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Abstract : A bounded linear operator T is said to satisfy property (SBaw) if
σa(T )\σSBF−

+
(T ) = E0

a(T ), where σa(T ) is the approximate point spectrum of T, σ
SBF−

+
(T )

is the upper semi-B-Weyl spectrum of T and E0
a(T ) is the set of all eigenvalues of T of finite

multiplicity that are isolated in its approximate point spectrum. In this paper we give a
characterization of this spectral property for a bounded linear operator having SVEP on the
complementary of its upper semi-B-Weyl spectrum, and we study its stability under com-
muting Riesz-type perturbations. Analogous results are obtained for the properties (SBb),
(SBab) and (SBw). The theory is exemplified in the case of some special classes of opera-
tors.
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1. Introduction and preliminaries

For T in the Banach algebra L(X) of bounded linear operators acting on
a Banach space X, we will denote by σ(T ) the spectrum of T, by σa(T ) the
approximate point spectrum of T, by N (T ) the null space of T , by n(T ) the
nullity of T, by R(T ) the range of T and by d(T ) its defect. If R(T ) is closed
and n(T ) < ∞ (resp., d(T ) < ∞) then T is called an upper semi-Fredholm
(resp., a lower semi-Fredholm) operator and its index is defined by ind(T ) =
n(T )−d(T ). An upper semi-Weyl operator is an upper semi-Fredholm operator
of index less or equal than zero. The upper semi-Weyl spectrum is defined by
σSF−

+
(T ) = {λ ∈ C : T − λI is not an upper semi-Weyl operator}.

For a bounded linear operator T and n ∈ N, let T[n] : R(Tn)→ R(Tn) be
the restriction of T to R(Tn). T ∈ L(X) is said to be upper semi-B-Weyl if
for some integer n ≥ 0 the range R(Tn) is closed and T[n] is upper semi-Weyl;
its index is defined as the index of the upper semi-Weyl operator T[n]. The
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respective upper semi-B-Weyl spectrum is defined by σSBF−
+
(T ) = {λ ∈ C :

T − λI is not an upper semi-B-Weyl operator}.
The ascent a(T ) of an operator T is defined by a(T ) = inf{n ∈ N :

N (Tn) = N (Tn+1)}, and the descent δ(T ) of T is defined by δ(T ) = inf{n ∈
N : R(Tn) = R(Tn+1)}, with inf ∅ =∞. According to [11], a complex number
λ ∈ σ(T ) is a pole of the resolvent of T if T − λI has finite ascent and finite
descent, and in this case they are equal. We recall that a complex number
λ ∈ σa(T ) is a left pole of T if a(T − λI) < ∞ and R(T a(T−λI)+1) is closed.
For further definitions, we refer the reader to [1] and [6]. In addition, we
summarize in the following list the usual notations and symbols needed later.

Notations and symbols

F(X): the ideal of finite rank operators in L(X),
K(X): the ideal of compact operators in L(X),
N (X): the class of nilpotent operators on X,
Q(X): the class of quasi-nilpotent operators on X,
R(X): the class of Riesz operators acting on X,
isoA: isolated points of a subset A ⊂ C,
accA: accumulations points of a subset A ⊂ C,
D(0, 1): the closed unit disc in C,
C(0, 1): the unit circle of C,
Π(T ): poles of T,
Π0(T ): poles of T of finite rank,
Πa(T ): left poles of T,
Π0

a(T ): left poles of T of finite rank,
σp(T ): eigenvalues of T,
σ0
p(T ): eigenvalues of T of finite multiplicity,

E0(T ) := isoσ(T ) ∩ σ0
p(T ),

E(T ) := isoσ(T ) ∩ σp(T ),
E0

a(T ) := isoσa(T ) ∩ σ0
p(T ),

Ea(T ) := isoσa(T ) ∩ σp(T ),
σb(T ) = σ(T ) \Π0(T ): Browder spectrum of T,
σub(T ) = σa(T ) \Π0

a(T ): upper-Browder spectrum of T,
σSF−

+
(T ): upper semi-Weyl spectrum of T,

σSBF−
+
(T ): upper semi-B-Weyl spectrum of T,

the symbol
⊔

stands for the disjoint union.

