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Abstract : Let G be a closed symmetric monoidal concrete Grothendieck category. In this paper, we
introduce a model structure on (CN (G),P⊗dw ) the exact category of N -complexes with the degree-

wise ⊗-pure exact structure. Our result is based on the Gillespie’s Theorem by introducing two
compatible cotorsion pairs on this category.
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1. introduction

The concept of a model category, which has been in existence for approx-
imately fifty years, was introduced by Quillen in [27]. Quillen developed the
definition of a model category to formalize the similarities between homo-
topy theory and homological algebra. The key examples which motivated his
definition were the category of topological spaces, the category of simplicial
sets, and the category of chain complexes. The fundamental problem that
model categories address is the treatment of certain non-isomorphic maps
(weak equivalences) that are desired to be considered as isomorphisms and
since this idea of inverting weak equivalences is so central in mathematics,
model categories are extremely important.

The notion of cotorsion pairs (or cotorsion theory) was invented by Salce
[28] in the category of abelian groups and was rediscovered by Enochs and
coauthors in the 1990’s. In short, a cotorsion pair in an abelian category
A is a pair (F , C) of classes of object of A each of which is the orthogonal
complement of the other with respect to the Ext functor. In recent years, the
investigation of cotorsion pairs has proven particularly related to the study of

ISSN: 0213-8743 (print), 2605-5686 (online)

c©The author(s) - Released under a Creative Commons Attribution License (CC BY-NC 4.0)

https://doi.org/10.17398/2605-5686.39.1.119
mailto:bahiraei@guilan.ac.ir
mailto:nazaripour@webmail.guilan.ac.ir
https://revista-em.unex.es/index.php/EM/
https://creativecommons.org/licenses/by-nc/4.0/


120 p. bahiraei, j. nazaripour

covers and envelopes, notably in the context of demonstrating the flat cover
conjecture. Another application of cotorsion pairs is found in abelian model
structures, as defined by Hovey. Specifically, Hovey established that a Quillen
model structure in any abelian category A corresponds to two complete co-
torsion pairs in A that are compatible, known as Hovey pairs. Gillespie’s
work further extended this concept to exact categories. Numerous examples
of cotorsion pairs and their corresponding model structures on the category of
complexes were introduced based on Hovey’s theorem and Gillespie’s work.,
see [16, 29, 12, 13, 14, 9, 4, 32]. One of the model structures constructed in the
category of complexes of a closed symmetric monoidal Grothendieck category
was introduced by Estrada, Gillespie, and Odabasi in [11]. They define the
pure derived category with respect to the monoidal structure via a relative
injective model structure on the category of unbounded complexes. Since the
concept of N -complexes is a generalization of the ordinary complexes, it is
natural to study this model structures on the category of N -complexes. The
notion of N -complexes was introduced by Mayer [26] in the his study of sim-
plicial complexes and its homological theory was studied by Kapranov and
Dubois-Violette in [23, 8]. Besides their applications in theoretical physics
[7, 20], the homological properties of N -complexes have become a subject of
study for many authors as in [10, 17, 15, 31]. By an N -complex X, we mean
a sequence · · · → Xn−1 → Xn → Xn+1 → · · · such that composition of any
N consecutive maps gives the zero map. In recent years, many authors have
focused on N -complexes as a generalization of some concepts in the Homology
like derived category and homotopy category, see [22, 17, 3, 5, 25, 24, 34, 33].

In this paper, we will introduce a model structure on (CN (G),P⊗dw
) the

exact category of N -complexes with the degree-wise ⊗-pure exact structure
where G is a concrete Grothendieck category as in subsection 2.3. Our results
are based on the Gillespie’s Theorem in [16] by introducing two compatible
cotorsion pairs on this category. More precisely:

Theorem 1.1. Let G be as above. Then there is a model structure on
the exact category (CN (G),P⊗dw

) where CN (G) (resp. CN -⊗-ac(G)) is the class

of cofibrant (resp. trivially cofibrant) objects, dgN ⊗ -PInj (resp. ˜(⊗-PInj)N )
is the class of fibrant (resp. trivially fibrant) objects and trivial objects are
⊗-pure acyclic N -complexes. we call this model structure the ⊗-pure injective
model structure on (CN (G),P⊗dw

) and its homotopy category is DN -⊗-pur(G).

