
}

= δpE(x1, . . . , xp).

Now let i ∈ {2, . . . , p− 2}:

δpE(x1, . . . , xi−1,xi+1, xi, xi+2, . . . , xp)

= ∥xp∥d(x1, [x2, . . . , xp]) · . . . · d(xi−1, [xi, . . . , xp])

· d(xi+1, [xi, xi+2, . . . , xp]) · d(xi, [xi+2, . . . , xp])

· d(xi+2, [xi+3, . . . , xp]) · . . . · d(xp−1, [xp]).
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Then it’s enough to show

d(xi+1, [xi, xi+2, . . . , xp])·d(xi, [xi+2, . . . , xp])

= d(xi, [xi+1, . . . , xp]) · d(xi+1, [xi+2, . . . , xp]).

Let F = [xi+2, . . . , xp] and consider the canonical surjection π : E → E/F :

d(xi+1, [xi,xi+2, . . . , xp]) · d(xi, [xi+2, . . . , xp])

= d(xi+1, [xi] + F ) · d(xi, F )

= d(π(xi+1), π([xi] + F )) · d(π(xi), π(F )) (Lemma 2.8)

= d(π(xi+1), [π(xi)]) · d(π(xi), π(F ))

= [δ2E/F (π(xi+1), π(xi)) · ∥π(xi+1)∥q] · ∥π(xi)∥q

= [δ2E/F (π(xi), π(xi+1)) · ∥π(xi)∥q] · ∥π(xi+1)∥q

= d(π(xi), [π(xi+1)]) · d(π(xi+1), π(F ))

= d(π(xi), [π([xi+1] + F )]) · d(π(xi+1), π(F ))

= d(xi, [xi+1] + F ) · d(xi+1, F ) (Lemma 2.8)

= d(xi, [xi+1, . . . , xp]) · d(xi+1, [xi+2, . . . , xp]).

And the result follows.

Remark 3.5. For each nonzero vectors x1, . . . , xp ∈ E, we have also:

δpE(x2, x1, x3, . . . , xp) = δpE(x1, x2, . . . , xp).

It’s enough to show:

d(x2, [x1, x3, . . . ,xp]) · d(x1, [x3, . . . , xp])
= d(x1, [x2, . . . , xp]) · d(x2, [x3, . . . , xp]).

We set F = [x3, . . . , xp], and we follow the same approach of the proof of
Proposition 3.4.

Corollary 3.6. For each nonzero vectors x1, . . . , xp ∈ E and for each
permutation σ ∈ Sp, we have:

δpE(xσ(1), . . . , xσ(p)) = δpE(x1, . . . , xp).
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Proposition 3.7. Let x1, . . . , xp ∈ E and λ1, . . . , λp ∈ K, then for each
i ∈ {1, . . . , p} we have:

δpE

(
x1, . . . , xi−1,

∑p

j=1
λjxj , xi+1, . . . , xp

)
= |λi| δpE(x1, . . . , xp).

Proof. Let i ∈ {1, . . . , p}, then, by the definition of the p-delta function,
we have:

δpE

(
x1, . . . , xi−1,

∑p

j=1
λjxj , xi+1, . . . , xp

)
= δpE

(
x1, . . . , xi−1,

∑i

j=1
λjxj , xi+1, . . . , xp

)
= δpE

(
x1, . . . , xi−2,

∑i

j=1
λjxj , xi−1, xi+1, . . . , xp

)
(Proposition 3.4)

= δpE

(
x1, . . . , xi−2, λixi +

∑i−1

j=1
λjxj , xi−1, xi+1, . . . , xp

)
= δpE

(
x1, . . . , xi−2, λixi +

∑i−2

j=1
λjxj , xi−1, xi+1, . . . , xp

)
(def. of δpE)

= δpE

(
x1, . . . , xi−3, λixi +

∑i−2

j=1
λjxj , xi−2, xi−1, xi+1, . . .

