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Abstract: In this paper, the space of virtually (r;71,...,7,;s)-nuclear multilinear operators
between Banach spaces is introduced, some of its properties are described and its topological
dual is characterized as a Banach space of multiple absolutely (';71,...,75;s’)-summing
multilinear operators.
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1. INTRODUCTION

The nuclear operators between Banach spaces appeared in [5] when the
author studied an infinite dimensional extension of the Malgrange theorem on
existence and approximation of solutions for convolution equations (see also
[7]). The concept of nuclear multilinear operators was extended and studied
in [8]. For other related results we mention [9] and [10]. Matos [9] studied
virtually (r;7q,...,7,)-nuclear n-linear operators from X; X --- x X, into
Y, and proved that, if the spaces X}’s (k = 1,...,n) have the \;-bounded
approximation property; then for r,ry,...,r, € [1,400] the topological dual
of the space of these operators, endowed with a natural linear topology, is

isomorphic isometrically to the space of all absolutely (+/, 7, ..., )-summing

r'n
operators from X} x --- x X into Y* with %—i— % =1 and i + i = 1; for
r,rp and s € [1,4+00], k=1,...,n.
In [3] Cerna established the definition of (r;ry,...,r,;s)-nuclear multilin-
ear operators, which are the natural generalization of the concept of (r,p, s)-

nuclear linear operator introduced by Lapresté [6] (see also [11]).

!The authors acknowledge with thanks the support of the MESRS (Algeria) under project
CNEPRU B05620120016.
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Motivated by these ideas and developments, in this paper we introduce
and study the virtually (r;r1,...,r,; s)-nuclear n-linear operators and we will
prove a relation between the topological dual of virtually (r;ri,...,7;8)-
nuclear n-linear operators and the multiple (r/;7],...,7;s')-summing opera-
tors [2]. As a consequence we get the same result between the topological dual
of the space of (r;r1,...,r,; s)-nuclear n-linear operators from X x --- x X,
into Y [4] and to the space of all absolutely (r/,7],...,7,,s")-summing oper-
ators from X{ x --- x X into Y* [1], for r,r; and s € [1,+o0], k=1,...,n.

The definitions and notations used in this paper are, in general, standard.
Let n € N. As usual, an element j from N” will be represented by (j1,...,Jn)
with jr € Nand &k =1,...,n. We also consider the finite families (yj)jeN% of
elements of a Banach space with N, = {1,...,m}. If n = 1, we omit N" in
the preceding notations. Let Xi,..., X,,; Y be Banach spaces over K (either
C or R). The space of all continuous n-linear operators T : X; x --- x X,
— Y will be denoted by £ (X1,...,X,;Y). It becomes a Banach space with

the natural norm

T = sup T (z4,...,2")].
||z ||<1, k=1,..,n

We recall that a n-linear mappings T' € £ (X1,..., X,;Y) is said to be of
finite type if it has a finite representation of the form

m
T:Z)\igoil X - X i,
i=1

where \; € K, gof €ce X, k=1....,n, b €Y, i =1,...,m. We denote
by L¢(X1,...,Xn;Y) the vector subspace of £ (X71,...,X,;Y) of all n-linear
mappings of finite type.

If r € ]0,400[, we denote by I, (Y;N") or (I, (N"); if Y = K), the vector

space of all families (y;) ;.. of elements of ¥ such that

1
(Zwr) <=

JENn

H (y])]EN"

We observe that ||-||,. is a norm (r-norm, if » < 1) on [, (Y; N™) and defines
a complete metrizable linear topology on it. We denote by I (Y;N") (or

loo (N?), if Y = K) the Banach space of all bounded families (yj)jeN" of
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elements of Y, with the norm

W) ienn || = sup lly;ll-
H J/5€eN oo enn J

The Banach subspace of all families (y;) such that

jENR

I =0
jk—>+ool7nl%:1,...,n HyJH
is denoted by ¢o (Y;N") (or ¢ (N7), if Y = K).
If 0 < s < o0, we will write [V (Y;N") (or I (N"), if Y = K) for the vector

space of all families (y;) . of elements of ¥ such that

< 00,
S

H(yj)jeNnH = sup (ZW’(%)’S)S: sup (6 (1) jene

w,s l¥lly«<1 \ :cnn ll¥]ly=<1
je

where Y* denotes the topological dual of Y.
It is well-known that for 1 < s < oo and (¢;) en» € I (Y*;N}), we have