The paper is organized as follows. In Section 2 we recall some generality
on N -complexes and provide the background information needed through this
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paper such as exact category and purity. Our main result appears in Section
3 as Theorem 3.8.

2. Preliminaries

2.1. Model structures on exact category Model categories were
first introduced by Quillen [27]. Let C be a category. A model structure on
C is a triple (Cof,W,Fib) of classes of morphisms, called cofibrations, weak
equivalences and fibrations, respectively, such that satisfying certain axioms.
Morphisms in Cof∩W are called trivial cofibrations and morphisms in W∩Fib
are trivial fibrations.

The definition of model structure then was modified by some authors. The
one that is commonly used nowadays is due to Hovey [21]. Hovey discovered
that the existence of a model structure on any abelian category A is equivalent
to the existence of two complete cotorsion pairs in A which are compatible in
a precise way.

Gillespie followed [21] and focused on exact categories with model struc-
ture compatible with the exact structure. He defined cotorsion pairs in exact
categories and saw that Hovey’s correspondence between abelian model struc-
tures and cotorsion pairs naturally carries over to a correspondence between
exact model structures and cotorsion pairs.

Recall that an exact category is a pair (E ,E) where E is an additive cat-

egory and E is a distinguished class of diagrams of the form X
i−→ Y

d−→ Z
called conflation (we refer to it as a short exact sequence), satisfying certain
axioms which make conflations behave similar to short exact sequences in an
abelian category. We refer the reader to [6] for a readable introduction to
exact categories.

Before mentioning Gillespie’s theorem, we recall the notion of a cotorsion
pair in an exact category. Let (E ,E) be an exact category. The axioms of
exact category allow us to define Yoneda Ext groups with usual properties.
The abelian group Ext1

E(X,Y ) is the group of equivalence classes of short
exact sequences Y � Z � X. In particular, Ext1

E(X,Y ) = 0 if and only
if every short exact sequence Y � Z � X is isomorphic to the split exact
sequence Y � Y ⊕X � X.

A pair (F ,D) of full subcategories of E is called a cotorsion pair provided
that

F = ⊥D and F⊥ = D,

where ⊥ is taken with respect to the functor Ext1
E . The cotorsion pair (F ,D)
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is said to have enough projectives if for every X ∈ E there is a short exact
sequence D � F � X with D ∈ D and F ∈ F . We say that it has enough
injectives if it satisfies the dual statement. If both of these hold we say the
cotorsion pair is complete. The next theorem is a result due to Hovey [21]
which is described by Gillespie in the sense of exact category, see [16]. We
just recall that a class of objects W ∈ E is a thick subcategory of E if it is
closed under direct summands and if two out of three of the terms in a short
exact sequence are in W, then so is the third.

Theorem 2.1. ([16, Theorem 3.3]) Let (E ,E) be an exact category
with an exact model structure. Let C be the class of cofibrant objects, F
be the class of fibrant objects and W be the class of trivial objects. Then
W is a thick subcategory of E and both (C,W ∩ F) and (C ∩ W,F) are
complete cotorsion pairs in A. If we further assume that (E ,E) is weakly
idempotent complete then the converse holds. That is, given two compatible
cotorsion pairs (C,W∩F) and (C ∩W,F), each complete and with W a thick
subcategory, then there is an exact model structure on E where C is the class
of cofibrant objects, F is the class of fibrant objects and W is the class of
trivial objects.