)
(Prop. 3.4)

= δpE

(
x1, . . . , xi−3, λixi +

∑i−3

j=1
λjxj , xi−2, xi−1, xi+1, . . . , xp

)
(def. of δpE)

= δpE

(
x1, . . . , xi−1, λixi,

∑p

j=1
λjxj , xi+1, xi+2, . . . , xp

)
= δpE

(
x1, λixi +

∑2

j=1
λjxj , x2, x3, . . . , xi−1, xi+1, . . . , xp

)
= δpE(x1, λixi + λ1x1, x2, x3, . . . , xi−1, xi+1, . . . , xp)

= δpE(λixi, x1, x2, x3, . . . , xi−1, xi+1, . . . , xp)

= |λi| δpE(xi, x1, x2, x3, . . . , xi−1, xi+1, . . . , xp) = |λi| δpE(x1, . . . , xp).

Proposition 3.8. Let T be a (φ, z)−simple operator, then:

δnE(Tx1, . . . , Txn) = |det(T )| δnE(x1, . . . , xn) ∀x1, . . . , xn ∈ E.

Proof. Tx = x+φ(x)·z for all x ∈ E. Let x1, . . . , xn ∈ E. If {x1, . . . , xn} is
linearly dependent, then so is {Tx1, . . . , Txn} and the result follows easily. So,
we suppose that {x1, . . . , xn} is linearly independent, so it is a basis for E. If T
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is not bijective, then det(T ) = 1+φ(z) = 0, and there exists x =
∑n

i=1 λixi ∈
E\{0}, (λ1, . . . , λn ∈ K), such that Tx = 0. Then

∑n
i=1 λiTxi = 0, and

{Tx1, . . . , Txn} is linearly dependent. Therefore, δnE(Tx1, . . . , Txn) = 0. Now
suppose that T is bijective, then det(T ) = 1 + φ(z) ̸= 0. Let α1, . . . , αn ∈ K
such that z =

∑n
i=1 αixi. For each i ∈ {1, . . . , n} let βi = φ(xi);

det(T ) = 1 + φ(z) = 1 +
∑n

i=1
αiφ(xi) = 1 +

∑n

i=1
αiβi.

For each i ∈ {1, . . . , n}, Txi = xi +φ(xi) · z = xi + βi · z. Then, it is about
showing that:

δnE(x1 + β1z, . . . , xn + βnz) =
∣∣∣1 +∑n

i=1
αiβi

∣∣∣ δnE(x1, . . . , xn).
We can suppose, without loss of generality, that α1 ̸= 0 (otherwise, we can
make a permutation of the vectors x1, . . . , xn);(

1 +
∑n

i=1
αiβi

)
z =

∑n

i=1
αixi +

∑n

i=1
αiβiz =

∑n

i=1
αi(xi + βiz).

Then, we have:

δnE(Tx1, . . . , Txn) = δnE(x1 + β1z, . . . , xn + βnz)

=
1

|α1|
δnE

(∑n

i=1
αi(xi + βiz), x2 + β2z, . . . , xn + βnz

)
=

1

|α1|
δnE

(
(1 +

∑n

i=1
αiβi)z, x2 + β2z, . . . , xn + βnz

)
=

∣∣1 +∑n
i=1 αiβi

∣∣
|α1|

δnE(z, x2 + β2z, . . . , xn + βnz)

=
|det(T )|
|α1|

δnE(z, x2, . . . , xn)

=
|det(T )|
|α1|

δnE

(∑n

i=1
αixi, x2, . . . , xn

)
=

|det(T )|
|α1|

|α1| δnE(x1, x2, . . . , xn)

= | det(T )| δnE(x1, x2, . . . , xn).

Theorem 3.9. Let T be an operator on E, then:

δnE(Tx1, . . . , Txn) = |det(T )|δnE(x1, . . . , xn) ∀x1, . . . , xn ∈ E.
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Proof. Let x1, . . . , xn ∈ E. We can assume that the operator T is bi-
jective (otherwise, {Tx1, . . . , Txn} is always linearly dependent and hence
δnE(Tx1, . . . , Txn) is zero). There exist simple operators T1, . . . , Tm such that
T = TmTm−1 · · ·T1. Then

δnE(Tx1, . . . , Txn) = δnE(TmTm−1 · · ·T1x1, . . . , TmTm−1 · · ·T1xn).

