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Abstract : C. Mart́ınez and E. Zelmanov proved in [12] that for every natural number d and
every finite simple group G, there exists a function N = N(d) such that either Gd = 1
or G = {ad

1 · · · ad
N : ai ∈ G}. In a more general context the problem of finding words ω

such that the word map (g1, . . . , gd) −→ ω(g1, . . . , gd) is surjective for any finite non abelian
simple group is a major challenge in Group Theory. In [8] authors give the first example
of a word map which is surjective on all finite non-abelian simple groups, the commutator
[x, y] (Ore Conjecture). In [11] the conjecture that this is also the case for the word x2y2 is
formulated. This conjecture was solved in [9] and, independently, in [6], using deep results
of algebraic simple groups and representation theory. An elementary proof of this result for
alternating simple groups is presented here.
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1. Introduction

In any group G, Gd the subgroup generated by d-th powers of elements in
G and G′ are normal subgroups. So, if G is a finite non-abelian simple group
it is clear that G = G′ and if d is not divisible by exp(G), then G = Gd. So,
every element of G can be expressed both, as a product of a finite number of
commutators in G and as a product of finitely many p-th powers in G. But
the existence of a bound for the number of factors in any element of G has
important consequences, for instance in profinite groups.

In 1996, C. Mart́ınez and E. Zelmanov [12] proved that for a natural num-
ber d ≥ 1, there exists a function N(d) such that for an arbitrary simple group
G either Gd = 1 or G = {ad1 · · · adN : ai ∈ G}.

In particular, for alternating groups An, n ≥ 5, Mart́ınez and Zelmanov
used a result by Bertran that says that any even permutation in An can
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be written as a product of two cycles, each one of length l, if and only if,
[3n/4] ≤ l ≤ n.

Clearly, it seems that the bound depends on d. For instance, if d = 2 every
element in An, n ≥ 5, is a product of two squares in An. However, if d = 210,
it is impossible to write every 7-cycle in A7 as a product of two 210-th powers
in A7. But, for every natural number m′ < 210, it can be proved that every
element in A7 can be written as a product of two m′-th powers.

Still, it is natural to ask if we can find a general constant N such that
every element in an alternating group An, n ≥ 5, can be written as a product
of N d-th powers of elements in An. In this paper it is proved that this is the
case for d = pr, where p is a prime number and r is a natural number. And
in this case, N = 2.

These ideas can be reformulated in an slightly different way. Given an
arbitrary group G and a word in the free group of rank r, ω ∈ Fr, with r a

natural number, we can consider the word map ω : G × r· · · × G −→ G that
maps each tuple (g1, g2, . . . , gr) to ω(g1, g2, . . . , gr). It has sense to ask if this
word map is surjective.

Of course, there are words for which ω(G) ̸= G. For example, the word x2

is not surjective on any finite non abelian simple group. Nevertheless, some
word maps are surjective, and it is an interesting problem in Group Theory
to determine which ones are.

The first non-trivial example of a word map which is surjective on all finite
non-abelian simple groups is the commutator map [x, y]. It was proved in [8],
giving a positive answer to a conjecture formulated by Ore, who had proved
in 1951 [13] the result for alternating groups.

In [11] authors proved in the same article that every element of a suffi-
ciently large finite simple group is a product of two squares and posed the
conjecture that the word x2y2 is surjective. This conjecture was proved in [9],
where authors also proved that if p > 7 is a prime number, then any element
of a finite non-abelian simple group G is a product of two p-th powers.

At the same time, R. Guralnick and G. Mall got a new proof using some
results about conjugacy classes. In [6], they proved that there always exist
two conjugacy classes in a finite non abelian simple group such that every
non trivial element of the group belongs to the product of these conjugacy
classes. This result is used to prove that every element in a finite non abelian
simple group can be written as a product of two pk-th powers, with p a primer
number.

We must emphasize that the proof of all these results is highly nontrivial.
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Our aim here is to show a proof of the mentioned result for alternating groups
An, n ≥ 5, that uses only elementary techniques.

Let’s mention an elementary fact that will be extensively used in what
follows. Given a group G and a natural number n ≥ 1, the mapping

φn : G −→ G
g 7−→ gn

is bijective if an only if the greatest common divisor gcd(n, exp(G)) = 1.
Indeed, if we take a prime divisor p of exp(G) and n, there exists an element

in g ∈ G of order p. So φ(g) = φ(1) = 1.
The next elementary result will very useful in this paper.