2.2. The category of N-complexes on exact category Let (E ,E)
be an efficient exact category. We fix a positive integer N ≥ 2. An N -complex
is a diagram

· · ·
di−1
X−−−→ Xi diX−−→ Xi+1 di+1

X−−−→ · · ·

with Xi ∈ E and morphisms diX ∈ HomE(X
i, Xi+1) satisfying dN = 0. That

is, composing any N -consecutive maps gives 0. A morphism between N -
complexes is a commutative diagram

· · ·
di−1
X−−−−→ Xi diX−−−−→ Xi+1

di+1
X−−−−→ · · ·yf i yf i+1

· · ·
di−1
Y−−−−→ Y i diY−−−−→ Y i+1

di+1
Y−−−−→ · · ·

We denote by CN (E) the category of unbounded N -complexes on (E ,E). For
any object M of E and any j and 1 ≤ i ≤ N , let

Dj
i (M) : · · · −→ 0 −→ Xj−i+1 dj−i+1

X−−−−−→ · · ·
dj−2
X−−−→ Xj−1 dj−1

X−−−→ Xj −→ 0 −→ · · ·
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be an N -complex satisfying Xn = M and dnX = 1M for all (j− i+ 1 ≤ n ≤ j).
For 0 ≤ r < N and i ∈ Z, we define

diX,{r} := di+r−1
X · · · diX.

In this notation di{1} = di and di{0} = 1Xi .

Definition 2.2. A morphism f : X −→ Y of N -complexes is called null-
homotopic if there exists si ∈ HomE(X

i, Y i−N+1) such that

f i =
N−1∑
j=0

d
i−(N−1−j)
Y,{N−1−j}s

i+jdiX,{j}.

We denote by KN (E) the homotopy category of unbounded N -complexes
on (E ,E).

Definition 2.3. For X = (Xi, di) ∈ CN (E), we define suspension functor
Σ : KN (E) −→ KN (E) as follows:

(ΣX)m =
∐m+N−1

i=m+1
Xi, (Σ−1X)m =

∐m−N+1

i=m−1
Xi,

dmΣX =



0 1 0 0 · · · 0
... 0

. . .
. . .

. . .
...

...
...

. . .
. . .

. . . 0
...

...
. . .

. . . 0

0 0 · · · · · · 0 1

−dm+1
{N−1} −d

m+2
{N−2} · · · · · · · · · −d

m+N−1


,

dmΣ−1X =



−dm−1 1 0 · · · · · · 0

−dm−1
{2} 0 1

. . .
. . .

...
...

...
. . .

. . .
. . . 0

...
...

. . .
. . . 0

−dm−1
{N−2} 0 · · · · · · 0 1

−dm−1
{N−1} 0 · · · · · · · 0


.
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Let Edw(E) be the collection of conflations in CN (E) with split short exact
sequences in each degree. In the same manner in [22] it can be shown that
(CN (E),Edw(E)) is a Frobenius category and its stable category is the homo-
topy category KN (E) of E . So KN (E) together with this suspension functor is
a triangulated category, see [22, Theorem 2.6].

Recall that Ext1
CN (E)(X,Y ) is the group of (equivalence classes) of short

exact sequences Y � Z � X. We let Ext1
dw(X,Y ) be the subgroup of

Ext1
CN (E)(X,Y ) consisting of those short exact sequences which are split in

each degree.

Lemma 2.4. For N-complex X and Y, we have

Ext1
dw(Y,X) ∼= HomKN (E)(Y,ΣX).

Proof. The proof is exactly similar to [3, Lemma 2.4].

Let A be an abelian category and X be an N -complex of objects of A as
follows:

· · ·
di−1
X−−−→ Xi diX−−→ Xi+1 di+1

X−−−→ · · ·

we define

Zir(X) := Ker(di+r−1
X · · · diX), Bi

r(X) := Im((di−1
X · · · di−rX ),

Ci
r(X) := Coker((di−1

X · · · di−rX ), Hi
r(X) := Zir(X)/Bi

N−r(X).

Therefore in each degree, we have N − 1 cycle and clearly ZnN (X) = Xn.