So, by Proposition 3.8, we have:

δnE(Tx1, . . . , Txn)= |det(Tm)| δnE(Tm−1Tm−2 · · ·T1x1, . . . , Tm−1Tm−2 · · ·T1xn).

And applying the same result over and over we will get:

δnE(Tx1, . . . , Txn) = | det(Tm)| · · · |det(T1)| δnE(x1, . . . , xn)

= | det(T )| δnE(x1, . . . , xn).

4. Similarities

An operator T on E is said a similarity if there exist r > 0 such that:
∥Tx∥ = r∥x∥ for all x ∈ E. Then, we say that T is a r-similarity.
An isometry on E is a 1-similarity. It is immediate that any similarity is a
bijective operator. If T is an r-silimarity, then ∥T∥ = r and ∥Tx∥ = ∥T∥ · ∥x∥
for all x ∈ E.

Proposition 4.1. Let t ∈]0, 1] and T a similarity on E. If {e1, . . . , en} is
a t-orthogonal basis in E, then so is {Te1, . . . , T en}.

Proof. Let λ1, . . . , λn ∈ K:∥∥∥∑n

i=1
λiTei

∥∥∥ =
∥∥∥T(∑n

i=1
λiei

)∥∥∥ = ∥T∥
∥∥∥∑n

i=1
λiei

∥∥∥
≥ ∥T∥ t · max

1≤i≤n
∥λiei∥ = t · max

1≤i≤n
∥T∥∥λiei∥

= t · max
1≤i≤n

∥T (λiei)∥ = t · max
1≤i≤n

∥λiTei∥.

Then, {Te1, . . . , T en} is a t-orthogonal system in E. Hence, it is a t-orthogonal
basis in E.
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Theorem 4.2. Let T be a bijective operator on E. Then, we have:

(1) | det(T )| ≤ ∥T∥n;

(2) | det(T )| = ∥T∥n if, and only if, T is a similarity.

Proof. (1) Let t ∈]0, 1[. There exists {e1, . . . , en} a t-orthogonal basis in
E (Theorem 2.5). By Proposition 3.2, δnE(e1, . . . , en) ≥ tn−1

∏n
i=1 ∥ei∥. Then,

tn−1 | det(T )|
∏n

i=1
∥ei∥ ≤ | det(T )| δnE(e1, . . . , en)

= δnE(Te1, . . . , T en)

≤
∏n

i=1
∥Tei∥ ≤ ∥T∥n

∏n

i=1
∥ei∥.

Then, tn−1|det(T )| ≤ ∥T∥n for each t ∈]0, 1[. Hence, |det(T )| ≤ ∥T∥n.
(2) Assume that | det(T )| = ∥T∥n. If T is not a similarity, there exists

e1 ∈ E\{0} such that ∥Te1∥ < ∥T∥∥e1∥.
Let t ∈]0, 1[ such that ∥Te1∥ < tn−1 · ∥T∥ · ∥e1∥. Complete e1 to obtain a

t-orthogonal basis {e1, . . . , en} in E. Then, we have:

δnE(Te1, . . . , T en) ≤
∏n

i=1
∥Tei∥ = ∥Te1∥

∏n

i=2
∥Tei∥

<
(
tn−1 · ∥T∥∥e1∥

)∏n

i=2
∥Tei∥

= tn−1∥T∥n ·
∏n

i=1
∥ei∥ ≤ ∥T∥nδnE(e1, . . . , en).

Then, δnE(Te1, . . . , T en) < |det(T )|δnE(e1, . . . , en), which is a contradiction.