It is easily to verify that E(T ) ⊂ Ea(T ), Π(T ) ⊂ Πa(T ) ⊂ Ea(T ).
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Definition 1.1. [4, 14, 15] Let T ∈ L(X). T is said to satisfy

i) a-Weyl’s theorem if σa(T ) = σSF−
+
(T )

⊔
E0

a(T );

ii) a-Browder’s theorem if σa(T ) = σSF−
+
(T )

⊔
Π0

a(T );

iii) property (b) if σa(T ) = σSF−
+
(T )

⊔
Π0(T );

iv) property (w) if σa(T ) = σSF−
+
(T )

⊔
E0(T ).

Definition 1.2. [3] Let T ∈ L(X). We say that:

i) T satisfies property (SBw) if σa(T ) = σSBF−
+
(T )

⊔
E0(T );

ii) T satisfies property (SBb) if σa(T ) = σSBF−
+
(T )

⊔
Π0(T );

iii) T satisfies property (SBaw) if σa(T ) = σSBF−
+
(T )

⊔
E0

a(T );

iv) T satisfies property (SBab) if σa(T ) = σSBF−
+
(T )

⊔
Π0

a(T ).

The relationship between properties and theorems given in the precedent
definitions was studied in [3], and is summarized in the following diagram.
(arrows signify implications and numbers near the arrows are references to
the bibliography therein).

a-Weyl’s theorem ←−−−−
[3]

(SBaw) (SBw)
[3]−−−−→ (w)y[10]

y[3]

y[3]

y[4]

a-Browder’s theorem ←−−−−
[3]

(SBab) ←−−−−
[3]

(SBb) −−−−→
[3]

(b)

We recall that the two properties (SBaw) and (SBw) are independent,
see [3, p. 276]. Moreover, in [3] counterexamples were given to show that
the reverse of each implication in the diagram is not true. Nonetheless, it
was proved that under some additional hypothesis, these implications are
equivalences as we can see in the next theorem.

Theorem 1.3. [3] Let T ∈ L(X).

i) Property (SBaw) holds for T if and only if a-Weyl’s theorem holds for
T and σSF−

+
(T ) \ σSBF−

+
(T ) = ∅.

ii) Property (SBab) holds for T if and only if a-Browder’s theorem holds
for T and σSF−

+
(T ) \ σSBF−

+
(T ) = ∅.
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iii) Property (SBb) holds for T if and only if property (b) holds for T and
σSF−

+
(T ) \ σSBF−

+
(T ) = ∅.

iv) Property (SBw) holds for T if and only if property (w) holds for T and
σSF−

+
(T ) \ σSBF−

+
(T ) = ∅.

v) Property (SBw) holds for T if and only if property (SBb) holds for T
and E0(T ) = Π0(T ).

vi) Property (SBb) holds for T if and only if property (SBab) holds for T
and Π0(T ) = Πa(T ).

vii) Property (SBaw) holds for T if and only if property (SBab) holds for
T and E0

a(T ) = Πa(T ).

For every T ∈ L(X) we know that σSBF−
+
(T ) ⊂ σSF−

+
(T ), but generally

this inclusion is proper. Indeed, let T on ℓ2(N) defined by T (x1, x2, . . .) =
(0, x1

2 , 0, 0, . . .), then σSBF−
+
(T ) = ∅  σSF−

+
(T ) = {0}. In the following

lemma, we explicit the defect set σSF−
+
(T ) \ σSBF−

+
(T ).

Lemma 1.4. (See also [8]) Let T ∈ L(X). Then σSF−
+
(T ) = σSBF−

+
(T ) ∪

isoσSF−
+
(T ).

Proof. Let λ0 ∈ σSF−
+
(T ) \ σSBF−

+
(T ) be arbitrary, then T − λ0I is an

upper semi-B-Weyl operator. From the punctured neighborhood theorem for
upper semi-B-Weyl operators, there exists ε > 0 such that if 0 < |µ| < ε,
then T − λ0I − µI is an upper semi-Weyl operator and ind(T − λ0I − µI) =
ind(T − λ0I). Thus for every scalar z such that 0 < |z − λ0| < ε, we have
T−λ0I−(z−λ0)I = T−zI is an upper semi-Weyl operator with ind(T−zI) ≤
0. This implies that D(λ0, ε) ∩ σSF−

+
(T ) = {λ0} and as λ0 ∈ σSF−

+
(T ), then

λ0 ∈ isoσSF−
+
(T ). Hence σSF−

+
(T ) = σSBF−

+
(T ) ∪ isoσSF−

+
(T ).

