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1. Introduction

Throughout this paper, X denotes an infinite-dimensional Banach space
over K = R or C, and B(X) the algebra of all bounded linear operators on
X. Let Λ be a subset of B(X). We shall say that a map Φ : B(X) → B(X)
preserves Λ in both directions if for every bounded operator T on X,

T ∈ Λ if and only if Φ(T ) ∈ Λ.

The problem of determining linear maps on B(X) that leave invariant
certain subsets has attracted the attention of many mathematicians, and nu-
merous results revealing the algebraic structure of such maps are obtained in
the last few decades. For excellent expositions on linear preserver problems,
the reader is referred to [1, 2, 3, 7, 9, 11] and the references therein.

Let Bo(X) denote the linear span of the set of all nilpotent operators
in B(X). Šemrl showed in [16] that a surjective linear map Φ : Bo(X) →
Bo(X) is nilpotent preserving in both directions if and only if it has one of
the following two forms

T 7→ cATA−1 or T 7→ cAT ′A−1
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where c is a non-zero complex number, A is a bounded bijective linear operator
between suitable spaces and T ′ denotes the adjoint of T on the topological
dual space X ′ of X. In the special case of Hilbert space H, this result is
extended to linear maps Φ defined on the whole space B(H).

In [2], the authors proved that if Φ : B(X) → B(X) is a surjective linear
map wich is continuous in the weak operator topology and preserves idempo-
tent operators then it has one of the following two forms

T 7→ ATA−1 or T 7→ AT ′A−1

where A is a bounded bijective linear operator between suitable spaces. In
the context of infinite-dimensional complex Hilbert space H, the same au-
thors obtained in [3] a complete description of bijective linear maps on B(H)
preserving idempotent operators.

Recall that an operator T ∈ B(X) is algebraic if there exists a non-zero
complex polynomial P such that P (T ) = 0. Since nilpotent operators and
idempotent operators are algebraic, the question arises as to what can we say
about surjective linear maps preserving algebraic operators in both directions.
This question is still open. However, partial answers are given. More precisely,
let P be a complex polynomial with deg(P ) ≥ 2. It was shown by Šemrl [17]
that if Φ is a unital (that is, Φ(I) = I) surjective linear map preserving the
set of all operators annihilated by P in both directions, then Φ takes one of
the following two forms

T 7→ ATA−1 or T 7→ AT trA−1

where A ∈ B(H) is bijective and T tr denotes the transpose of T relative to a
fixed but arbitrary orthonormal basis. Later, J. Hou and S. Hou determined
in [8] under additional conditions the general form of linear maps Φ preserv-
ing operators annihilated by P in only one direction, that is, P (Φ(T )) = 0
whenever P (T ) = 0.

Let us introduce the following subsets:

(1) As(X) the set of non-invertible algebraic operators in B(X);

(2) Ai(X) the set of invertible algebraic operators in B(X);

(3) Ao(X) the linear span of algebraic operators in B(X).

It is worth mentioning that As(X) is closely related to several subsets
studied in the literature in connection with linear preserver problems:
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(1) the set of all rank one operators [13],

(2) the set of all nilpotent operators [1, 16],

(3) the set of all idempotent operators except I [2, 3],

(4) the set of all potent operators except I [14].

The aim of this paper is to determine the structure of additive mappings
Φ : B(X) → B(X) preserving As(X) (resp. Ai(X)) in both directions. More
precisely the main result can be summarized in the following theorem:

Theorem A. Let Φ : B(X) → B(X) be an additive surjective unital
map. Then the following assertions are equivalent:

(i) Φ preserves the set of non-invertible algebraic operators in both direc-
tions;

(ii) Φ preserves the set of invertible algebraic operators in both directions;

(iii) there exists either a bounded invertible linear, or conjugate linear, op-
erator A : X → X such that

Φ(T ) = ATA−1 for all T ∈ Ao(X),

or, a bounded invertible linear, or conjugate linear, operatorB : X ′ → X
such that

Φ(T ) = BT ′B−1 for all T ∈ Ao(X).

It follows from Theorem A that if Φ preserves non-invertible algebraic
operators in both directions then it preserves also algebraic operators in both
directions. The converse is generally false as can be shown by considering the
map

Φ(T ) = T + ψ(T )I for all T ∈ B(X),

where ψ is a linear form on B(X) such that ψ(I) = 0 and ψ(N) ̸= 0 for some
nilpotent operator N ∈ B(X).

