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Estimates of Generalized Nevanlinna Counting Function
and Applications to Composition Operators

Z. Bendaoud1,∗, F. Korrichi2,∗, L. Merghni3,†, A. Yagoub1,∗
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Abstract : Let φ be a holomorphic self-map of the unit disc. We study the relationship
between the generalized Nevanlinna counting function associated with φ and the norms of
φn in the Dirichlet spaces. We give examples of Hilbert-Schmidt composition operators on
the Dirichlet spaces.
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1. Introduction

Let D be the unit disk and T = ∂D be the unit circle. We denote by
dA(z) = dxdy/π the normalized Lebesgue measure, and for 0 ≤ α ≤ 1, we
set

dAα(z) := (1 + α)
(
1− |z|2

)α
dA(z) .

In this paper we are concerned with composition operators on the Dirichlet
spaces;

Dα =

{
f ∈ Hol(D) : ∥f∥2α = |f(0)|2 +

∫
D
|f ′(z)|2 dAα(z) < ∞

}
.
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By [6, p. 14] this norm is comparable to

∥f∥2α ≍
∞∑
n=0

(1 + n)1−α
∣∣f̂(n)∣∣2.

Hence D1 is the usual Hardy space H2, and D0 is the classical Dirichlet
space D.

Let φ : D −→ D be a holomorphic function. The composition operator on
Dα with symbol φ is defined as

Cφ(f) := f ◦ φ , f ∈ Dα .

In this paper we study some operator-theoretic properties of Cφ such as
boundedness, compactness and Hilbert-Schmidt class membership. Recall
that Cφ is always well–defined on H2, but not on Dα for 0 ≤ α < 1, we refer
the reader to the papers [1, 2, 5, 10, 7, 14].

The generalized Nevanlinna counting function associated to φ, 0 < α ≤ 1,
is given by

Nφ,α(z) :=
∑

z=φ(w),w∈D

(1− |w|)α, z ∈ D ,

where each preimage w is counted according to its multiplicity. For α = 1,
Nφ,1 is comparable with the classical Nevanlinna counting function

Nφ(z) := Nφ,1(z) =
∑

z=φ(w),w∈D

log(1/|w|) , z ∈ D \ {ϕ(0)}.

By the Littlewood subordination principle [12, 13], the composition operator
Cφ is bounded on H2. It is also true that supz∈DNφ(z)/(1−|z|) < ∞. In [12]
Shapiro gave the following complete characterization of compact composition
operators on H2:

Cφ is compact on H2 ⇐⇒ lim
|z|→1−

Nφ(z)

1− |z|
= 0 .

The generalized Nevanlinna counting function plays also a key role in the
study of composition operators on the weighted spaces Dα, see Theorem 2.3.

Generally speaking, it is difficult to give an estimate of Nφ,α. In this
work we establish an estimate of the generalized Nevanlinna counting function
Nφ,α in terms of the norms (∥φn∥α)n of the sequence (φn)n. This allows us to
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construct some examples of bounded and compact operators on Dα. Precisely,
putting

Dα(f) =

∫
D
|f ′(z)|2 dAα(z) .

We shall show that, for 0 < α < 1,

Nφ,α(1− 1/n) . Dα

(
φn+1

)
, n ≥ 1 . (1.1)

Now, to each φ we associate the counting function

nφ(z) = card{w : φ(w) = z}, z ∈ D .

This is the number of roots of the equation φ(w) − z = 0. We mention also
that Nφ,0 = nφ.

We shall establish an estimate of nφ in terms of the norm on D0 of the
powers of φ. More precisely, we show that

inf
1

n+1
≤1−|z|≤ 1

n

nφ(z) . D0(φ
n+1) . (1.2)

The paper is organized as follows: In the next section we prove (1.1). In
Section 3, we give the proof of (1.2). Section 4 provides some examples of
estimates of Nφ,α and some examples of Hilbert-Schmidt class membership.

Throughout the paper, the notation A . B means that there is an absolute
constant C such that A ≤ CB. We write A ≍ B if both A . B and B . A.

2. The relationship between Nφ,α and Dα(φ
n)

In the sequel we need some basic results. The first lemma gives the
change of variable formula in terms of generalizes Nevanlinna counting func-
tion, see [13].

Lemma 2.1. Let 0 ≤ α ≤ 1, φ be a holomorphic self-map of D and let f
be a measurable function on D. Then∫

D
(f ◦ φ)(z)|φ′(z)|2 dAα(z) = (1 + α)

∫
D
f(z)Nφ,α(z) dA(z) .