1
= sup | > |o(g)l° | = sup
w,$ d)EBY** jeNn yEBY

Let 0 <7, 1 <p, s <oosuch that

H(soj-)jeNn (5 () jenn

S

1 1 1 1
S =4 -4, with te€]o,1].
t r p s

An operator T' € L(X;Y) is (r;p; s)-nuclear (see, e.g., [6, 11]) if it has a
representation of the form

TZZ)\M@'@% (1)
i1

with (\;); € I, if r < oo (or (\i); € co, if r = +00), (:); € [ (X*) and (y;); €
I¥(Y). The vector space of all such operators is denoted by N,.,.s) (X;Y") and
it is a complete metrizable topological vector space under the ¢-norm

gy (T) = i LD, @33l 1))}

where the infimum is taken over all representations of 7" as in (1).
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The definition of the virtually (r;r1,...,r,)-nuclear operators below was
first given in [9].
We counsider r € |0, +00], 7 € [1,4+00], such that r <rg, k=1,...,n and
1 1 1 1
1 S — = -+ - + + -
tn roor T,

DEFINITION 1.1. An operator T' € £ (Xy,...,X,;Y) is said to be virtu-

ally (r;ri,...,r,)-nuclear if there is a representation of the form
T= > Xoj, x x4y 2)
JjENn
with (Aj)jeyn € I (N7), if 7 < 00 (or (Aj);cyn € o (N"), if 7 = 4o00),

(e5)2, € 1 (X7), for k=1,....n and (b)) jeyn € loo (V3NT).

jeNn
The vector space of these operators is denoted by Eg}:}l’”"rn) (X1,..., X3 Y)
and we consider on it the ¢,-norm

(bj)jeNn

n 00
i), ’
it i=1lw,r},

where the infimum is taken over all representations of 7" as in (2).

||T||VN,(T;T1,...,TR) = inf H()\])jeNn r

The notion of absolutely (7;71,...,7r,;s)-summing multilinear operators
was introduced by the first author in [1].

DEFINITION 1.2. For 0 < r, 7r1,...,7, < o0 and 0 < s < oo with % <
%—i—- : -—i—%—i—%, an n-linear operator ' € L(X1,..., X, Y) is (7571, ..., 3 S)-
summing if there is a constant C' > 0 such that for any z¥, ..., 28 ¢ X,

(1 <k <mn),and any ¢1,...,om € Y*, we have

1
> ) et (@)1,

i=1
We denote the vector space of these operators by Ly (riry,..rnis) (X1, - - -
Xp;Y) and the smallest C satisfying the above inequality by 77 (T)

(73715-.,n38)

)(X1)7X7MY)

oi (T (zi,...,2})) (i)isy H

w,s

which defines a norm (r-norm if r < 1) on Ly (iry,...,

TniS

The following multilinear generalization of (r;r1,...,r,; s)-summing oper-
ators was recently introduced by Bernardino et al. in [2].
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DEFINITION 1.3. Let n € N, r, s, r1,...,7, > 1 and X;1,...,X,,,Y be
Banach spaces. A continuous multilinear operator T': X1 x --- x X,, — Y is
multiple (r;71,...,7y; $)-summing if there is a C' > 0 such that

| e

WherelS%—i— e —1—7 ab o xk e Xi, k=1,...,n and (p;)

T
JjENY,
p S
12 (Y*;NR)-
We denote by L%g";""”“”;s) (X1,...,Xp;Y) the vector space of these oper-
ators. The smallest C satisfying the above inequality defines a norm (r-norm

if r <1)on Lirsenis) (X1,...,X,;Y); it is denoted by || T

JENT,

mas(riri,...,rn;s) "

Remark 1.4. By choosing (s = 00) in Definition 1.3, we obtain the defini-
tion of fully (or multiple) (r;71, ..., r,)-summing n-linear operators presented
in [9].

We also need the definition of the (r;rq,...,7,; s)-nuclear n-linear opera-
tors. The ideal of (r;71,...,7y,; $)-nuclear operators was introduced by Cerna
[3] (see also [4]).