No continuity of Φ was assumed in the above theorem. Nevertheless, we
get as a result that both A, A−1, B and B−1 are bounded, and consequently,
Φ is continuous.

Let H be an infinite-dimensional Hilbert space. For T ∈ B(H) let
T ∗ : H → H be the Hilbert space adjoint. Note that T ∗ = J−1

o T ′Jo where
Jo : H → H ′ is the natural conjugate linear mapping defined by

Jo(x)(u) =< u, x > for all x, u ∈ H.
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By a result of Pearcy and Topping [15], every operator in B(H) is a finite
sum of square-zero operators, which implies that Ao(H) = B(H). Hence, we
obtain the following theorem as an immediate consequence of the previous
one.

Theorem B. Let H be an infinite-dimensional Hilbert space, and let
ϕ : B(H) → B(H) be an additive surjective unital map. The following
assertions are equivalent:

(i) Φ preserves the set of non-invertible algebraic operators in both direc-
tions;

(ii) Φ preserves the set of invertible algebraic operators in both directions;

(iii) there exists an invertible bounded linear, or conjugate linear, operator
A on H such that either

Φ(T ) = ATA−1 for all T ∈ B(H),

or

Φ(T ) = AT ∗A−1 for all T ∈ B(H).

Recall that X is a Banach space of infinite multiplicity if X is isomorphic
to X ⊕X and to X ⊕X ⊕ · · · an infinite direct sum X(∞) of copies of X in
such a way that arbitrary permutations of coordinates and transformations of
the form A(∞), with A ∈ B(X), are bounded operators, and such that, for
A,B ∈ B(X), A(∞) ⊕B(∞) acting on X(∞) ⊕X(∞) is similar to (A+B)(∞)

acting on (X ⊕X)(∞). Infinite-dimensional lp-space, Lp[0, 1], 1 ≤ p ≤ ∞, and
infinite-dimensional Hilbert spaces are examples of Banach spaces of infinite
multiplicity, see [5].

Now, if X is a Banach space with infinite multiplicity, then we can give
a complete classification of all additive surjective unital maps on B(X) pre-
serving in both directions As(X) or Ai(X). Indeed, it follows from [1, Lemma
2.9] that every operator in B(X) can be written as a sum of at most 8 square
zero operators, which implies that Ao(X) = B(X). Hence, we obtain the
following result as a consequence of Theorem A.

Remark 1.1. Let X be a Banach space with infinite multiplicity, and let
ϕ : B(X) → B(X) be an additive surjective unital map. The following
assertions are equivalent:
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(i) Φ preserves the set of non-invertible algebraic operators in both direc-
tions;

(ii) Φ preserves the set of invertible algebraic operators in both directions;

(iii) there exists either a bounded invertible linear, or conjugate linear, op-
erator A : X → X such that

Φ(T ) = ATA−1 for all T ∈ B(X),

or, a bounded invertible linear, or conjugate linear, operatorB : X ′ → X
such that

Φ(T ) = BT ′B−1 for all T ∈ B(X).

It should be noted that this result holds true also if we suppose that
X is an arbitrary infinite-dimensional Banach space and Φ is an additive
surjective unital map on B(X) which is continuous in the weak operator
topology. Indeed, it is well-now that the sub-algebra F (X) of all finite rank
bounded operators on X is dense in the weak operator topology in B(X). In
particular, Ao(X) is dense in the weak operator topology in B(X).

The paper is organized as follows. In the second section, we present useful
results on the perturbation of algebraic non-invertible operators. Especially,
we provide a characterization of rank one operators via the algebraic invertible
operators. The last section is devoted to the proof of the main theorem.

2. Algebraic non-invertible operators

For an operator T ∈ B(X), write ker(T ) for its kernel, ran(T ) for its range
and σ(T ) for its spectrum.

Let z ∈ X and f ∈ X ′ be non-zero. The symbol z ⊗ f stands for the rank
one operator defined by (z ⊗ f)(x) = f(x)z for all x ∈ X. Note that every
rank one operator in B(X) can be written in this form, and the spectrum of
such operator is σ(z ⊗ f) = {0, f(z)}.

Remark 2.1. Let T be a bounded operator on X. The following well-
known properties will be often used in the sequel:

(i) Let z ∈ X and f ∈ X ′. If T is invertible then it follows easily from [9,
Lemma 4] that

T + z ⊗ f is non-invertible if and only if f(T−1z) = −1. (2.1)
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(ii) For every finite rank operator F , it follows from [4, Proposition 3.6] that

T is algebraic if and only if T + F is algebraic.