For α > 0, the function Nφ,α satisfies the mean value inequality (see [9]).
More precisely, we have:
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Lemma 2.2. Let α ∈ (0, 1]. If φ is a holomorphic self-map of D, then

Nφ,α(z) ≤
2

r2

∫
D(z,r)

Nφ,α(w) dA(w)

for every disk D(z, r) of radius r centered at z with D(z, r) ⊂ D\D(0, 1/2).

We need also the following Theorem due to Kellay and Lefèvre [9]

Theorem 2.3. If φ is a holomorphic self-map of D, then, for 0 < α ≤ 1,

(i) Cφ is bounded on Dα ⇐⇒ Nφ,α = O
(
(1− |z|)α

)
, |z| → 1−.

(ii) Cφ is compact on Dα ⇐⇒ Nφ,α = o
(
(1− |z|)α

)
, |z| → 1−.

We can now state the main result of this section.

Theorem 2.4. Let φ : D → D be a holomorphic function and let
α ∈ (0, 1]. Then there exists n0 ∈ N such that for n ≥ n0 we have

Nφ,α(z) ≤
8e4

1 + α
Dα(φ

n+1) ,
1

n
≤ 1− |z| ≤ 1

n− 1
.

Proof. Let n1 ∈ N be large enough so that if n ≥ n1, then

D
(
1− 1/(n− 1), 1/2(n+ 1)

)
⊂ D\D(0, 1/2) .

Let n ≥ n1 and suppose that 1/n ≤ 1 − |z| ≤ 1/n− 1. Then by Lemma 2.2,
it follows that

Nφ,α(z) ≤ 2× 4(n+ 1)2
∫
D(z,1/2(n+1))

Nφ,α(w) dA(w)

= 8(n+ 1)2
∫
D(z,1/2(n+1))

Nφ,α(w)
|w|2n

|w|2n
dA(w)

≤ 8(n+ 1)2

[
sup

D(z,1/2(n+1))
|w|−2n

]∫
D(z,1/2(n+1))

Nφ,α(w)|w|2n dA(w) .

Now, it is easy to see that there exists n0 ≥ n1 large enough so that for each
n ≥ n0

sup
D(z,1/2(n+1))

|w|−2n ≤ e4.
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Therefore,

Nφ,α(z) ≤ 8e4(n+ 1)2
∫
D(z,1/2(n+1))

Nφ,α(w)|w|2n dA(w)

≤ 8e4(n+ 1)2
∫
D
Nφ,α(w)|w|2n dA(w) .

On the other hand, by Lemma 2.1 it follows that∫
D
Nφ,α(w)|w|2n dA(w) =

1

1 + α

∫
D
|φ′(η)|2|φ(η)|2n dAα(η) .

Thus

Nφ,α(z) ≤
8e4

1 + α
Dα

(
φn+1

)
,

1

n
≤ 1− |z| ≤ 1

n− 1
.

The proof now is complete.

As a consequence of this we obtain

Corollary 2.5. Let φ : D → D be an holomorphic function and let
α ∈ (0, 1], then

(i) If Dα(φ
n) = O(1/nα) then Cφ is bounded on Dα.

(ii) If Dα(φ
n) = o(1/nα) then Cφ is compact on Dα.

Proof. The proof follows from Theorem 2.4 and Theorem 2.3.

Next, we give another proof which is similar to that given by El-Fallah,
Kellay, Shabankhah and Youssfi [5], for the Dirichlet space (i.e., (α = 0)), see
Corollary 3.4. We consider the test function given by

Fλ(z) =

(
1− |λ|2

)1−α
2

(1− λz)
, λ, z ∈ D ,

and we recall the following lemma ([5]).

Lemma 2.6. Let φ ∈ Dα such that φ(D) ⊂ D and 0 < α ≤ 1. Thus

(i) Cφ is bounded on Dα ⇐⇒ supλ∈D ∥Fλ ◦ φ∥α < ∞ .

(ii) Cφ is compact on Dα ⇐⇒ lim|λ|→1− ∥Fλ ◦ φ∥α = 0 .
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Second proof of Corollary 2.5. We assume that φ(0) = 0. If Dα(φ
n) =

o(1/nα) then

Dα(Cφ(Fλ)) =

∫
D
| (Fλ(φ(w))

′ |2 dAα(w)

≤ c1
(
1− |λ|2

)2−α
∫
D

|φ′(w)|2

(1− |λφ(w)|2)4
dAα(w)

≤ c2
(
1− |λ|2

)2−α
∑
n≥0

(1 + n)3|λ|2n
∫
D
|φ′(w)|2|φ(w)|2n dAα(w)

≤ c3
(
1− |λ|2

)2−α
∑
n≥0

(1 + n)|λ|2nDα(φ
n+1)

≤ c4
(
1− |λ|2

)2−α

[ ∑
0≤n≤N

(1 + n)1−α|λ|2n + o
( ∑

n≥N

(1 + n)1−α|λ|2n
)]

≍ o(1) , |λ| → 1− .

where c1, c2, c3 and c4 are positives constants. Thus Cφ is compact. A similar
proof can be given for the boundedness.