Theorem 1.1. If G is a finite group, g is an element of G and d ≥ 1 is
an integer such that gcd(o(g), d) = 1, then g = (gs)d for some integer s ≥ 1.

Proof. It suffices to consider the cycle group ⟨g⟩. As the gcd(o(g), d) = 1,
we can apply the Bezout’s Identity to get that there exist t, s ∈ Z such that
1 = o(g)t+ sd.

Then we have that

g = go(g)t+sd = go(g)tgsd = (gs)d.

In order to address our problem and study pk-th powers in An, we will
distinguish 3 different cases: p = 2, p = 3 and p > 3.

Before starting, we want to give an elementary definition.

Definition 1.2. Let σ be a permutation of a symmetric group Sn, n ≥ 1.
The support of σ is defined as

supp(σ) =
{
i ∈ {1, . . . , n} : σ(i) ̸= i

}
.

The following results will be an essential tool in the paper.

Lemma 1.3. Let m be a positive integer and n ≥ 5. Take σ1, . . . , σk
permutations in An such that σi = λm

i for some λi ∈ An. If supp(σi) ∩
supp(σj) = ∅ for every i ̸= j, then there exists λ ∈ An, such that σ1 · · ·σk =
λm and

supp(λ) =
k∪

i=1

supp(σi) .
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Proof. For each i ∈ {1, . . . , k}, we have that there exists λi ∈ An such that
σi = λm

i .

We can assume, without loss of generality that supp(λi) = supp(σi), and
so, the supports of λi and λj are disjoint for every i ̸= j and we have that λi

commutes with λj for every i ̸= j.

Then, we have that

k∏
i=1

σi =
k∏

i=1

(λi)
m =

(
k∏

i=1

λi

)m

.

It is enough to take λ =
∏k

i=1 λi.

Let us notice that supp(λ) =
∪k

i=1 supp(σi).

Theorem 1.4. Let σ1, . . . , σt permutations inAn such that σi = λd
i1 · · ·λd

iN

for some N, d ≥ 1. If σi and σj are disjoint when i ̸= j and supp(σi) =∪N
j=1 supp(λij), then there exist permutations λ1, . . . , λN such that

σ1 · · ·σt = λd
1 · · ·λd

N .

Proof. It suffices to take λ1 = λ11 · · ·λt1,. . . , λN = λ1N · · ·λtN and take
into account that λij commutes with λhl if i ̸= h. Then, we can use Lemma
1.3 to get the result.

Notice that again
∪N

i=1 supp(λi) =
∪t

j=1 supp(σj).

In this paper n will be an integer greater than or equal to 5 and k will be
an integer greater than or equal to 1.

The main result of this paper is the next theorem.

Theorem 1.5. Let p be a prime number. Every element in an alternating
group An can be written as a product of two pk-th powers in An.

2. The case p = 2

We will start with the case of p = 2. We will consider first those permu-
tations of An that can be written as products of cycles of odd length.

Lemma 2.1. Let σ be a permutation that can be written as a product of
disjoint cycles of odd length. Then there exists λ in An such that σ = λ2k .
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Proof. Suppose that σ = (a1, . . . , ak) is a cycle of length odd, k ≥ 3.

Since gcd(2, o(σ)) = 1, we can apply Lemma 1.1 to get that σ = (σs)2
k
for

some s ≥ 1. Clearly, supp(σ) = supp(σs).

Lemma 2.2. Let σ be a permutation in An that can be written as a prod-
uct of an even number of disjoint cycles of even length. Then there exist µ, η
in An such that σ = µ2kη2

k
.

Proof. Suppose initially that σ = (a1, . . . , a2i)(a2i+1, . . . , a2r) is a permuta-
tion in An that is a product of two cycles of even length. It is enough to rewrite
σ as σ = ξ1η1, where ξ1 = (a1, a2, . . . , a2i+1) and η1 = (a2i, a2i+1, . . . , a2r).

By Lemma 2.1 there exist elements ξ and η in An such that ξ1 = ξ2
k
,

η1 = η2
k
. So

σ = ξ2
k
η2

k
.

Notice that we can always assume that supp(ξ) ∪ supp(η) ⊂ supp(σ).
Lemma 2.2 is now a direct consequence of Lemma 2.1.

Since every even permutation σ in An can be written as a product of two
disjoint permutations σ = σ1σ2, where σ1 satisfies the assumptions of Lemma
2.1 and σ2 satisfies the assumptions of Lemma 2.2, a direct application of
Theorem 1.4 gives Theorem 1.5 in the case p = 2.

3. The case p ≥ 5

In this section we will address the case p ≥ 5. We will start considering
cycles of odd length.