Definition 2.5. Let X ∈ CN (A). We say X is N -acyclic if Hi
r(X) = 0

for each i ∈ Z and all r = 1, 2, . . . , N − 1. We denote the full subcategory of
CN (A) consisting of N -acyclic complexes by CN -ac(A).

Remark 2.6. An N -complex X is N -acyclic if and only if there exists some
r with 1 ≤ r ≤ N − 1 such that Hi

r(X) = 0 for each integer i, see [23].

Remark 2.7. By using [22, Proposition 3.2 (2)], it is easy to see that when-
ever X is an N -acyclic complex then ΣX and Σ−1X are N -acyclic complexes.

We also have the following lemma:
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Lemma 2.8. For an object M ∈ A, i ∈ Z, 1 ≤ r ≤ N − 1, and X,Y ∈
CN (A) we have the following isomorphisms:

HomCN (A)(D
i
r(M),Y) ∼= HomA(M,Zir(Y)).

Proof. See [15, Section 4] or [33, Lemma 2.2] for more details.

2.3. Purity Let G be a closed symmetric monoidal Grothendieck cat-
egory endowed with a faithful functor U : G → Set, where Set denotes the
category of sets. By abuse of notation, we write x ∈ G instead of x ∈ U(G),
for any object G in G. Analogously, |G| will denote the cardinality of U(G).
We will also assume that there exists an infinite regular cardinal λ such that
for each G ∈ G and any set S ⊆ G with |S| < λ, there is a subobject X ⊆ G
such that S ⊆ X ⊆ G and |X| < λ.

Given an infinite regular cardinal κ. Recall that an object X ∈ G is called
κ-presentable if the functor HomG(X,−) : G → Ab preserves κ-filtered colim-
its. An object X ∈ G is called κ-generated whenever HomG(X,−) preserves
κ-filtered colimits of monomorphisms. By our assumption, it is easy to see
that

|X| < λ ⇐⇒ X is λ-presentable ⇐⇒ X is λ-generated.

Definition 2.9. Let F be a class of objects of G. Then F is called de-
constructible if there exists a set S ⊆ G of objects such that F = Filt-S where
Filt-S is the class of all S-filtered objects in G

Definition 2.10. An exact category E is of Grothendieck type if E is
efficient and deconstructible in itself.

Definition 2.11. A morphism f : X → Y in G is called λ-pure if for any
commutative diagram

A
g−−−−→ B

i

y yp
X

f−−−−→ Y ,

where A and B are λ-presentable, there is a morphism h : B → X such
that i = h ◦ g.

According to the [1, 2.29, p. 86] every λ-pure morphism in G is a mono-
morphism.
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Remark 2.12. ([1, 2.30, p. 86]) In G, a morphism is λ-pure monomor-
phism if and only if it is a λ-directed colimit of split monomorphisms.

Theorem 2.13. ([1, Theorem 2.33]) There exists arbitrary large regu-
lar cardinal κ > λ such that every κ-presentable subobject X of A in G is
contained in a λ-pure subobject X ′ of A, where X ′ is κ-presentable.

Definition 2.14. A monomorphism f : X → Y is called ⊗-pure if f ⊗C
is monomorphism for all C ∈ G.

By Remark 2.12 and the fact that ⊗ preserves λ-colimits, it is clear that
every λ-pure morphism is ⊗-pure monomorphism. We denote the proper class
of λ-pure (respect, ⊗-pure) short exact sequences in G by P (respect, P⊗).
Therefore we have the containment P ⊆ P⊗.

Remark 2.15. It is also straightforward to check that G with the exact
structure P⊗ is an efficient exact category.

3. ⊗-pure injective model structure on CN (G)

In this section we will introduce a model structure on (CN (G),P⊗dw
)

the exact category of N -complexes with the degree-wise ⊗-pure exact struc-
ture where G is a concrete Grothendieck category as in subsection 2.3. Our
results are based on [16, Theorem 3.3] by introducing two compatible co-
torsion pairs on this category. First, we start by defining some new classes
in (CN (G),P⊗dw

).