Corollary 1.5. Let T ∈ L(X) such that isoσSF−
+
(T ) = ∅. The following

statements hold.

i) T satisfies property (SBaw) if and only if T satisfies a-Weyl’s Theorem.

ii) T satisfies property (SBab) if and only if T satisfies a-Browder’s The-
orem.

iii) T satisfies property (SBb) if and only if T satisfies property (b).

iv) T satisfies property (SBw) if and only if T satisfies property (w).
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Proof. It’s a consequence of Theorem 1.3 and Lemma 1.4.

The paper is organized as follows: after giving an introduction and some
preliminaries in the first section, we characterize in the second section the
properties (SBw), (SBaw), (SBab) and (SBb) for bounded linear operators
having SVEP on the complementary of the upper semi-B-Weyl spectrum. In
the third section, we study the preservation of properties (SBw) and (SBaw)
under Riesz-type perturbations. Similar results are obtained for (SBb) and
(SBab) in the fourth section. Several examples are given in each section to
show that the results obtained fail without adequate hypothesis.

2. New spectral properties and SVEP

The following property has relevant role in local spectral theory: a bounded
linear operator T ∈ L(X) is said to have the single-valued extension property
(SVEP for short) at λ ∈ C if for every open neighborhood Uλ of λ, the function
f ≡ 0 is the only analytic solution of the equation (T −µI)f(µ) = 0, ∀µ ∈ Uλ.
We denote by S(T ) = {λ ∈ C : T does not have SVEP at λ} and we say that
T has SVEP if S(T ) = ∅. We say that T has SVEP on A ⊂ C, if T has SVEP
at every λ ∈ A. (For more details about this property, we refer the reader to
[12]).

Theorem 2.1. Let T ∈ L(X). If T or T ∗ has SVEP on σSBF−
+
(T )C then

T satisfies property (SBab) if and only if Πa(T ) = Π0
a(T ); where σSBF−

+
(T )C

is the complement of the upper semi-B-Weyl spectrum of T.

Proof. ⇒) Assume that T satisfies property (SBab). Then σa(T )\
σSF−

+
(T ) ⊂ Π0

a(T ). As the opposite inclusion is always true, it follows that

σa(T ) \σSF−
+
(T ) = Π0

a(T ). But this is equivalent from [2, Theorem 2.2] to say

that σa(T ) \ σSBF−
+
(T ) = Πa(T ). Hence Πa(T ) = Π0

a(T ). Observe that in this

implication, the condition of SVEP for T or T ∗ is not necessary.

⇐) Assume that Πa(T ) = Π0
a(T ). If T has SVEP on σSBF−

+
(T )C , then

from [1, Theorem 2.4], T satisfies generalized a-Browder’s theorem σa(T ) \
σSBF−

+
(T ) = Πa(T ). Therefore T satisfies property (SBab). If T ∗ has SVEP on

σSBF−
+
(T )C , then from [5, Corollary 2.7], T satisfies generalized a-Browder’s

theorem and hence it satisfies property (SBab).
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Remark 2.2. The assumption T or T ∗ has SVEP on σSBF−
+
(T )C is essen-

tial as shown in the next example.
Define the operator U on ℓ2(N) by U(x1, x2, x3, . . .) = (0, x1, x2, x3, . . .).

On ℓ2(N)⊕ ℓ2(N), put T = U ⊕ U∗. Since σa(U) = σSBF−
+
(U) = C(0, 1) and

σa(U
∗) = σSBF−

+
(U∗) = D(0, 1), it follows that σa(T ) = D(0, 1) and hence

Πa(T ) = Π0
a(T ) = ∅. But as n(T ) = d(T ) = 1, 0 ∈ σa(T ) \ σSBF−

+
(T ). Thus

property (SBab) does not hold for T. Notice that T and T ∗ do not have SVEP
at 0 which lies in σSBF−

+
(T )C , since S(T ) = S(T ∗) = S(U∗) = {λ ∈ C : 0 ≤

|λ| < 1}.

Corollary 2.3. Let T ∈ L(X). If T or T ∗ has SVEP on σSBF−
+
(T )C ,

then T satisfies property (SBb) if and only if Π0(T ) = Πa(T ).