DEFINITION 1.5. For 0 < r < o0, 1 < s, T1,...,7, < 00, such that
1< %—F%—I—---—I—i—i—ﬁ,Teﬁ(Xl,.. X Y) is called (r;71,...,7m0;8)-
nuclear if it has the form

+o0
T =3 Nolx - x o, (3)

=1
with (Ai);en € I (N), if r < 00 (or (A);cy € co (N), if 7 = +00), (gzﬁf)l.eN €
l;;‘i (Xp) for k= 1,...,n and (bi);ey € 3 (Y). The set of (r;ri,...,7rn;8)-

nuclear operators satisfying the definition is a vector space and is denoted by
N ooimss) (X1, X33 Y) . Considering that

Nesrs,ernss) (T) = i | (M) e | ZENHwS H H<¢1>16NH

where the infimum is taken over all possible representatlons of T described in
(3), we obtain a t-norm with

1 1 1 1 1
" ,_,_7_1_ S i e
t r o] r, S
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2. VIRTUALLY (7r;71,...,7s;8)-NUCLEAR n-LINEAR OPERATORS

We considerr 6]0 +o0], 8,7, € [1,400], k =1,...,n, such that 1 < i =
R

DEFINITION 2.1. An operator T € L£(X1,...,X,;Y) is said to be vir-
tually (r;71,...,7n;s)-nuclear if there are (Aj);cnn € I (N7), if r < 0o (or
(Aj)jenn € co(N"), if 7 = +o00), (¢F);2, € L (X}), for k = 1,....n and
(05) jen € Ly (Y5 N") such that

T = Noj, x - x ¢} b (4)

JENn

We denote the vector space of all such operators by E(T rLyeTnis) (X1,...,
Xn;Y), with the ¢,-norm

JGN"

SIEL

where the infimum is taken over all representations of T as in (4). This
t,-normed space is a complete metrizable topological vector space.

||T”VN (rsr1,eesrnss) lan jENn

Remarks 2.2. (a) By choosing s’ = oo in Definition 2.1, we obtain virtually
(r;71,...,my)-nuclear n-linear operators presented in Definition 1.1.

(b) We have N, o) (X100, X3 ¥) C LUT) (XL X3 Y) and

HTH < HTHVN,(r;rl,...,rn;s) < N(r;rl,...,rn;s) (T)7

for every T is in Ny, rpis) (X150, X3 Y).
By definition every T"in Ly (X1,...,X,;Y’) has a finite representation

T =" Ndj X X &} by (5)

JENG,

It is clear that we have a t,-norm on L (X1,...,X,;Y) defined by

AT

where the infimum is taken over all finite representations of T" as in (5).

(S 13 [y ([

wrk
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The next result collects some elementary facts about virtually (r;rq,...,
Tn; §)-nuclear n-linear operators.

PROPOSITION 2.3. (i) The vector space L, (X1, ..., Xy;Y) of the contin-
uous n-linear operators of finite type is dense in 58}?"”’7«";8) (X1,..., X3 Y).

(ii) Ideal property: If Ei,...,E,, and Yy are Banach spaces and T €
L(Xy,...,Xn;Y), Sy € L(Eg,Xg), k =1,...,n, and R € L(Y,Yy) with
T virtually (r;ry,...,rn;s)-nuclear, then R o T o (Sy,...,Sy) is virtually
(r;ri,...,mn; 8)-nuclear and

HR oTo (Sl’ T S") HVN,(r;rl,...,rn;s) < HRH HTHVN,(T;"“l,mJ”n?S) H HSkH ’
k=1

(i) T € L(X1,...,X,;Y) is virtually (r;r1,...,r,; s)-nuclear if and only
there are bounded linear operators A; € 'C(Xk;lr;c); k=1,...,n, B €
L (11 (N");Y) and (\)) € I, (N"), if r < oo (or (Aj) € co (N, if
r = 400), such that

JjENn JEN™

T:BOD(/\J,) O(Al,...,An),

JENT

where D()‘j)jeNn : l,,./l X oo X lr% — (Nn) defined by D()\j)jeN” ((é]ll)]quI’ ey

( ]"n);’::l) =(\j }1 "'fjﬂn)jeNn for ( Jl-l);-’le € Ly, is a virtually (ryriy ..oy 8)-
nuclear with

HD()\j)jGNTL VN (i) = H(Aj)jGNn .

In this case

n

I 14l
,

k=1

where the infimum is taken over all such factorizations.