Definition 3.1. An N -complex X in CN (G) is called ⊗-acyclic if it is
acyclic in (CN (G),P⊗dw

). In fact, each sequence 0 → Znr (X) → Xn →
Zn+r
N−r(X) → 0 is ⊗-pure exact for n ∈ Z and 1 ≤ r ≤ N − 1, or equiva-

lently, X ⊗ C is N -acyclic for all C ∈ G. We denote by CN -⊗-ac(G) the class
of all ⊗-acyclic N -complexes.

We will also consider the following classes of CN (G):

Definition 3.2. let CN (G) be as above. We define:

(1) The class of ˜(⊗-PInj)N consisting of all X ∈ CN -⊗-ac(G) such that
Zir(X) ∈ ⊗-PInj for all r, i, where ⊗-PInj is the class of all injective
object with respect to exact structure P⊗ in G.
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(2) The class of dgN ⊗ -PInj, consisting of all X ∈ CN (⊗-PInj) such that
HomKN (G)(E,X) = 0 whenever E ∈ CN -⊗-ac(G).

Proposition 3.3. The pair (CN (G), ˜(⊗-PInj)N ) is a complete cotorsion
pair in the exact category (CN (G),P⊗dw

). Moreover,

˜(⊗-PInj)N = dgN ⊗ -PInj ∩ CN -⊗-ac(G).

Proof. First of all, the category (CN (G),P⊗dw
) is of a Grothendieck type.

Indeed, CN (G) is a Grothendieck category and any λ-pure subobject give us a
degree-wise λ-pure monomorphism, hence degree-wise ⊗-pure monomorphism
as well. Note that, colimits in CN (G) are computed pointwise. We will show
that CN (G) = Filt-CN (G)κ, where CN (G)κ is the class of all κ-presentable
objects in CN (G) for a regular cardinal κ > λ. First of all, note that if
X ⊆ X′ ⊆ Y is such that X ⊆ Y and X′/X ⊆ Y/X are λ-pure-monic in
CN (G) then X′ ⊆ Y is also λ-pure monic. Now let X be an N -complex. By
Theorem 2.13 there exist a cardinal κ1 > λ such that for 0 ⊆ X there exists κ1-
presentable X1 such that X1 ⊆ X is λ-pure. Then set Y = X/X1. Similarly,
by applying Theorem 2.13 there is a regular cardinal κ2 > λ and X2/X1 such
that X2/X1 ⊆ Y is λ-pure monic and X2/X1 is κ2-presentable. According
to the above fact we can say that X2 ⊆ X is also λ-pure monic. Whit this
procedure and by utilizing the fact that every λ-pure monomorphsim is ⊗-pure
monomorphism we can establish the existence of a large cardinal κ in which
the filtration is constructed in CN (G) with the ⊗-pure exact structure. So if

we prove that ˜(⊗-PInj)N is equal to all injective objects in the exact category

(CN (G),P⊗dw
) then by [29, Corollary 5.9] we get that (CN (G), ˜(⊗-PInj)N ) is

a complete cotorsion pair in the exact category (CN (G),P⊗dw
). To this end,

it is easy to check that X is in ˜(⊗-PInj)N if and only if Zn1 (X) ∈ ⊗-PInj and
X ∼=

∏
n∈ZD

n+N−1
N (Zn1 (X)) see [33, Corollary 3.5]. Moreover, in a similar

manner of [17, Theorem 3.3] it can be said that ˜(⊗-PInj)N is precisely the
class of all contractible N -complexes with the pure injective component, so
clearly

˜(⊗-PInj)N ⊆ dgN ⊗ -PInj ∩ CN -⊗-ac(G).