3. The relationship between nφ and D(φn)

We need the following lemma

Lemma 3.1. Let φ : D → D be a holomorphic function. Then∫
1− 1

m
≤|z|≤1

nφ(z) dA(z) ≤ e4

(1 +m)2
D0

(
φm+1

)
, m ≥ 2 .

Proof. Since Nφ,0 = nφ, by Lemma 2.1 we have

D0(φ
m+1) = (m+ 1)2

∫
D
|φ′(z)|2|φm(z)|2 dA(z)

= (m+ 1)2
∫
D
nφ(w)|w|2m dA(w)

≥ (m+ 1)2
∫
1− 1

m
≤|w|≤1

nφ(w)|w|2m dA(w)
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≥ (m+ 1)2
(
1− 1

m

)2m ∫
1− 1

m
≤|z|≤1

nφ(w) dA(w)

≥ e−4(m+ 1)2
∫
1− 1

m
≤|z|≤1

nφ(w) dA(w) , m ≥ 2 ,

and this completes the proof.

We obtain the following result which is the main theorem in this sec-
tion and gives a relationship between the mean behavior of nφ and the norm
of φm.

Theorem 3.2. Let φ : D → D be a holomorphic function. Then

inf
1− 1

m
≤|z|≤1− 1

m+1

nφ(z) ≤
e4

π
D0

(
φm+1

)
, m ≥ 2 .

Proof. This follows from Lemma 3.1 and the following inequality∫
1− 1

m
≤|z|≤1

nφ(z) dA(z) ≥
π

(m+ 1)2
inf

1− 1
m
≤|z|≤1− 1

m+1

nφ(z) .

The Carleson window is defined as

W (ζ, δ) =
{
z ∈ D : |z| > 1− δ , | arg(ζz)| < δ

}
, ζ ∈ T .

For ζ ∈ T and δ ∈ (0, 1), set

N (ζ, δ) :=

∫
W (ζ,δ)

nφ(w) dA(w) .

We shall make use of the following lemma due to Zorboska [14, 9]

Lemma 3.3. Let φ be a holomorphic self-map of D. Then

(i) Cφ is bounded on D ⇐⇒ supζ∈TN (ζ, δ) = O(δ2) δ → 0 .

(ii) Cφ is compact on D ⇐⇒ supζ∈TN (ζ, δ) = o(δ2) δ → 0 .

From Lemma 3.2 and Lemma 3.3 we obtain the following result which was
first proved by El-Fallah-Kellay-Shabankah-Youssfi [5].
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Corollary 3.4. Let φ be a holomorphic self-map of D. Then

(i) If D0(φ
n) = O(1) then Cφ is bounded on D.

(ii) If D0(φ
n) = o(1) then Cφ is compact on D.

Proof. Suppose that (i) holds. Let δ > 0 and let m ≥ 1 such that 1/(m+
1) ≤ δ ≤ 1/m. By Lemma 3.2 we have

sup
ζ∈T

N (ζ, δ) ≤
∫
1− 1

m
≤|z|≤1

nφ(z) dA(z) = O
(
1/(1 +m)2

)
= O

(
δ2
)
,

and Lemma 3.3 gives the result. A similar proof can be given for the com-
pactness.

Li–Queffélec-Rodŕıguez–Piazza have shown that this result is essentially
optimal [11].

4. Examples

Recall that for f ∈ H2, the radial limit f∗ of f is given by

f∗(eit) := lim
r→1−

f
(
reit

)
.

By Fatou’s Theorem, the radial limit f∗ exists almost everywhere on T. Note
that log |f∗| ∈ L1(T). The function f is said to be outer if

log |f(0)| =
∫
T
log |f∗(ζ)| |dζ|

2π
.

In this case the function has the following integral representation

f(z) = exp

∫
T

ζ + z

ζ − z
log |f∗(ζ)| |dζ|

2π
, z ∈ D .

Let K be a closed set of T, and let Ω ∈ C1([0.2π]), such that Ω(0) = 0 and∫
T
Ω(d(ζ,K))|dζ| < ∞ .