Proof. It’s a consequence of the precedent theorem and [3, Corollary 2.11].
(Note that the direct implication is always true (see [3, Corollary 2.11]).

Corollary 2.4. Let T ∈ L(X). If T or T ∗ has SVEP on σSBF−
+
(T )C ,

then

i) T satisfies property (SBaw) if and only if Πa(T ) = E0
a(T ).

ii) T satisfies property (SBw) if and only if Πa(T ) = E0(T ).

Proof. i) If T satisfies (SBaw) then from Theorem 1.3, Πa(T ) = E0
a(T ).

Conversely, if Πa(T ) = E0
a(T ), then Πa(T ) = E0

a(T ) = Π0
a(T ). From Theorem

2.1 it follows that T satisfies property (SBab) and hence it satisfies property
(SBaw).

ii) If T satisfies (SBw) then from Theorem 1.3, E0(T ) = Πa(T ). Con-
versely, if E0(T ) = Πa(T ), then E0(T ) = Πa(T ) = Π0

a(T ). From Theorem 2.1
we conclude that T satisfies property (SBw).

Remark 2.5. The assumption T or T ∗ has SVEP on σSBF−
+
(T )C , is essen-

tial in corollaries 2.3 and 2.4. Indeed, the operator T given in Remark 2.2 does
not satisfy property (SBab) and hence it does not satisfy the properties (SBb),
(SBaw) and (SBw); though we have Πa(T ) = E0(T ) = E0

a(T ) = Π0(T ).
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3. Properties (SBaw), (SBw) and Riesz-type perturbations

We recall that an operator R ∈ L(X) is said to be Riesz if R − µI is
Fredholm for every non-zero complex µ, that is, π(R) is quasinilpotent in the
Calkin algebra C(X) = L(X)/K(X) where π is the canonical mapping of
L(X) into C(X).

We denote by F0(X), the class of finite rank power operators as follows:

F0(X) = {S ∈ L(X) : Sn ∈ F(X) for some n ∈ N}.

Clearly,

F(X) ∪N (X) ⊂ F0(X) ⊂ R(X), and K(X) ∪Q(X) ⊂ R(X).

We start this section by the following nilpotent perturbation result.

Proposition 3.1. Let T ∈ L(X) and let N ∈ N (X) which commutes
with T. Then T satisfies property (s) if and only if T + N satisfies property
(s), where (s) ∈ {(SBw), (SBb), (SBab), (SBaw)}.

Proof. Since N is nilpotent and commutes with T, we know that σ(T +
N) = σ(T ) and σa(T + N) = σa(T ). From the proof of [6, Theorem 3.5], it
follows that 0 < n(T + N) ⇔ 0 < n(T ) and n(T + N) < ∞ ⇔ n(T ) < ∞.
Thus E0

a(T + N) = E0
a(T ), E(T + N) = E(T ), Ea(T + N) = Ea(T ) and

E0(T+N) = E0(T ). We also have from [7, Lemma 2.2] that Π(T+N) = Π(T )
which implies that Π0(T + N) = Π0(T ). From [18, Corollary 3.8] we know
that Πa(T + N) = Πa(T ) and so Π0

a(T + N) = Π0
a(T ). On the other hand,

σSBF−
+
(T +N) = σSF−

+
(T ), see [18, Corollary 3.1]. This finishes the proof.

Remark 3.2. We notice that the assumption of commutativity in Propo-
sition 3.1 is crucial.
1) Let T and N be defined on ℓ2(N) by

T (x1, x2, . . .) =
(
0,

x1
2
,
x2
3
, . . .

)
and N(x1, x2, . . .) =

(
0,
−x1
2

, 0, 0, . . .
)
.

Clearly N is nilpotent and does not commute with T. The properties (SBaw)
and (SBw) are satisfied by T, since σa(T ) = {0} = σSBF−

+
(T ) and E0

a(T ) = ∅.
But T +N does not satisfy neither property (SBw) nor property (SBaw) as
we have σa(T+N) = σSBF−

+
(T+N) = {0} and {0} = E0(T+N) = E0

a(T+N).
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2) Let T and N be defined by

T (x1, x2, x3, . . .) = (0, x1, x2, x3, . . .) and N(x1, x2, . . .) = (0,−x1, 0, 0, . . .).