1Ty 5 i rsey = 0 1B | )

3. DuALITY

The natural question is to find out when we have

HTHVN,(T;rl,..,,rn;s) = HTHVNf,(r;rl,.,.,rn;s)7
for each T'€ Ly (X1,..., X1 Y).
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Of course we have

HT”VN:(T;TI,---J’MS) < HTHVva(T;Tl,---J’ms)'

Below we will see that the reverse implication holds to be true for some
certain Banach spaces Xi’s (k = 1,...,n). We start with finite dimensional
spaces X}’s. The following theorem can be proved as in [9, Proposition 4.6].

THEOREM 3.1. If the spaces X}, (k =1,...,n) are finite dimensional vec-
tor spaces, then
HTHVNf,(r;Tl,...,rn;s) < HTHVN,(r;rl,...,rn;S)7
for every T € Ly (X1,...,Xp;Y).

As in [9, Proposition 4.8], we get the following, which extends Theorem
3.1 to infinite dimensional Banach spaces with the A-bounded approximation
property (A\-BAP, for short).

PROPOSITION 3.2. If the spaces X}’s (k = 1,...,n) have the \;-BAP,
then

HTHVN,(r;rl,...,rn;s) > HTHVNf,(r;rl,...,rn;S)7
forallT € Ly (X1,...,Xp;Y).

Proof. We consider T, € E(Xk;E(Xl,...,Xk_l,XkH,...,Xn;Y)), de-
fined by

Tk(xk) (xl, co kTl gk ,:c") = T(azl,...,xk_l,xk,xkﬂ ...,:1:"),

for zF € Xy, k=1,...,n.

Since X has the Ag-bounded approximation property for some A; > 0,
given ¢ > 0, we can find S, € Lf(Dy, X)), such that T, = T} o S; and
Skl < (1 + €) Ag. Hence, for all 2¥ € Xy, for k =1,...,n, we have

T(a:l,...,arkil,Sk(xk),ka,...,a:") = T(arl,...,xkil,xk,xk“,...,x").
Now, we can write
T(a;l,...,:lc”) =To(S,...,5n) (a:l,...,x”), Vot e Xy, k=1,...,n.

If Ji denotes the natural injection from Sy (Dy) into Xj, we can write
Sy = J, oS, (Sk € Ly (Dy, Sk (Dk))), with HSkH = ||Sk|| . Therefore we can
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say that T o (J1,...,Jn) € Ly ((S1(D1),...,59.(Dy));Y). By Theorem 3.1
and Proposition 2.3 (ii) we have

”THVNf,(r;rl,...,rn;s) = HT © (Slv ceey Sﬂ)||VNf,(r;7”1,...,rn;s)

n
< HTHVN,(T;n,..-,rn;S) H 1Sk |
k=1

n
< HT||VN7(T;T17_._M;S) (1+¢€)" H Ak
k=1

This implies that

n
HTHVNf,(r;Tl,...,rn;s) < (H Ak) HTHVN,(?";TL...,’I‘H;S) :

k=1

For each € > 0, we choose a representation

T=3_ 056}, X+ X &y

JjENn
such that
n oo
. . k
H(O-])]EN" r “(y])jeN” w,s’ ]!;[]_ H <¢i)i=1Hw,7‘;g = (1 * 6) HTHVN’(T”"L---/'"H?S) :

We can find m € N such that

n
(H A’“) S ol - x dly; < 1Ty i)
k=1

JEN" /NG, VN, (13r1,..,Tn;38)

We use the triangular inequality for ¢,-norms in order to write

tn
1
<HTHVNf,(r;rl,...,rn;s)> < Z Uj¢j1 X X ;’Lnyj
JENG, VIN,(r371500,7n358)

] S ethox e

JEN" /Ny, VNg,(rr1,..,Tn;38)
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tn

<(1+ G)tn (HTHVN,(T‘;T‘L---J"n?S))

n tn
+ (m) S ol e x s
k=1

JEN" /NG, VN, (Pir1peees7n3s)
tn tn tn
<[+ +e] (||T”VN,(r;m,...,rn;s)) :

Since € > 0 is arbitrary we have

ln

||T”VNf7(7‘;7’17...,7‘n;s) < ||THVN,(’!’;T1,...,’V’7L;S)’
and this proves the theorem. |

For Banach spaces with A-bounded approximation property, Proposition
3.2 can be seen as a generalization of a result obtained by B. Cerna [4,
Lemma 2.1].