(iii) T is algebraic if and only if T ′ is algebraic.

(iv) For every invertible bounded linear, or conjugate linear, operator A on
X,

T is algebraic if and only if ATA−1 is algebraic.

(v) If T is algebraic then σ(T ) is finite and formed by the poles of the
resolvent of T of finite order, see [4], and in this case we have also
σ(T ) = σp(T ) where σp(T ) stands for the point spectrum of T , see [18,
Theorem V.11.3].

Proposition 2.2. Let T ∈ As(X), and let F ∈ B(X) be a rank one
operator such that T + F ∈ As(X). Then T + 2F ∈ As(X).

Proof. Put F = z ⊗ f where z ∈ X and f ∈ X ′ are non-zero. Since T is
algebraic then so is T + 2F , and hence it suffices to show that T + 2F is not
invertible.

Clearly, if ker(T ) ∩ ker(f) ̸= {0} then ker(T + 2F ) is non-trivial, and so
T + 2F ∈ As(X). Assume that ker(T ) ∩ ker(f) = {0}. Since T + F ∈ As(X),
it follows by Remark 2.1 (v) that T + F is not injective. Let u ∈ ker(T + F )
be non-zero. Then Tu = −f(u)z, and hence f(u) ̸= 0, since otherwise u ∈
ker(T ) ∩ ker(f), a contradiction. Let v = −f(u)−1u. Then

f(v) = −1, z = Tv and I + 2v ⊗ f is invertible.

Consequently, T + 2F is not invertible because T + 2F = T (I + 2v ⊗ f) and
T is not invertible. This completes the proof.

The following example shows both that As(X) is not stable under rank
one perturbations, and that the assumption T +F ∈ As(X) in Proposition 2.2
is necessary.

Example 2.3. Let T ∈ B(X) be any projection with codim ran(T ) = 1.
Then F = I − T is a rank one operator. Moreover, for every non-zero α ∈ C,
it follows that T + αF is algebraic, by Remark 2.1 (ii), and invertible with
inverse T +α−1F . Consequently, T +F and T +2F do not belong to As(X).
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The following theorem, which is interesting in itself, will play a crucial role
in proving the main result.

Theorem 2.4. Let F ∈ As(X) be non-zero. Then the following assertions
hold:

(i) there exists T ∈ As(X) such that T + 2F /∈ As(X);

(ii) if dim ran(F ) ≥ 2 then there exists T ∈ As(X) such that T +F ∈ As(X)
and T + 2F /∈ As(X).

Before proving this theorem, we need to establish the following lemma.

Lemma 2.5. Let Y and Z be two non-trivial closed subspaces such that
X = Y ⊕ Z, and let T ∈ B(X) be the operator represented by the matrix

T =

(
A B
0 C

)
.

Then T is algebraic if and only if A and C are algebraic. Furthermore, in this
case, we have σ(T ) = σ(A) ∪ σ(C).

Proof. Note that for every complex polynomial q, one can easily verify
that

q(T ) =

(
q(A) Bq

0 q(C)

)
, (2.2)

for some bounded operator Bq.

Suppose that T is algebraic and let q be a non-zero complex polynomial
such that q(T ) = 0. It follows from (2.2) that q(A) = q(C) = 0. Thus, A and
C are algebraic.

Conversely, assume that A and C are algebraic. Let p be a non-zero
complex polynomial such that p(A) = p(C) = 0. Then

p(T ) =

(
0 Bp

0 0

)
,

and since p(T )2 = 0, we get that T is algebraic.

Finally, σ(T ) = σ(A) ∪ σ(C) follows immediately from [6, Corollary 8],
which completes the proof.
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Proof of Theorem 2.4. Let us establish first the second assertion. Since
dim ran(F ) ≥ 2, there exist two vectors a, b ∈ X such that Fa, Fb are linearly
independent. In particular, the vectors a, b are linearly independent. Since F
is algebraic, there exists a non-negative integer k such that F k+1a and F k+1b
belong to Span{F ia, F ib : 0 ≤ i ≤ k}. Let Z be a closed subspace such that
X = Span{F ia, F ib : 0 ≤ i ≤ k} ⊕ Z. Relatively to this decomposition, the
operator F can be expressed as follows

F =

(
F1 F2

0 F3

)
.