N is nilpotent and TN ̸= NT. Moreover, σa(T ) = C(0, 1), σSBF−
+
(T ) =

C(0, 1), σ(T ) = σ(T +N) = D(0, 1), Π0(T ) = ∅, σa(T +N) = C(0, 1) ∪ {0},
σSBF−

+
(T +N) = C(0, 1), and Π0(T +N) = ∅. So T satisfies property (SBb),

but T +N does not satisfy property (SBb).

Corollary 3.3. Let T ∈ Q(X) be an injective quasi-nilpotent and let
F ∈ F(X) which commutes with T. Then T satisfies property (s) if and only
if T +F satisfies property (s), where (s) ∈ {(SBw), (SBb), (SBab), (SBaw)}.

Proof. If T is injective, as TF is a finite rank quasi-nilpotent operator,
then TF is a nilpotent operator. Since T is injective, then F is nilpotent.
Thus the result follows from Proposition 3.1.

The stability of properties (SBaw) and (SBw) showed in Proposition 3.1
cannot be extended to commuting quasi-nilpotent operators, as we can see in
the next example.

Example 3.4. We consider the operators T andR defined on ℓ2(N)⊕ℓ2(N)
by

T = 0⊕Q and R = Q⊕ 0,

where Q is defined on ℓ2(N) by Q(x1, x2, . . .) = (x2
2 ,

x3
3 , . . .). Clearly R is

compact and quasi-nilpotent and verifies TR = RT = 0. On the other hand,
T satisfies properties (SBw) and (SBaw), because σa(T ) = {0} = σSBF−

+
(T )

and E0
a(T ) = ∅. But T +R = Q⊕Q does not satisfy neither property (SBw)

nor property (SBaw), since σa(T+R) = {0} = σSBF−
+
(T+R) and E0(T+R) =

E0
a(T +R) = {0}. Note that here Πa(T +R) = ∅.

However, in Theorem 3.6 below we give necessary and sufficient conditions
to ensure the stability of these properties under commuting perturbations
by Riesz operators which are not necessary nilpotent. The case of nilpotent
operators is studied in Proposition 3.1. But before that we need the following
lemma in the proof of the next main results.

Lemma 3.5. Let T ∈ L(X). If S ∈ F0(X) and R ∈ R(X) are commuting
operators with T, then the following statements hold.
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i) T satisfies a-Browder’s theorem if and only if T+R satisfies a-Browder’s
theorem.

ii) If T satisfies property (SBab), then Πa(T + S) = Π0
a(T + S). In partic-

ular, this equality holds if T satisfies property (SBaw) or (SBb).

Proof. i) As T satisfies a-Browder’s theorem, then σub(T ) = σSF−
+
(T ).

Since TR = RT then from [16, Theorem 7] we have σub(T +R) = σub(T ) and
from [17, Proposition 5] we have σSF−

+
(T ) = σSF−

+
(T + R). So σub(T + R) =

σSF−
+
(T + R). Thus T + R satisfies a-Browder’s theorem, and hence T + R

satisfies generalized a-Browder’s theorem. Conversely, assume that T + R
satisfies a-Browder’s theorem. Since (T + R)R = R(T + R) and T = (T +
R)−R, we conclude similarly.

ii) Since the inclusion Π0
a(T + S) ⊂ Πa(T + S) is always true. To prove

opposite inclusion, let λ ∈ Πa(T + S). As T satisfies property (SBab), then
from [3, Theorem 2.14] we have σSBF−

+
(T ) = σSF−

+
(T ). Since S ∈ F0(X) and

TS = ST, then from [18, Theorem 2.8] we have σSBF−
+
(T ) = σSBF−

+
(T + S).

Hence λ ̸∈ σSBF−
+
(T +S) = σSBF−

+
(T ) = σSF−

+
(T +S). So n(T +S−λI) <∞.

In particular, if T satisfies property (SBaw) or (SBb) then it satisfies property
(SBab).

Theorem 3.6. Let R ∈ R(X) and let T ∈ L(X) which commutes with
R. We have:

i) If T satisfies property (SBw), then T + R satisfies property (SBw) if
and only if Πa(T +R) = E0(T +R).

ii) If T satisfies property (SBaw), then T + R satisfies property (SBaw)
if and only if Πa(T +R) = E0

a(T +R).