The distance function corresponding to Ω,K is the outer function φΩ,K sat-
isfying

|φΩ,K(ζ)| = e−Ω( d(ζ,K)) a.e. on T. (4.1)
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Hence

φΩ,K(z) = exp

∫
D

z + ζ

z − ζ
Ω(d(ζ,K))

|dζ|
2π

, z ∈ D .

If Ω satisfies Dini’s condition ∫ π

0

Ω(t)

t
dt < ∞ ,

then the function φΩ,K belongs to the Disk algebra [8, pp. 105 – 106]. In this
case we have |ϕ(z)| ≤ 1 and the set of the contact points of φΩ,K on the circle
coincides with K, this means that

|φΩ,K | = 1 on K.

We recall here the construction of the generalized Cantor set on T. Let
K0 = T and ℓ0 = 2π. Let (an)n≥1 be a positive decreasing sequence with
a1 < 1/2. We remove an interval of length a1 from the middle of K0. Denote
the union of two remaining intervals by K1, and denote the length of each
interval in K1 by ℓ1. Then we remove two intervals, each of length a2, from
the middle of intervals in K1. Let K2 denote the union of the resulting four
pairwise disjoint intervals of equal length ℓ2. After n steps, we obtain a
compact set Kn which is union of 2n closed intervals of length ℓn. Note
that 2ℓn + an = ℓn−1. The compact K =

∩
n≥1Kn is called the generalized

Cantor set. It is easy to see that K has Lebesgue measure zero if and only if∑∞
n=1 2n−1 an = 2π. The classical Cantor set corresponds to ℓn = (1/3)n.

Let ε > 0. For a closed subset K of T, the ε–neighborhood of K is given
by

Kε = {ζ ∈ T : d(ζ,K) ≤ ε} .

Let K be the generalized Cantor set associated to a sequence (an)n. If

λK := sup
n≥1

an+1

an
<

1

2
, (4.2)

then

|Kε| = O(εµK ) ε → 0 , (4.3)

where µK = 1−log 2/| log λK | (see [4]). The classical Cantor setK corresponds
to µK = 1− log 2/ log 3.

We have the following formula which allows us to calculate explicitly the
norm for the outer function φΩ,K .



230 z. bendaoud, f. korrichi, l. merghni, a. yagoub

Lemma 4.1. Let α ∈ [0, 1]. Let K be a generalized Cantor set associated
to a sequence (an)n satisfying (4.2), and let Ω : [0, 2π] → R+ be an increasing
function such that t → Ω(tγ) is concave for some γ > 2/(1− α).Then

Dα(φΩ,K) ≤ c

∫ 2π

0
Ω′(t)2e−2Ω(t)tα|Kt|dt ,

where c is a positive constant.

Proof. For the proof we refer to [4, Theorem 3.2] and [3, Theorem 4.1].

4.1. Examples of estimates of generalized Nevanlinna count-
ing function. Here we gives some estimate of generalized Nevanlinna
counting function associated to distance function given by (4.1). This al-
lows to give some examples of bounded and compact composition operators
on the Dirichlet spaces by Corollary 2.5.

We begin with the case of the Hardy space (α = 1).

Lemma 4.2. Let K be a closet set of T and let Ω : [0, 2π] → R+ be an
increasing function such that Ω(0) = 0. Let φ = φΩ,K , then

Nφ(z) . inf
ε>0

{
|Kε|+ e

−2
Ω(ε)
1−|z|

}
, |z| < 1 .

Proof. Let ε > 0. By Lemma 2.4 and for 1/n ≤ 1−|z| ≤ 1/(n− 1), n ≥ 2,
we have

Nφ(z) .
∫
T
e−2(n+1)Ω( d(ζ,K)) |dζ|

2π

=

∫
ζ∈Kε

e−2(n+1)Ω( d(ζ,K)) |dζ|
2π

+

∫
ζ∈T\Kε

e−2(n+1)Ω( d(ζ,K)) |dζ|
2π

. |Kε|+ e−2(n+1)Ω(ε).

Theorem 4.3. LetK be a generalized Cantor set associated to a sequence
(an)n satisfying (4.2) and let Ω(t) = tβ such that β > µK , then

Nφ(z) = O
(
(1− |z|)µK/β(log 1/(1− |z|))µK/β

)
, |z| → 1− .
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Proof. By (4.3) and Lemma 4.2, we get

Nφ(z) . inf
ε>0

{
εµK + e

− 2εβ

1−|z|
}
, |z| < 1 .