Reciprocally, assume that T is a similarity. Let t ∈]0, 1[, and consider a
t-orthogonal basis {e1, . . . , en} in E. By Proposition 3.2,

δnE(Te1, . . . , T en) ≥ tn−1
∏n

i=1
∥Tei∥ = tn−1 · ∥T∥n

∏n

i=1
∥ei∥

⇒ |det(T )| δnE(e1, . . . , en) ≥ tn−1∥T∥n
∏n

i=1
∥ei∥

⇒ |det(T )| ≥ (tn−1∥T∥n)
∏n

i=1 ∥ei∥
δnE(e1, . . . , en)

⇒ |det(T )| ≥ tn−1∥T∥n,

this being for all t ∈]0, 1[, then |det(T )| ≥ ∥T∥n. Therefore, |det(T )| =
∥T∥n.
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Theorem 4.3. Let T be an operator on E. Then, T is an isometry if,
and only if, ∥T∥ = |det(T )| = 1.

Proof. Suppose that T is an isometry, then by Theorem 4.2, |det(T )| =
∥T∥n = 1. Then, ∥T∥ = | det(T )| = 1.

Reciprocally, assume that ∥T∥ = |det(T )| = 1. It is about showing that
∥Tx∥ = ∥x∥ for all x ∈ E. Suppose that there exists e1 ∈ E\{0} such that
∥Te1∥ < ∥e1∥. Let t ∈]0, 1[ such that ∥Te1∥ < tn−1∥e1∥, and complete e1 to
obtain a t-orthogonal basis {e1, . . . , en} in E. Then, we have:

δnE(e1, . . . , en) =
1

| det(T )|
δnE(Te1, . . . , T en)

= δnE(Te1, . . . , T en) ≤
∏n

i=1
∥Tei∥

= ∥Te1∥
∏n

i=2
∥Tei∥ < tn−1∥e1∥

∏n

i=2
∥T∥∥ei∥

= tn−1
∏n

i=1
∥ei∥ ≤ δnE(e1, . . . , en),

which is a contradiction.

5. Expansions

An operator T on E is said an expansion if there exists a basis {e1, . . . , en}
in E and λ1, . . . , λn ∈ K such that: Tei = λiei for all i = 1, . . . , n.

Theorem 5.1. Let t ∈]0, 1], E and F be two non-Archimedean normed
spaces of dimension n ≥ 2 each having a t-orthogonal basis, and T : E → F a
nonzero operator. Then, there exist a nonzero vector e in E and a subspace
G of E such that:

(1) t∥T∥∥e∥ ≤ ∥Te∥ ≤ ∥T∥∥e∥;

(2) e⊥t2G;

(3) Te⊥tTG.

Proof. Let t ∈]0, 1[, and consider {x1, . . . , xn} a t-orthogonal basis in E

and {y1, . . . , yn} a t-orthogonal basis in F . Set δ = max1≤i≤n
∥Txi∥
∥xi∥ = ∥Txk∥

∥xk∥
(k ∈ {1, . . . , n}); δ ≤ ∥T∥.
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Let e = xk. For each λ1, . . . , λn ∈ K, we have:∥∥∥T(∑n

i
λixi

)∥∥∥ ≤ max
1≤i≤n

(
|λi| ∥Txi∥

)
≤ δ max

1≤i≤n

(
|λi| ∥xi∥

)
≤ δ

t

∥∥∥∑n

i=1
λixi

∥∥∥.
Then, ∥T∥ ≤ δ

t , and δ ≤ ∥T∥ ≤ δ
t . Hence, t∥T∥∥e∥ ≤ ∥Te∥ ≤ ∥T∥∥e∥.

It is clear that ∥Te∥ ≠ 0, otherwise ∥Txi∥ = 0 for all i = 1, . . . , n, and T =
0. By Theorem 2.6, the subspace [Te] admits a t-orthogonal complement in
F . Let H be this t-orthogonal complement, F = [Te]⊕tH. Set G = T−1(H).
Then, G is a subspace of E and Te⊥tTG.