Proof. i) If T +R satisfies (SBw), then from Theorem 1.3 we have E0(T +
R) = Πa(T+R). Conversely, suppose that E0(T+R) = Πa(T+R). Since T sat-
isfies (SBw) then from [3], it satisfies a-Browder’s theorem. From Lemma 3.5,
T+R satisfies generalized a-Browder’s theorem, that is σa(T+R)\σSBF−

+
(T+

R) = Πa(T +R). So T +R satisfies property (SBw).
ii) If T +R satisfies (SBaw), then from Theorem 1.3 we have E0

a(T +R) =
Πa(T+R). Conversely, suppose that E0

a(T+R) = Πa(T+R). Since T satisfies
(SBaw) then from Theorem 1.3, it satisfies a-Browder’s theorem. Hence T+R
satisfies generalized a-Browder’s theorem σa(T +R)\σSBF−

+
(T +R) = Πa(T +

R). So σa(T +R) \ σSBF−
+
(T +R) = E0

a(T +R).
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Now, if we restrict to the class F0(X) we obtain the following perturbation
result concerning property (SBaw).

Theorem 3.7. Let S ∈ F0(X). If T ∈ L(X) satisfies property (SBaw)
and commutes with S, then the following statements are equivalent.

i) T + S satisfies property (SBaw),

ii) Πa(T + S) = E0
a(T + S),

iii) E0
a(T + S) ∩ σa(T ) ⊂ Π0

a(T ).

Proof. i) ⇔ ii) Since F0(X) ⊂ R(X), this follows from Theorem 3.6.
ii) ⇒ iii) Suppose that Πa(T + S) = E0

a(T + S) and let λ0 ∈ E0
a(T + S) ∩

σa(T ) be arbitrary. Then λ0 ∈ Π0
a(T + S) ∩ σa(T ) and so λ0 ̸∈ σub(T + S) =

σub(T ). Thus λ0 ∈ Π0
a(T ). This proves that E

0(T + S) ∩ σa(T ) ⊂ Π0
a(T ).

iii) ⇒ ii) Suppose that E0
a(T +S)∩ σa(T ) ⊂ Π0

a(T ). Firstly, we show that
E0

a(T +S) ⊂ Πa(T +S). Let µ0 ∈ E0
a(T +S) be arbitrary. We distinguish two

cases: the first is µ0 ∈ σa(T ). Then µ0 ∈ E0
a(T+S)∩ σa(T ) ⊂ Π0

a(T ). It follows
that µ0 ̸∈ σub(T ) = σub(T+S) and since µ0 ∈ σa(T+S), then µ0 ∈ Πa(T+S).
The second case is µ0 ̸∈ σa(T ). This implies that µ0 ̸∈ σub(T ) = σub(T + S).
Thus µ0 ∈ Π0

a(T + S) ⊂ Πa(T + S). Consequently, E0
a(T + S) ⊂ Πa(T + S).

From Lemma 3.5, we conclude that Πa(T + S) = E0
a(T + S).

The following example proves that, in general, property (SBw) is not
preserved under commuting finite rank power perturbations.

Example 3.8. On ℓ2(N), let U defined in Remark 2.2. For fixed 0 < ε <
1, let Fε ba a finite rank operator defined on ℓ2(N) by Fϵ(x1, x2, x3, . . .) =
(−εx1, 0, 0, 0, . . .). We consider the operators T and F defined by T = U ⊕ I
and F = 0⊕Fε, respectively. Then F is a finite rank operator and TF = FT.
Moreover,

σ(T ) = σ(U) ∪ σ(I) = D(0, 1), σa(T ) = σa(U) ∪ σa(I) = C(0, 1),

σSBF−
+
(T ) = C(0, 1), σ(T + F ) = σ(U) ∪ σ(I + Fε) = D(0, 1),

σSBF−
+
(T + F ) = C(0, 1) and

σa(T + F ) = σa(U) ∪ σa(I + Fε) = C(0, 1) ∪ {1− ε}.

Moreover, we have E0(T ) = ∅ and E0(T + F ) = ∅. Thus T satisfies property
(SBw), but T + F does not satisfy property (SBw).
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An operator T ∈ L(X) is said to be finitely polaroid if isoσ(T ) = Π0(T ),
and is said to be finitely a-polaroid if isoσa(T ) = Π0

a(T ).