It suffice to choose εβ = (1− |z|)
(
log 1/(1− |z|)µK/β

)
.

Now we consider the Dirichlet space Dα where 0 < α < 1.

Theorem 4.4. Let 0 < α < 1. Let K be a generalized Cantor set associ-
ated to a sequence (an)n satisfying (4.2) such that α+µK ≥ 1. Let Ω(t) = tβ

such that β < min{(1− α)/2, α+ µK − 1}. Let φ = φΩ,K , then

Nφ,α(z) = O
(
(1− |z|)(α+µK−1)/β

)
(z → 1−) .

Proof. Since β < (1− α)/2, there exists γ > 2/(1− α) such that Ω(tγ) is
concave. Note that

Dα(φ
n
Ω,K) = Dα(φnΩ,K) .

Thus, by Lemma 4.1 and (4.2)

Dα(φ
n
Ω,K) = Dα(φnΩ,K)

≤ c1n
2

∫ 2π

0
Ω′(t)2tα|Kt|e−2nΩ(t) dt

= c1n
2

∫ 2π

0
t2β−2+α+µKe−2ntβ dt

≤ c2n
2

∫ 1

0
u(β+α+µK−1)/βe−nu du

= O
(
1/n(α+µK−1)/β

)
.

The proof now follows from the Theorem 2.4.

4.2. Examples of Hilbert-Schmidt composition operators. Now
we shall give some examples of operators in the Hilbert Schmidt class. Let
H be a Hilbert space. We denote by S2(H) the class of Hilbert Schmidt
operators.

We need the following lemma.
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Lemma 4.5. Let 0 < α < 1 and let φ be a holomorphic self-map of D.
The following statements are equivalent:

(i) Cφ ∈ S2(Dα) ;

(ii)
∞∑
n=1

Dα(φ
n)

(1 + n)1−α
< ∞ ;

(iii)

∫
D

|φ′(z)|2

(1− |φ(z)|2)2+α
dAα(z) < ∞ ;

(iv)

∫
D

Nφα(z)

(1− |z|2)2+α
dA(z) < ∞ .

Proof. We first prove the equivalence (i) and (ii). Let en = zn/(1+n)
1−α
2 .

Since (en)
∞
n=0 is an orthonormal basis of Dα and Cφ(en) = φn/(1 + n)

1−α
2 ,

then Cφ ∈ S2(Dα) if and only if

∞∑
n=1

∥Cφ(en)∥2α =
∑
n≥1

|φ(0)|2n

(1 + n)1−α
+

∞∑
n=1

Dα(φ
n)

(1 + n)1−α
< ∞ .

Note that ∑
n≥1

|φ(0)|2n

(1 + n)1−α
≍ |φ(0)|2

(1− |φ(0)|2)α
< ∞ .

Now we prove the equivalence (ii) and (iii). We have

∞∑
n=1

Dα(φ
n)

(1 + n)1−α
≍

∫
D

∞∑
n=1

(1 + n)1+α|φ(z)|2n−2|φ′(z)|2 dAα(z)

≍
∫
D

|φ′(z)|2

(1− |φ(z)|2)2+α
dAα(z) .

Finally the equivalence (iii) and (iv) follows from the change of variable
Lemma 2.1.

The following result was obtained in [5] for the Dirichlet space, α = 0.

Theorem 4.6. Let 0 < α < 1. Let K be a generalized Cantor set sat-
isfying (4.2), and let Ω : [0, 2π] → R+ be an increasing function such that
t → Ω(tγ) is concave for some γ > 2/(1− α). If∫ 1

0

Ω′(t)2

Ω(t)2+α
tα|Kt|dt < ∞ , (4.4)
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then CφΩ,K ∈ S2(Dα).

Proof. By Lemma 4.5 and Lemma 4.1, we have

Dα(φΩ,K) ≤ c

∫ 2π

0
Ω′(t)2 e−2Ω(t) tα|Kt|dt .

Since φn
Ω,K = φnΩ,K , we obtain

∫
D

|φ′
Ω,K(z)|2

(1− |φΩ,K(z)|2)2+α
dAα(z) ≍

∞∑
n=1

Dα(φnΩ,K)

n1−α

≤ c1

∫ 1

0
Ω′(t)2 tα|Kt|

∞∑
n=1

nαe−2nΩ(t) dt

≤ c2

∫ 1

0

Ω′(t)2[
1− e−2Ω(t)

]2+α tα|Kt|dt ,

where c1 and c2 are positives constants. Noting that

1− e−2Ω(t) ≍ Ω(t) ,

we get the result.
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