Conversely, let X ∈ dgN ⊗ -PInj ∩ CN -⊗-ac(G). By assumption, idX : X→ X
is null homotopic. So X is a contractible N -complexes with each term is in

⊗-PInj, hence X ∈ ˜(⊗-PInj)N .
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We need the following lemma:

Lemma 3.4. Let X be a ⊗-acyclic N -complex and X′ be an N -subcom-
plex of X. If X′ is N -acyclic and Znr (X′) ⊆ Znr (X) is ⊗-pure for each n ∈ Z,
then X′ is ⊗-acyclic and X ′n ⊆ Xn is ⊗-pure for each n ∈ Z.

Proof. Consider the following commutative diagram:

0 −−−−→ Znr (X′)
i′n−−−−→ X ′n −−−−→ Zn+r

N−r(X
′) −−−−→ 0yzn yın yzn+r

0 −−−−→ Znr (X)
in−−−−→ Xn −−−−→ Zn+r

N−r(X) −−−−→ 0 .

Since in and zn are ⊗-pure monomorphism, hence we can say that ın◦i′n is also
⊗-pure monomorphism. This gives that Znr (X′) ⊆ X ′n is a ⊗-pure monomor-
phism. So the above sequence is ⊗-pure and therefore X′ is ⊗-acyclic. By
using five lemma we can say that ın is also a ⊗-pure monomorphism.

Proposition 3.5. The class CN -⊗-ac(G) is deconstructible.

Proof. We show that there is a regular cardinal κ such that CN -⊗-ac(G) =
Filt-CN -⊗-ac(G)κ. First of all, CN -⊗ text−ac(G) is closed under colimits. Indeed,
if {Ci; ϕij : Ci → Cj} is a λ-directed diagram with Cis are ⊗-pure acyclic of
N -complexes then for each S ∈ G we have

colim(Ci)⊗ S = colim(Ci ⊗ S)

For each i, Ci⊗S is acyclic and by the fact that colimts in CN (G) are computed
pointwise so we can say that colim(Ci⊗S) is acyclic. So it is enough to show
that there is a regular cardinal κ such that for each X ⊆ Y 6= 0 in CN -⊗-ac(G)
with X is κ-presentable, there exists a κ-presentable object X′ 6= 0 with
X ⊆ X′ ⊆ Y, and X′ ∈ CN -⊗-ac(G), and also X ′n ⊆ Xn is ⊗-pure for
each n ∈ Z. For this purpose we use the Theorem 2.13. So let 0 6= Y ∈
CN -⊗-ac(G). By Theorem 2.13 there exists a regular cardinal κ > λ such that
each subcomplex X of Y can be embedded in κ-presentable object X′ which
is a λ-pure embedding. All that remains is to show X′ belongs to CN -⊗-ac(G).
According to the Lemma 3.4 we need to check that X′ is an N -acyclic complex
and Znr (X′) ⊆ Znr (Y) is ⊗-pure for all n ∈ Z. For any λ-presentable object
A ∈ G we can say that Dn

r (A) is an λ-presentable N -complex for any n ∈ Z
and 1 ≤ r ≤ N − 1, since |Dn

r (A)| < λ. So if we consider the short exact
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sequence 0 → X′ → Y → Y/X′ → 0 and apply HomCN (G)(D
n
r (A),−) on it

then one can see that

0 −→ HomCN (G)(D
n
r (A),X′) −→ HomCN (G)(D

n
r (A),Y)

−→ HomCN (G)(D
n
r (A),Y/X′) −→ 0

is an exact sequence. By using Lemma 2.8 we can say that the following
sequence is exact.

0 −→ HomG(A,Znr (X′)) −→ HomG(A,Znr (Y)) −→ HomG(A,Znr (Y/X′)) −→ 0 .