Lemma 3.9. Let T ∈ L(X) and let F ∈ F(X) which commutes with T.
Then

i) T is finitely polaroid if and only if T + F is finitely polaroid.

ii) T is finitely a-polaroid if and only if T + F is finitely a-polaroid.

Proof. i) Let T be finitely polaroid and F ∈ F(X). Then accσ(T ) = σb(T ).
Since F commutes with T, from [16, Corollary 8] we have σb(T + F ) = σb(T )
and from [13, Lemma 2.1] we know that accσ(T + F ) = accσ(T ). So σb(T +
F ) = accσ(T + F ) and T + F is finitely polaroid. The proof of the reverse
implication is similar, since T = (T + F )− F and T + F commutes with −F.

ii) Proof similar to the first assertion since accσa(T +F ) = accσa(T ), see
[9, Theorem 3.2] and σub(T + F ) = σub(T ).

Corollary 3.10. Let T ∈ L(X) and let F ∈ F(X) commutes with T. If
T is finitely a-polaroid, then T satisfies property (SBaw) if and only if T +F
satisfies property (SBaw).

Proof. Suppose that T satisfies property (SBaw). Let λ0 ∈ E0
a(T + F ) ∩

σa(T ) be arbitrary, then λ0 ̸∈ accσa(T +F ) = accσa(T ). So λ0 ∈ isoσa(T ) =
Π0

a(T ). Hence E0
a(T + F ) ∩ σa(T ) ⊂ Π0

a(T ), but this is equivalent by Theo-
rem 3.7 to say that T +F satisfies property (SBaw). The proof of the reverse
is similar, since T + F is finitely a-polaroid.

4. Properties (SBab), (SBb) and Riesz-type perturbations

We begin this section with the following proposition in which, we improve
Proposition 3.1 and show that the property (SBab) is stable under commuting
perturbations by operators of finite rank power.

Proposition 4.1. If T ∈ L(X) satisfies property (SBab) and if S ∈
F0(X) commutes with T, then T +S satisfies property (SBab). In particular,
if S ∈ F(X) and commutes with T then T + S satisfies property (SBab).

Proof. Since S ∈ F0(X) and ST = TS, then from Lemma 3.5 we have
Πa(T + S) = Π0

a(T + S). As T satisfies property (SBab), then from Theo-
rem 1.3, it satisfies generalized a-Browder’s theorem. Lemma 3.5 implies that
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T +S satisfies generalized a-Browder’s theorem. Thus σa(T +S)\σSBF−
+
(T +

S) = Πa(T + S) = Π0
a(T + S). So T + S satisfies property (SBab).

Remark 4.2. We cannot expect that the result announced in Proposi-
tion 4.1 remains correct in the case of property (SBb). For this, if we con-
sider the operators T and F defined in Example 3.8, then T satisfies prop-
erty (SBb), since σa(T ) = σSBF−

+
(T )

⊔
Π0(T ) = C(0, 1). But T + F does

not satisfy property (SBb), since σSBF−
+
(T + F )

⊔
Π0(T + F ) = C(0, 1) and

σa(T + F ) = C(0, 1) ∪ {1− ε}.

As we have observed in the precedent section, we also cannot extend
Proposition 3.1 concerning properties (SBab) and (SBb) to commuting quasi-
nilpotent perturbations, as shown in the next example.

Example 4.3. Let T be the operator defined on ℓ2(N) by T (x1, x2, . . .) =
(x2
2 ,

x3
3 , . . .). Put R = −T, clearly R is quasi-nilpotent, compact and commutes

with T . Moreover, we have σa(T ) = {0} = σSBF−
+
(T ) and Π0(T ) = Π0

a(T ) =

∅. It follows that T satisfies properties (SBab) and (SBb). But T + R = 0
does not satisfy neither property (SBab) nor property (SBb). Indeed, σa(T +
R) = {0}, σSBF−

+
(T + R) = ∅, Π0(T + R) = Π0

a(T + R) = ∅. Note also that

Πa(T +R) = {0}.

Moreover, this example shows that the result obtained in Proposition 4.1
cannot be extended to commuting Riesz operators. Nonetheless, we have the
next result.

Theorem 4.4. Let T ∈ L(X) and let R ∈ R(X) which commutes with
T. We have:

i) If T satisfies property (SBb), then T +R satisfies property (SBb) if and
only if Πa(T +R) = Π0(T +R).

ii) If T satisfies property (SBab), then T +R satisfies property (SBab) if
and only if Πa(T +R) = Π0

a(T +R).