Lemma 3.1. Let σ be a permutation in An that can be written as a prod-
uct of disjoint cycles of odd length, then there exist λ and µ in An such that
σ = λpkµpk .

Proof. Let’s consider first the case in which σ is a single cycle. Suppose
that σ = (a1, . . . , ar), with r ≥ 3 odd. We will distinguish two different cases:

(i) If p is not a divisor of o(σ), the result follows from Lemma 2.1, since

σ = (σs)p
k
for some integer s.

(ii) If p is a divisor of o(σ), then we can rewrite σ as

σ = (a1, a2, a3)(a3, a4, . . . , ar)
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as a product of a 3-cycle and a (r − 2)-cycle.

But p does not divide neither to 3 nor to (r− 2). So, using the previous
case, there exist α and β elements in An such that

(a1, a2, a3) = αpk and (a3, . . . , ar) = βpk .

So

σ = (a1, a2, a3)(a3, a4, . . . , ar) = αpkβpk .

Notice that supp(α) ∪ supp(β) ⊂ supp(σ)

Theorem 1.4 immediately extends the previous result to permutations that
are product of disjoint cycles of odd length.

Now, let’s consider products of disjoint cycles of even length.

Lemma 3.2. Let σ be a permutation in An that is a product of an even
number of disjoint cycles of even length. Then σ can be written as a product
of two pk-th powers in Asupp(σ).

Proof. To start, consider σ = σ1σ2 a permutation in An, where σ1 =
(a1, . . . , a2i) and σ2 = (a2i+1, . . . , a2r). We will consider two different cases:

(i) If p is not a divisor of o(σ), by Lemma 1.1, we have that σ = (σs)p
k
for

some s ≥ 1.

(ii) If p is a divisor of o(σ), let’s distinguish two different cases:

(a) If p divides both o(σ1) and o(σ2), then we can rewrite σ as follows:

σ = (a1, a2)(a2i+1, a2i+2)(a2, . . . , a2i)(a2i+2, . . . , a2r) .

Denoting (a1, a2)(a2i+1, a2i+2) = λ1 and (a2, . . . , a2i)(a2i+2, . . . , a2r)

= λ2, it is clear that λ1 = λpk

1 because of o(λ1) = 2.

On the other hand, we have that p is neither a divisor of o(σ1)− 1
nor of o(σ2)−1. So, by Lema 1.1, we have that λ2 is a pk-th power
in An.

That is, there exist permutations λ and µ in An such that λ1 = λpk ,
λ2 = µpk . So

σ = λpkµpk .
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(b) Suppose that p is a divisor of o(σ2) and not of o(σ1) (the case
p | o(σ1) and p † o(σ2) is similar). We can rewrite σ as

σ = σ1(a2i+1, a2i+2)(a2i+2, . . . , a2r) .

Denoting λ1 = σ1(a2i+1, a2i+2) and λ2 = (a2i+2, . . . , a2r), we have
that p is not a divisor of o(λ1) and that p is not a divisor of o(λ2) =
o(σ2)− 1.

So, applying Lemma 1.1 to λ1 and to λ2 we have that there exist
λ and µ permutations in An such that λ1 = λpk , λ2 = µpk .

So, we have that

σ = (λ)p
k
(µ)p

k
.

Since every even permutation σ in An can be written as a product of two
disjoint permutations σ = σ1σ2, where σ1 satisfies the assumptions of Lemma
3.1 and σ2 satisfies the assumptions of Lemma 3.2, a direct application of
Theorem 1.4 gives Theorem 1.5 in the case p ≥ 5.

4. The case p = 3

We will prove that for every natural number k ≥ 1, every element in An,
can be written as a product of two 3k-th powers.

Let’s start with the study of cycles of odd length.

Lemma 4.1. Every cycle σ in An with odd length s ≥ 3 can be written as
a product of two 3k-th powers in An

Proof. Take σ = (a1, . . . , as), with s ≥ 3 odd. We distinguish three differ-
ent cases:

(i) If 3 does not divide to o(σ) we can apply Lemma 1.1 to get that σ =

(σt)3
k
for some t ≥ 1.

(ii) If 3 | o(σ) = s and s ≥ 9, we can rewrite σ as a product of two cycles

σ := (a1, . . . , a5)(a5, . . . , as) ,

one of length 5 and the other one of length s − 4. Clearly 3 does not
divide s− 4. Denoting λ1 = (a1, . . . , a5) and λ2 = (a5, . . . , as), we have

that λ1 = (λr
1)

3k and λ2 = (λt
2)

3k for some r, t ≥ 1. So,

σ = (λr
1)

3k(λt
2)

3k .
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Notice that λ1, λ2 ∈ Asupp(σ).