For each y ∈ G, Ty ∈ H and we have:

∥e+ y∥ ≥ ∥Te+ Ty∥
∥T∥

≥ t max(∥Te∥, ∥Ty∥)
∥T∥

≥ t
∥Te∥
∥T∥

≥ t
t∥T∥∥e∥
∥T∥

= t2∥e∥.

Hence, e⊥t2G.
For t = 1, we apply the Theorem 2.7 for orthogonal bases with the same

reasoning. Then, we have:

(1) ∥Te∥ = ∥T∥∥e∥;
(2) e⊥G;

(3) Te⊥TG.

Remark 5.2. If the operator T is bijective, then the subspace G is of
dimension n− 1.

Theorem 5.3. Let t ∈]0, 1], E and F be two non-Archimedean normed
spaces of dimension n ≥ 2 each having a t-orthogonal basis, and T : E → F
an injective operator. Then, there exists {e1, . . . , en} a t-orthogonal basis of
E such that {Te1, . . . , T en} is a

√
t-orthogonal basis of F .

Proof. Let t ∈]0, 1[. By Theorem 5.1, there is en ∈ E\{0} and a subspace
Gn−1 of E such that:

√
t∥T∥∥en∥ ≤ ∥Ten∥ ≤ ∥T∥∥en∥, en⊥tGn−1, T en⊥√

tTGn−1

and dim(Gn−1) = n − 1. By applying the theorem again to Tn−1 = T|Gn−1
,

there exist en−1 ∈ Gn−1\{0} and a subspace Gn−2 of Gn−1 such that:
√
t∥Tn−1∥∥en−1∥ ≤ ∥Tn−1en−1∥ ≤ ∥Tn−1∥∥en−1∥,

en−1⊥tGn−2, Tn−1en−1⊥√
tTn−1Gn−2
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and dim(Gn−2) = n − 2. And by continuing in this way, we will have the
existence of a sequence of subspaces E = Gn ⊃ · · · ⊃ G1, dim(Gk) = k
(1 ≤ k ≤ n), and ek ∈ Gk\{0}, (2 ≤ k ≤ n) such that:

√
t∥Tk∥∥ek∥ ≤ ∥Tkek∥ ≤ ∥Tk∥∥ek∥, ek⊥tGk−1, Tkek⊥√

tTkGk−1,

with Tk = T|Gk
(2 ≤ k ≤ n − 1). Let e1 ∈ G1\{0}, then G1 = [e1]. By

Theorem 2.2, {e1, . . . , en} is a t-orthogonal basis of E and {Te1, . . . , T en} is
a
√
t-orthogonal basis of F .

For t = 1, the same reasoning gives us the existence of an orthogonal basis
{e1, . . . , en} of E such that {Te1, . . . , T en} is an orthogonal basis of F .

Theorem 5.4. If E has an orthogonal basis and ∥E∥ ⊂ |K|, then each
injective operator on E is the composition of an isometry and an expansion.

Proof. By Theorem 5.3, there exists an orthogonal basis {e1, . . . , en} of E
such that {Te1, . . . , T en} is an orthogonal basis of E. For each i ∈ {1, . . . , n},
let λi ∈ K such that ∥Tei∥ = |λi|, and set zi = 1

λi
Tei; {z1, . . . , zn} is an

orthogonal basis of E. Let U and V be the operators on E defined by:

Uei = zi and V zi = λizi for all i = 1, . . . , n.

It is clear that V is an expansion. And for each x =
∑n

i=1 αiei ∈ E, we have:

∥Ux∥ =
∥∥∥∑n

i=1
αiUei

∥∥∥ =
∥∥∥∑n

i=1
αizi

∥∥∥ = max
1≤i≤n

|αi| = ∥x∥.

Then, U is an isometry.

V U(x) = V
(∑n

i=1
αiUei

)
= V

(∑n

i=1
αizi

)
=

∑n

i=1
αiV zi

=
∑n

i=1
αiλizi =

∑n

i=1
αiTei = T

(∑n

i=1
αiei

)
= T (x).

Then, T = V U .
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