Now, we also give another generalization of [4, Lemma 2.1].

PROPOSITION 3.3. Let T : X1 X --- x X;, — L4 (2, ) be defined by
T (931, el J:") = Z )\jgzbjl-l (931) .. gb;ln (™) b,
JENT,

where % = %—i_ : +i Then7 HTHVNf,(oo;rl,...,rn;s) = HTHVN,(oo;rl,...,rn;s) = HTH

=,
S Tn

Proof. Tt is clear that for * = Ti, + -+ 1 we have
1

1T < HT||VN7(OO;T1,--~7TTL;S) = ||T||VNf7(OO;T17-~~7Tn§S) )
Moreover,
s 1/s
T ]| "] > / Yo o), () g (@) ()] du(t) | (6)
Q |7€NE
Since gbéz is surjective there exists & € X; such that gbéz (&) = M;/27:/7i | where

1/7!

m 1
M; = sup Z ‘<¢;Z,x7’> i

il <1 \ =t
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We will show that [|&;]| < 1 and M; < 400 fori =1,...,n. From the definition

of M; for a fixed ¢ and for € > 0 we have
1/7!

k3

M; &l < (1+€) ZM i o ,
Ji=1

which implies that
lI€i]] < (1+€), for all e > 0.

So, considering ||&;]| < 1 in equation (6) we have

s 1/s

1702 | [ |3 a2 a2y 1)) )|

q |JEN,
if Kk = max{j1,...,jn} we get

S

1/s
7] 2 / DRV G I § PT (7)
=1

JjeEN

Let z (t) = ZN: Aj l;i(/ts), then for all s > 1 we have
JENG,

= | 3 % (o g )| < el ®)

]GN"
By renumbering multi-finite indices j € NJ! , we can rewrite this finite sum as

f(m,n)

z(t) = Z ;ﬁ%

k=1

In addition, let M = spange(,... f(mn)}—ko {22%} where kq is a fixed num-

ber belongs to {1, ..., f (m,n)}, and f (m,n) € N. Moreover, as a consequence
of the Hahn-Banach theorem there exists ¢ such that || = %, (p,2) = 0 for

all x € M and <cp, Qko/g
can choose Ay, such that

— b—OH and further one

3 k,
=1, where d = inf, e Haz YE
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; where j = (§1,..-,Jn) -

o0

Mol =, mas el = () e

=1,...,f(m

Taking into account these last relations in equation (8) we can get,

121l = [Ako | d- (9)
Since z = Zi(:”fz;ko 2}% € M, then for a given € > 0, we have
f(mn) b
k=1

Therefore, from (9) we get

A+l > |[Aem| | X 5o (10)

k=1
We know that
AN Fmom)
|b)sexn]| = sup Wl = sup axbi
jE ’u),s/ ||¢||S§1 ]GZN,T-';L GEBlg(m’n) ;
and since ap = # fork=1,...,f(m,n), given € > 0 we have
1+ 3 g = [eie].,. -
k=1 ’

From the last relation and the equation (10) we obtain

 foralleand €>0. (11)

(I+e)(1+2) 2] > H(/\j)jeN" o H(bj)jeN“ w,s

Therefore, from the relations (7) and (11) we get

IR

11> | ) jexen

00 H(bj)jeNn Hw s/

> ”THVNf,(oo;Tl,...,T‘n;S) ’
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We will prove a new link between the topological dual of virtually

(r;ri,...,rn; s)-nuclear n-linear operators and multiple (r/; 77, ... 7 ;" )-sum-

ming operators. The proof of the next theorem is similar to the proof of
Theorem 7.3.1 in [10]. We included the detailed proof here for completeness.