(iii) Suppose s = 3. Assume σ = (a1, a2, a3) and take the permutation
x := (a1, a5, a3, a4, a2) and y := (a1, a3, a5, a2, a4) in An (remember that
n ≥ 5). Then we have that σ = yx, and, by the first case, there exist λ1

and λ2 in An such that x = λ3k
1 and y = λ3k

2 , that is

σ = λ3k

2 λ3k

1 .

Remark. If σ is a 3-cycle, Asupp(σ) ≃ A3 ≤ A4, it is impossible to write σ

as a product of two 3k-th powers neither in A3 nor A4.

Indeed, A3 is an abelian group of order 3 and A3
4 = V , where V is the

4-Klein group that consists of the identity and all products of two disjoint
transpositions.

We will need, at least, 5 symbols to write a 3-cycle as a product of two
3k-powers, for every k ≥ 1. That’s why we have to be careful when using
Lemma 1.3, in case that a 3-cycle is involved in a permutation σ.

The problem does not appear if only cycles of odd length greater than or
equal to 5 appear.

Corollary 4.2. Let σ be a permutation in An that can be written as a
product of disjoint cycles of odd length greater than 3. Then there exist λ
and µ in An such that σ = λ3kµ3k .

Lemma 4.3. Let σ be a permutation in An that is a product of r disjoint
3-cycles, r ≥ 2. Then there exist λ and µ in Asupp (σ) such that σ = λ3kµ3k .

Proof. Suppose σ = σ1 · · ·σr, such that σi is a 3-cycle for every i ∈
{1, . . . , r}, r ≥ 2 and σi, σj disjoint if i ̸= j.

(i) If r = 2, suppose that

σ = (a1, a2, a3)(a4, a5, a6) .

Then σ can be rewritten as

σ = ξ1ξ2 ,

where ξ1 = (a1, a2)(a4, a5) and ξ2 = (a2, a3)(a5, a6).
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Since o(ξ1) = 2 = o(ξ2) it follows from Lemma 1.1 that

σ = (ξs11 )3
k
(ξs22 )3

k
.

Notice that ξ1, ξ2 ∈ Asupp(σ).

(ii) For r even, the result follows immediately from Theorem 1.4 and the
case r = 2.

(iii) If r = 3,

σ = (a1, a2, a3)(a4, a5, a6)(a7, a8, a9) .

Now, we can rewrite σ = λ1λ2, with λ1 = (a1, a6, a9, a5, a8, a2, a3) and
λ2 = (a1, a8, a6, a4, a9, a7, a5). Since o(λ1) = 7 = o(λ2), by Lemma 1.1

λ1 = (λl1
1 )

3k and λ2 = (λl2
2 )

3k . So

σ = (λl1
1 )

3k(λl2
2 )

3k .

Notice that λ1, λ2 ∈ Asupp(σ).

(iv) If r is odd, r ≥ 5, then we can consider the product of the first three
3-cycles and the rest of the 3-cycles in pairs. Now the result for σ follows
immediately from Theorem 1.4 and the previous cases.

Lemma 4.4. Let σ be a permutation that is a product of disjoint cycles
of odd length.Then there exist λ and µ in An such that σ = λ3kµ3k .

Proof. If at least two 3-cycles appear, it follows from Theorem 1.4, Lemma
4.1 and Lemma 4.3. So let us assume that only one 3-cycle appears, in the
expression of σ as product of cycles of odd length.

Let’s write σ = σ1α1 · · ·αr, with σ1 = (a1, a2, a3) a 3-cycle and αi a cycle
of odd length greater than 3 for every i ∈ {1, . . . , r}.

We can apply Lemma 4.1 and Theorem 1.4 to α2 · · ·αr to get that there
exist β, γ in An such that supp(β, γ) ⊂

∪r
i=2 supp(αi) such that

α2 · · ·αr = β3kγ3
k
.

Consider now σ1α1 = (a1, a2, a3)(a4, a5, . . . , as), with s ≥ 8 even. We
distinguish two cases:
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(i) If 3 does not divide to s− 4, we can rewrite σ1α1 as follows:

σ1α1 = (a1, a2)(a4, a5)(a2, a3)(a5, . . . , as) .