Consider also the operator T ∈ B(X) represented by the matrix

T =

(
S − 2F1 0

0 I − 2F3

)
,

where S is an invertible operator such that Sa = Fa and Sb = 2Fb. Clearly,
it follows from the previous Lemma that T , T + F and T + 2F are algebraic
operators. But, since Tb = (T +F )a = 0, we get that T and T +F belong to
As(X). On the other hand, we have

T + 2F =

(
S 2F2

0 I

)
,

and hence T + 2F is invertible by Lemma 2.5. Thus, T + 2F /∈ As(X). This
completes the proof of (ii).

Since the second assertion implies the first one, it remains to prove the
first assertion in the case when F is rank one. Put F = z ⊗ f where z ∈ X
and f ∈ X ′ are non-zero. Let y be such that f(y) = 1. Perturbing y by a
suitable vector of ker(f), we can suppose that y and z are linearly independent.
Furthermore, since X = Span{y, z} + ker(f), there exists a closed subspace
Y ⊆ ker(f) such that X = Span{y, z} ⊕ Y . Consider the operator T ∈ B(X)
given by

T|Y = I, Ty = 0 and Tz = y − 2Fz.

Clearly, T ∈ As(X). However, we have{
(T + 2F )|Y = I,

(T + 2F )y = 2z and (T + 2F )z = y.

So that T + 2F is invertible, and hence T + 2F /∈ As(X). This completes the
proof.



additive preservers of certain algebraic operators 215

In the following theorem we characterize the rank one operators in terms
of algebraic invertible operators.

Theorem 2.6. Let F ∈ B(X) be non-zero. The following assertions are
equivalent:

(i) F is a rank one operator;

(ii) for every T ∈ Ai(X) we have T + F ∈ Ai(X) or T − F ∈ Ai(X).

Proof. (i) ⇒ (ii) Suppose that F = z ⊗ f is a rank one operator and let
T ∈ Ai(X). Assume, on the contrary, that T + F and T − F do not belong
to Ai(X). Since T + F and T − F are algebraic, then T + F and T − F
are not invertible. Hence, using (2.1), f(T−1z) = −1 and f(T−1z) = 1, a
contradiction.

(ii) ⇒ (i) Assume that dim ran(F ) ≥ 2. Consider vectors x0, y0 such that
Fx0, Fy0 are linearly independent and put X = Span{x0, y0, Fx0, Fy0} ⊕ Y
where Y is a closed subspace. With respect to this decomposition, consider the
operator T ∈ B(X) given by T = S⊕I where S is an invertible operator such
that Sx0 = −Fx0 and Sy0 = Fy0. It follows that T is algebraic invertible,
but T + F and T − F are not injective. This completes the proof.

3. Proof of main result

Combining Theorem 2.4 with Proposition 2.2, we obtain:

Lemma 3.1. Let Φ : B(X) → B(X) be an additive surjective map pre-
serving As(X) in both directions. Then

(i) Φ is injective;

(ii) Φ preserves the set of rank one operators in both directions.

Proof. (i) Assume on the contrary that there exists F ̸= 0 such that
Φ(F ) = 0. Then F ∈ As(X) and, by Theorem 2.4, there exists T ∈ As(X)
satisfying T + 2F /∈ As(X). But, Φ(T + 2F ) = Φ(T ) ∈ As(X), the desired
contradiction.

(ii) Let F ∈ As(X) with dim ran(F ) ≥ 2. Then it follows again by Theorem
2.4 that there exists T ∈ As(X) such that T+F ∈ As(X) and T+2F /∈ As(X).
Thus, Φ(T ) ∈ As(X), Φ(T ) + Φ(F ) ∈ As(X) and Φ(T ) + 2Φ(F ) /∈ As(X).
Therefore, we obtain by Proposition 2.2 that dim ran(Φ(F )) ≥ 2. On the
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other hand, since Φ is bijective and Φ−1 satisfies the same properties as Φ, we
obtain that Φ preserves the set of rank one operators in both directions.

As a consequence of Theorem 2.6, we have the following lemma.

Lemma 3.2. Let Φ : B(X) → B(X) be an additive surjective map pre-
serving Ai(X) in both directions. Then

(i) Φ is injective;

(ii) Φ preserves the set of rank one operators in both directions.