This shows that 0 → Znr (X′) → Znr (Y) → Znr (Y/X′) → 0 is a λ-pure exact
sequence, thus Znr (X′) ⊆ Znr (Y) is λ-pure monomorphism and hence it is ⊗-
pure monomorphism as well. Now we show that X′ is an N -acyclic complex.
Consider the following diagram:

0 −−−−→ Zn−N+r
N−r (X′) −−−−→ Zn−N+r

N−r (Y) −−−−→ Zn−N+r
N−r (Y/X′) −−−−→ 0y y y

0 −−−−→ X ′n−N+r −−−−→ Y n−N+r −−−−→ (Y/X ′)n−N+r −−−−→ 0 .

The snake lemma tells us the sequence 0 → Bn
N−r(X

′) → Bn
N−r(Y) →

Bn
N−r(Y/X

′)→ 0 is exact. Consider the following diagram:

0 −−−−→ Bn
N−r(X

′) −−−−→ Bn
N−r(Y) −−−−→ Bn

N−r(Y/X
′) −−−−→ 0y y y

0 −−−−→ Znr (X′) −−−−→ Znr (Y) −−−−→ Znr (Y/X′) −−−−→ 0 .

Since Y is an N -acyclic complex then Bn
N−r(Y) = Znr (Y) for any n ∈ Z and

1 ≤ r ≤ N − 1. Now by applying snake lemma on the above commutative
diagram we get that Bn

N−r(X
′) = Znr (X′) for any n ∈ Z and 1 ≤ r ≤ N − 1.

So X′ is an N -acyclic complex.

Proposition 3.6. The pair (CN -⊗-ac(G),dgN ⊗ -PInj) is a complete co-
torsion pair in the exact category (CN (G),P⊗dw

).

Proof. According to the Proposition 3.5 CN -⊗-ac(G) is deconstructible.

Therefore by [29, Theorem 5.16] we can say that (CN -⊗-ac(G),CN -⊗-ac(G)⊥) is

a complete cotorsion pair. So it is enough to show that CN -⊗-ac(G)⊥ is exactly
dgN ⊗ -PInj. By Definition 3.2 if X ∈ dgN ⊗ -PInj then HomKN (G)(Y,X) = 0
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for any Y ∈ CN -⊗-ac(G). But Remark 2.7 tells us Σ−1Y is also ⊗-acyclic, so
HomKN (G)(Σ

−1Y,X) = 0. Therefore by using Lemma 2.4 we can say that

Ext1
dw(Y,X) = 0. Note that since X ∈ dgN ⊗ -PInj, then Ext1

P⊗dw
(Y,X) =

Ext1
dw(Y,X) = 0. This follows that X ∈ CN -⊗-ac(G)⊥. Conversely, suppose

X ∈ CN -⊗-ac(G)⊥. It is enough to show that each Xi is ⊗-pure injective. Let

0→ Xi f−→ Y → Z → 0 be ⊗-pure exact sequence in G. We construct a short
exact sequence 0→ X→ A→ Di+N−1

N (Z)→ 0 in CN (G) as follows:

...
...

...y y y
0 −−−−→ Xi−2 id−−−−→ Xi−2 −−−−→ 0 −−−−→ 0ydi−2

ydi−2

y
0 −−−−→ Xi−1 id−−−−→ Xi−1 −−−−→ 0 −−−−→ 0ydi−1

yf◦di−1

y
0 −−−−→ Xi f−−−−→ Y −−−−→ Z −−−−→ 0ydi PO

yδi ∥∥∥
0 −−−−→ Xi+1 gi+1

−−−−→ Ai+1 −−−−→ Z −−−−→ 0ydi+1 PO

yδi+1

∥∥∥
0 −−−−→ Xi+2 gi+2

−−−−→ Ai+2 −−−−→ Z −−−−→ 0y y ∥∥∥
...

...
...ydi+N−2

yδi+N−2

∥∥∥
0 −−−−→ Xi+N−1 gi+N−1

−−−−−→ Ai+N−1 −−−−→ Z −−−−→ 0ydi+N−1

yϕ y
0 −−−−→ Xi+N id−−−−→ Xi+N −−−−→ 0 −−−−→ 0y y y

...
...

... .