If we denote λ1 = (a1, a2)(a4, a5) and λ2 = (a2, a3)(a5, . . . , as), we have
that 3 does not divide neither to o(λ1) = 2 nor to o(λ2) = s − 4. By

Lemma 1.1, λ1 = (λm1
1 )3

k
and λ2 = (λm2

2 )3
k
, for some m1,m2 ≥ 1. So,

we have that
σ1α1 = λ1λ2 = (λm1

1 )3
k
(λm2

2 )3
k
.

(ii) If 3 is a divisor of s− 4, we can rewrite σ1α1 as follows:

σ1α1 = λ1λ2 ,

where λ1 = (a1, a2, a3, a4, a5) and λ2 = (a3, a5, a6, . . . , as). Then 3 does
not divide neither to o(λ1) = 5 nor to o(λ2) = (s− 3).

Again by Lemma 1.1 we get that λ1 = (λn1
1 )3

k
and that λ2 = (λn2

2 )3
k
,

for some n1, n2 ≥ 1. Consequently

σ1α1 = λ1λ2 = (λm1
1 )3

k
(λm2

2 )3
k
.

Theorem 1.4 finishes the proof of this lemma.

It remains to consider products of cycles of even length.

Lemma 4.5. Let σ be a permutation in An that is a product of an even
number of disjoint cycles of even length. Then there exist µ, η in An such that
σ = µ3kη3

k
.

Proof. The proof follows the same lines of the proof of Lemma 3.2.

If σ is a permutation in An, we can write it as

σ = σ1 · · ·σrγ1 · · · γs(α1α2) · · · (α2l−1α2l) ,

where each σi is a 3-cycle, i ∈ {1, . . . , 2r}, γj is a cycle of odd length greater
or equal than 5, j ∈ {1, . . . , s}, and αk is a cycle of even length for every k,
k ∈ {1, . . . , 2l}.

Theorem 1.5 follows from Theorem 1.4 together with Lemma 4.3 and
Lemma 4.4 except in the case s = 0, r = 1 and l ≥ 1. Notice that in this case
σ1 is a product of two 3k-powers, but we need to involve two symbols that do
not appear in supp(σ1), so Theorem 1.4 can not be directly applied.

To finish the result we only need the following lemma.
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Lemma 4.6. Let σ be a permutation in An that is a product of a single
3-cycle and two disjoint cycles of even length. Then there exist µ, η in An

such that σ = µ3kη3
k
.

Proof. Suppose that σ can be written as follows:

σ = σ1(α1α2) ,

with σ1 = (a1, a2, a3) a 3-cycle and α1, α2 are cycles of even length, α1 =
(b1, . . . , b2i), α2 = (b2i+1, . . . , b2t).

We distinguish four different cases:

(i) If 3 divides to both o(α1) and o(α2), or equivalently 3 | i and 3 | t, we
rewrite σ as σ = λ1λ2, where λ1 = (a1, a2)(b1, b2)(b2i+1, . . . , b2t−1) and
λ2 = (a2, a3)(b2t−1, b2t)(b2, . . . , b2i).

But 3 does not divide neither to o(λ1) = 2(2(t− i)− 1) nor to o(λ2) =

2(2i − 1). So Lemma 1.1 gives the result, since λ1 = (λp
1)

3k and λ2 =

(λq
2)

3k , for some p, q ∈ Z.
(ii) If 3 divides to o(α1) but does not divide to o(α2), that is 3 | i, but 3 † t,

we rewrite σ as follows:
σ = λ1λ2 ,

where λ1 = (a1, a2, a3, b1)(b2i+1, . . . , b2t) and λ2 = (a3, b1, b2, . . . , b2i).

Now, 3 does not divide to (2i+1) = o(λ2), so we can apply Lemma 1.1.

Similarly, 3 does not divide to 4(t− i) = o(λ1). we can use again Lemma
1.1. So,

σ = (λv
1)

3k(λu
2)

3k ,

for some integers u, v.

(iii) If 3 divides to o(α2) but 3 does not divide to o(α1), the proof is similar.

(iv) If 3 does not divide neither to o(α2) nor to o(α1), we rewrite σ as follows

σ = (a1, a2, a3, b1, b2)(a3, b2, . . . , b2i)(b2i+1, . . . , b2t) .

Denote λ1 = (a1, a2, a3, b1, b2) and λ2 = (a3, b2, . . . , b2i)(b2i+1, . . . , b2t).
Since 3 does not divide to o(λ1) = 5 and 3 does not divide to o(λ2) =
mcm(2i, 2t− 2i), the result follows immediately from Lemma 1.1.

This finishes the proof of Lemma 4.6 and gives Theorem 1.5 in the case
p = 3.
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