Proof. (i) Assume on the contrary that there exists F ̸= 0 such that
Φ(F ) = 0. Then, F /∈ Ai(X). It follows, in particular, that F is not of
the form c.I with c ̸= 0, and so there exists y ∈ X such that the vectors y, Fy
are linearly independent. Write X = Span{y, Fy} ⊕ Z where Z is a closed
subspace. Let T ∈ Ai(X) defined by T = A ⊕ I where A is an invertible
operator such that Ay = −Fy. It follows that T + F is not injective and so
T+F /∈ Ai(X). This yields to a contradiction with Φ(T+F ) = Φ(T ) ∈ Ai(X).

(ii) Let F ∈ B(X) be a rank one operator and let T ∈ Ai(X). Then
T = Φ(S) where S ∈ Ai(X). It follows by Theorem 2.6 that S + F ∈ Ai(X)
or S − F ∈ Ai(X), and hence T + Φ(F ) ∈ Ai(X) or T − Φ(F ) ∈ Ai(X).
Therefore, again by Theorem 2.6, we obtain that Φ(F ) is a rank one operator.
Since Φ is bijective and Φ−1 satisfies the same properties as Φ, we obtain that
Φ preserves the set of rank one operators in both directions.

Lemma 3.3. Let T, S ∈ Ai(X) be such that

T + F ∈ Ai(X) ⇔ S + F ∈ Ai(X),

for every rank one operator F ∈ B(X). Then T = S.

Proof. Note that since T and S are invertible, it suffices to show that
T−1 = S−1. Suppose, on the contrary, that there exists a vector x ∈ X such
that T−1x ̸= S−1x. Consider a linear form f ∈ X ′ such that f(T−1x) = −1
and f(S−1x) ̸= −1. Then we get by (2.1) that T + x ⊗ f /∈ Ai(X) and
S + x⊗ f ∈ Ai(X). This contradiction completes the proof.

Let τ be a field automorphism of K. An additive map A : X → Y defined
between two Banach spaces will be called τ -semi linear if A(λx) = τ(λ)Ax
holds for all x ∈ X and λ ∈ K. If τ is the complex conjugation, we will say
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simply that A is conjugate linear. Notice that if A is non-zero and bounded,
then τ is continuous, and consequently, τ is either the identity or the complex
conjugation, see [10, Theorem 14.4.2 and Lemma 14.5.1]. Moreover, in this
case, the adjoint operator A′ : Y ′ → X ′ defined by

A′(g) = τ−1 ◦ g ◦A for all g ∈ Y ′,

is again τ -semi linear.

Lemma 3.4. Let Φ : B(X) → B(X) be an additive surjective unital map
preserving Ai(X) in both directions. Then either

(i) there exists an invertible bounded linear, or conjugate linear, operator
A : X → X such that Φ(F ) = AFA−1 for all finite rank operator
F ∈ B(X), or

(ii) there exists an invertible bounded linear, or conjugate linear, operator
B : X ′ → X such that Φ(F ) = BF ′B−1 for all finite rank operator
F ∈ B(X). In this case, X is reflexive.

Proof. Lemma 3.2 ensures that Φ is bijective and preserves the set of rank
one operators in both directions. Then, by [13, Theorem 3.3], there exist a
ring automorphism τ : K → K and either two bijective τ -semi linear mappings
A : X → X and C : X ′ → X ′ such that

Φ(x⊗ f) = Ax⊗ Cf for all x ∈ X and f ∈ X ′, (3.1)

or two bijective τ -semi linear mappings B : X ′ → X and D : X → X ′ such
that

Φ(x⊗ f) = Bf ⊗Dx for all x ∈ X and f ∈ X ′. (3.2)

Suppose that Φ satisfies (3.1), and let us show that

C(f)(Ax) = τ(f(x)) for all x ∈ X and f ∈ X ′. (3.3)

Clearly, it suffices to establish that for all x ∈ X and f ∈ X ′,

f(x) = −1 if and only if C(f)(Ax) = −1.

Let x ∈ X and f ∈ X ′. Then

f(x) = −1 ⇔ I + x⊗ f /∈ Ai(X)

⇔ I +Ax⊗ Cf /∈ Ai(X)

⇔ C(f)(Ax) = −1.
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Thus, equation (3.3) holds, and arguing as in [13], we get that τ , A, C are
continuous, τ is the identity or the complex conjugation, and C = (A−1)′.
Therefore, τ−1 = τ and, for every u ∈ X, we have

Φ(x⊗ f)u = τ(fA−1u)Ax = A(f(A−1u)x) = A(x⊗ f)A−1u.