Proof. i) If T +R satisfies (SBb), then from Theorem 1.3 we have Π0(T +
R) = Πa(T +R). Conversely, suppose that Π0(T +R) = Πa(T +R). Since T
satisfies property (SBb) then it satisfies a-Browder’s theorem. By Lemma 3.5,
T +R satisfies generalized a-Browder theorem. Thus σa(T +R) \ σSBF−

+
(T +

R) = Πa(T +R) = Π0(T +R). So T +R satisfies property (SBb).



preservation results for new spectral properties 203

ii) If T + R satisfies property (SBab), then Πa(T + R) = Π0
a(T + R),

see [3, Theorem 2.14]. Conversely, assume that Π(T + R) = Π0
a(T + R).

Since T satisfies property (SBab) then it satisfies generalized a-Browder’s
theorem. Hence generalized a-Browder’s theorem holds for T + R, that is:
σa(T +R) \ σSBF−

+
(T +R) = Πa(T +R). So T +R satisfies property (SBab).

As an application of Theorem 4.4 to the class of quasi-nilpotent operators,
we give two corollaries.

Corollary 4.5. Let T ∈ L(X) and let Q ∈ Q(X) such that TQ = QT.

i) If T satisfies property (SBb), then the following statements are equiv-
alent:
a) T +Q satisfies property (SBb),
b) Πa(T +Q) = Π0(T ),
c) σSBF−

+
(T +Q) = σSBF−

+
(T ).

ii) If isoσSF−
+
(T ) = ∅ or isoσub(T ) = ∅, then T satisfies property (SBb) if

and only if T +Q satisfies property (SBb).

Proof. i) a)⇔ b) Since T commutes withQ, we know that σ(T+Q) = σ(T )
and σa(T + Q) = σa(T ). By [16, Corollary 8], we have σb(T + Q) = σb(T ).
So Π0(T + Q) = σ(T + Q) \ σb(T + Q) = σ(T ) \ σb(T ) = Π0(T ). Hence the
equivalence between statements a) and b) is a consequence of Theorem 4.4.

a) ⇔ c) If T + Q satisfies property (SBb) then σSBF−
+
(T + Q) = σa(T +

Q) \ Π0(T + Q) = σa(T ) \ Π0(T ) = σSBF−
+
(T ), since T satisfies property

(SBb). Conversely, assume that σSBF−
+
(T + Q) = σSBF−

+
(T ). Then σa(T +

Q) \ σSBF−
+
(T + Q) = σa(T ) \ σSBF−

+
(T ) = Π0(T ) = Π0(T + Q). So T + Q

satisfies property (SBb).

ii) Case 1. isoσSF−
+
(T ) = ∅ : assume that T satisfies property (SBb). The

condition isoσSF−
+
(T ) = ∅ implies from [8, Proposition 2.4] that σSBF−

+
(T +

Q) = σSBF−
+
(T ). So from the assertion i), it follows that T + Q satisfies

property (SBb). Conversely, assume that T + Q satisfies property (SBb).
Since isoσSF−

+
(T +Q) = ∅ and T = (T +Q)−Q, we conclude similarly.

Case 2. isoσub(T ) = ∅ : assume that T satisfies property (SBb). The
condition isoσub(T ) = ∅ implies from [8, Corollary 2.11] that Πa(T + Q) =
Πa(T ), and since T satisfies property (SBb) then Πa(T ) = Π0(T ). So Πa(T +
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Q) = Π0(T ) and hence T + Q satisfies property (SBb). We obtain the proof
of the converse analogously, since isoσub(T +Q) = ∅.

In the following corollary, we give a similar perturbation result for the
property (SBab).

Corollary 4.6. Let T ∈ L(X) and let Q ∈ Q(X) such that TQ = QT.

i) If T satisfies property (SBab), then the following statements are equiv-
alent:
a) T +Q satisfies property (SBab),
b) Πa(T +Q) = Π0

a(T ),
c) σSBF−

+
(T +Q) = σSBF−

+
(T ).

ii) If isoσSF−
+
(T ) = ∅ or isoσub(T ) = ∅, then T satisfies property (SBab)

if and only if T +Q satisfies property (SBab).

Proof. Is similar to the proof of the precedent corollary.
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