Note that for i ≤ j < i + N − 1, Aj+1s are defined based on the pushout of
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Xj → Xj+1 along with Xj → Aj and the morphism ϕ : Ai+N−1 → Xi+N is
defined according to the universal property of pushout. In fact, consider the
following pushout diagram:

Xi f−−−−→ Y

di{N−1}

y yδi{N−1}

Xi+N−1 gi+N−1

−−−−−→ Ai+N−1 .

Now consider two morphisms 0 : Y → Xi+N and di+N−1 : Xi+N−1 → Xi+N .
By the universal property of pushout there is a ϕ : Ai+N−1 → Xi+N such that
ϕ ◦ δi{N−1} = 0 and ϕ ◦ gi+N−1 = di+N−1. Clearly A is an N -complex. Since
pushout preserves ⊗-pure monomorphism, therefore the above sequence is an
exact sequence in (CN (G),P⊗dw

).
On the other hand, Di+N−1

N (Z) is ⊗-acyclic so by assumption the sequence
0 → X → A → Di+N−1

N (Z) → 0 is split, in particular it is degree-wise split,
hence Xi is ⊗-pure injective.

Definition 3.7. Consider the exact category (CN (G),P⊗dw
). Let

KN -⊗-ac(G) be a full subcategory of KN (G) consisting of ⊗-pure acyclic N -
complexes. Notice that ⊗-pure acyclic N -complexes are closed under homo-
topy equivalences, so KN -⊗-ac(G) is well defined. If f : X→ Y is a morphism
between ⊗-pure acyclic N -complexes, then Con(f) is again ⊗-pure acyclic.
Thus KN -⊗-ac(G) is a triangulated subcategory of KN (G). Because ⊗-pure
acyclic N -complexes are closed under direct summands, KN -⊗-ac(G) is a thick
subcategory of KN (G). Then by the Verdier’s correspondence, we get the
⊗-pure derived category

DN -⊗-pur(G) := KN (G)/KN -⊗-ac(G)

Now we are ready to introduce our main result.

Theorem 3.8. Let G be as above. Then there is a model structure on
the exact category (CN (G),P⊗dw

) where CN (G) (resp. CN -⊗-ac(G)) is the class

of cofibrant (resp. trivially cofibrant) objects, dgN ⊗ -PInj (resp. ˜(⊗-PInj)N )
is the class of fibrant (resp. trivially fibrant) objects and trivial objects are
⊗-pure acyclic N -complexes. we call this model structure the ⊗-pure injective
model structure on (CN (G),P⊗dw

) and its homotopy category is DN -⊗-pur(G).

Proof. The proof is obtained using Proposition 3.3, Proposition 3.6
and Theorem 2.1.
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Example 3.9. Let X be a scheme with associated structure sheaf OX.

(a) (Mod-(X),⊗X,OX,HomX) is a closed symmetric monoidal category,
where Mod-(X) is the abelian category of all the sheaves (of OX-modules) on
X (see [19, Chapter II, Section 5]). It is well known that this is a Grothendieck
category, see [18, Proposition 3.1.1]. We can define ⊗X-pure monomorphisms
as in Definition 2.14. Then by Theorem 3.8 we can say that there is a model
structure on the exact category CN (Mod-(X)) in which its homotopy category
is DN -⊗X-pur(Mod-(X)).

(b) The category Qcoh(X) of quasi-coherent sheaves on X is an abelian
subcategory of Mod-(X), (see [19, Chapter II, Proposition 5.7]). Qcoh(X) is a
closed symmetric monoidal Grothendieck category, with the closed structure
coming from the coherator functor Q applied to the usual sheafhom, see [30,
Tag 08D6] and [2, Lemma 1.3]. We can define ⊗X-pure monomorphisms as
in Definition 2.14. Then by Theorem 3.8 we can say that there is a model
structure on the exact category CN (Qcoh(X)) in which its homotopy category
is DN -⊗X-pur(Qcoh(X)).
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