Thus, Φ(x ⊗ f) = A(x ⊗ f)A−1 for all x ∈ X and f ∈ X ′. Hence, Φ(F ) =
AFA−1 for all finite rank operator F ∈ B(X).

Now, suppose that Φ satisfies (3.2), and let us show that

D(x)(Bf) = τ(f(x)) for all x ∈ X and f ∈ X ′. (3.4)

Let x ∈ X and f ∈ X ′. Then

f(x) = −1 ⇔ I + x⊗ f /∈ Ai(X)

⇔ I +Bf ⊗Dx /∈ Ai(X)

⇔ D(x)(Bf) = −1.

Thus, equation (3.4) holds, and arguing as in [13], we get that τ , B, D are
continuous, τ is the identity or the complex conjugation, and D = (B−1)′J,
where J : X → X ′′ is the natural embedding. But, the operators D and
(B−1)′ and therefore also J are bijections which implies the reflexivity of X.
Furthermore, τ−1 = τ and, for every u ∈ X, we have

Φ(x⊗ f)u =
(
Bf ⊗ (B−1)′J(x)

)
u = (B−1)′J(x)(u)Bf

= τ
(
J(x)(B−1u)

)
Bf = B

(
J(x)(B−1u)f

)
= B

(
f ⊗ J(x)

)
B−1u = B(x⊗ f)′B−1u.

Thus, Φ(x ⊗ f) = B(x ⊗ f)′B−1 for all x ∈ X and f ∈ X ′. Hence, Φ(F ) =
BF ′B−1 for all finite rank operator F ∈ B(X). This completes the proof.

With these results at hand, we are ready to prove our main theorem.

Proof of Theorem A. (i) ⇒ (ii) Suppose that Φ preserves As(X) in both
directions. It follows from Lemma 3.1 that Φ is bijective and preserves the set
of rank one operators in both directions. Let T ∈ Ai(X), and consider z ∈ X
and f ∈ X ′ such that f(T−1z) = −1. Then T +z⊗f is not invertible by (2.1),
and so T + z⊗f ∈ As(X). Thus, Φ(T )+Φ(z⊗f) ∈ As(X), and consequently
Φ(T ) is algebraic because Φ(z ⊗ f) is rank one. But, since T /∈ As(X), we
have Φ(T ) /∈ As(X), and hence Φ(T ) ∈ Ai(X).
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Since Φ is bijective and Φ−1 satisfies the same properties as Φ, we obtain
that Φ preserves Ai(X) in both directions.

(ii) ⇒ (iii) Suppose that Φ preserves Ai(X) in both directions. It follows
that Φ takes one of the two forms in Lemma 3.4.

Assume that Φ(F ) = AFA−1 for all finite rank operator F ∈ B(X). Let

Ψ(T ) = A−1Φ(T )A for all T ∈ B(X).

Clearly, Ψ satisfies the same properties as Φ. Furthermore, Ψ(I) = I and
Ψ(F ) = F for all rank one operator F ∈ B(X). Let T ∈ B(X) be an
algebraic operator. Choose an arbitrary rational number λ such that T − λ
and Ψ(T )− λ are invertible. We have

T − λ+ F ∈ Ai(X) ⇔ Ψ(T − λ) + F ∈ Ai(X),

for all rank one operator F ∈ B(X). Hence, we get by Lemma 3.3 that
Ψ(T ) = T . This shows that Φ(T ) = ATA−1 for all T ∈ Ao(X).

Now suppose that Φ(F ) = BF ′B−1 for all finite rank operator F ∈ B(X).
Then, Lemma 3.4 ensures that X is reflexive. By considering

Γ(T ) = J−1(B−1Φ(T )B)′J for all T ∈ B(X),

we get in similar way that Γ(T ) = T for all T ∈ Ao(X). Thus, Φ(T ) =
BT ′B−1 for all T ∈ Ao(X), as desired.

(iii) ⇒ (i) Is obvious.

We close this paper by the following remark and question.

Remark 3.5. Let X and Y be infinite-dimensional complex Banach spaces.
Theorem A can be without any change formulated for unital additive surjec-
tive mappings Φ : B(X) → B(Y ) preserving non-invertible algebraic opera-
tors in both directions.

Question 3.6. It would be interesting to know if an analogue result of
Theorem A can be obtained without supposing Φ unital.
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