THEOREM 3.4. If the spaces X}’s (k = 1,...,n) have the A\,- BAP, then

(r37157n38)

the topological dual of Ly, (X1,...,X,;Y) is isomorphic isometrically
to £$,262§1""”’”;5 ) (X5,..., X5 Y™), forr,r, € [1,+00[, k =1,...,n through the
mapping B define by

B(T) (¢',....¢") (b) =V (¢! x -+ x ¢"b),
forallbeY, gk € X7, k=1,....n and ¥ € (ﬁ(v’”;yv"'“%s) (X1, ... ,Xn;Y))*.
Proof. Tt is easy to see that the correspondence
we (LU (X X Y))* — B(U) e LG (X, X5 Y
defined by

B(W) (¢!,...,¢")(0) = T (¢! x -+ x ¢"b), ¢F € X}, k=1,...,nand beE Y,

is linear and injective. To show the surjectivity let T € E%;Z“'"’T”;s ) (X7, ..

X} Y™*) and consider the linear functional W7 on the space (Ef(Xl, cee
X3 ) -l vy omss) ) @iven by

Ur(S) = > NT(#f,-- -, ¢0,) (b))
JENT,
for every S € L (X1,...,X,;Y) with a finite representation of the form
S = Z )\ij}l X +o X o7 by
JENT,

Hence, by Hoélder’s inequality and Definition 1.3 it follows that

ez () < | ey | || @R 05 0)) sy

jeng, .

n m
k
r H H (SDZ )i:le r
k=1 Tk

(b e |

< HT”mas(r’;r’l,...,r‘;l;s/) H ()‘J')jeN;;l

w,s’
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This shows that

|\IJT( )| < HTHmas r r17 " n7 ||S||VNf (7”7‘1, 77'*,,“5)’

forall S € Ly (Xq,...,X;Y).
Since on L (X1,...,Xp;Y), under our hypothesis for X1, ..., X,,, we have

H‘HVNf,(r;rl,...,rn;s) = ”'HVN,(T;m,...,Tms)’
we conclude that Wr is continuous on Ly (X1, ..., Xn; Y) for [[-[lyn oy ris)
and
| < T /

AR
mas(r';r,...,rh;s")

By Proposition 2.3 (i), £f (X1,..., Xp;Y) is dense in L7 (X

., Xn;Y). Hence we can extend Ur to a continuous functional W7 on
£3"K'71,...mn;5) (X1,...,X,;Y) in a unique way, with

H\IJTH < HT”mas T rhss’)

Finally we note that B(¥r) =T

To show the reverse inequality let ¥ € (Eg}?"”’r";s) (X1,... ,Xn;Y))*
and consider the corresponding n-linear mapping B(V¥) € £ (X7,..., X} Y™),
defined by B(¥) (¢',...,¢") (b)) = U (¢! x - ><¢”b), for ¢F € X}, k =
1,...,nand b €Y. Let usconsidernENandcpj € Xj,fork=1,...,n, and
(b)) ey € 1% (V5NZ). There is (A7), €1 (NZ,) such that H —1

and

JEN, jGN”

= > A[B) () ()|

JjEN,

H(B(\I/) (@hse ol ) (b)) )

JjENR,

Now we can choose o, |aj] =1, j € N such that

Z /\j‘B(\II) ((}Ojll""?@]n ) Z /\aJ (pjl""’soyn) (bJ)

JENT, jeNn,

:\I/< Z /\jozjcp}l X X QO?nbj> = (*)

JENG,
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By the continuity of ¥ and the Hoélder’s inequality we have

n
() <[ )‘()\jkajk)jkENerI};A[l H(‘p?k)jeNrnHw,r; (bj)jEN%vas’
n
=TT R e | @],

This shows that B () € L") (X¥, ... X*Y*) and

||B(\Ij)||ma5(r’;r’17,,_7rfn;s’) < ||\II|| .

If we replace N by N and s’ by oo in Theorem 3.4, we obtain the following
known cases.

COROLLARY 3.5. If the spaces X}’s (k =1,...,n) have the \;- bounded
approximation property, then

(i) The topological dual of Ny, . r.:s) (X1,..., Xy, Y) is isometrically
isomorphic to L (v, .11 s (X5,...,X5Y™), for v, 1, and s € [1,+0o0],
k =1,...,n through the mapping B (V) given as follows:

B(U) (¢',...,9") (b) :== T (¢" x - x ¢"b),

where VU is in the topological dual of./\/'(
k=1,...,.nandbeY.

TiT1,e.sTn;S) (Xla ooy X Y)) ¢k € X*;

ii) The topological dual of £{TiT1rn) X1,...,Xy;Y) is isometrically iso-
VN
morphic to 557’;;;"1""”"") (X7, ..., X5 Y™).
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