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1. Introduction

Let A be a complex Banach algebra with the involution x 7−→ x∗ and
unit e. The spectrum of an element x of A will be denoted by Spx. An element
h of A is called hermitian if h

∗ = h. The set of all Hermitian elements of A
will be denoted by H(A). We say that the Banach algebra A is Hermitian if
the spectrum of every element of H(A) is real ([9]). For scalars λ, we often
write simply λ for the element λe of A. Let p ∈]1, +∞[. We say that ω is a
weight on Z if ω : Z −→ [1, +∞[, is a map satisfying

c(ω) =
∑
n∈Z

ω(n)
1

1−p < +∞. (1)

We consider the following weighted space:

Ap(ω) =
{
f : R −→ C : f(t) =

∑
n∈Z

aneint, an ∈ lp (Z, ω)
}
.

Endowed with the norm ∥.∥p,ω defined by:

∥f∥p,ω =
(∑

n∈Z
|an|pω(n)

) 1
p , for every f ∈ Ap(ω),
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the space Ap(ω) becomes a Banach space. Moreover, if there exists a constant
γ = γ(ω) > 0 such that

ω
1

1−p ∗ ω
1

1−p ≤ γω
1

1−p (2)

then (Ap(ω), ∥.∥p,ω) is closed under pointwise multiplication and it is a com-
mutative semi-simple Banach algebra with unity element ê given by ê(t) = 1
(t ∈ R) ([4]). For the weight function ω on Z satisfying (2) and

ω(n + m) ≤ ω(n)ω(m), for every n, m ∈ Z, (3)

it is also shown in ([4]), that the character space of (Ap(ω), ∥.∥p,ω) can be
identified with the closed annulus:

Γω(ρ1, ρ2) = {ξ ∈ C : ρ1(ω) ≤ |ξ| ≤ ρ2(ω)},

in such a way that each character has the form f 7−→
∑

n∈Z
anξn for some

ξ ∈ Γω(ρ1, ρ2), where f =
∑

n∈Z
anun ∈ Ap(ω) with u(t) = eit, for every t ∈ R.

For ρ1 and ρ2, they are given by:

ρ1 = e−σ2 and ρ2 = e−σ1

where

σ1 = sup
{−1

np
ln(ω(n)), n ≥ 1

}
and σ2 = inf

{ 1
np

ln(ω(−n)), n ≥ 1
}

.

The real analytic functional calculus is defined and studied in [1]. To
make the paper self-contained, we recall the fundamental properties of this
calculus. Let U be an open subset of R2 and F : U −→ C be real analytic
function. Then there exists an open subset V , of C2, and an holomorphic
function F̃ : V −→ C such that

V ∩ R2 = U and F̃|U = F.

For the construction of V , we have V =
∪

x∈U
Ωx, where Ωx is an open of C2

centered at x. We denote by Λ0(U) the set of all open subset V described us
above and we consider, in Λ0(U), the order given in the following way:

V ≼ W ⇐⇒ W ⊂ V.
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For V ∈ Λ0(U), we denote by O(V ) the set of holomorphic functions on
V . Now we consider the family (O(V ))V ∈Λ0(U) of algebras and for every
V, W ∈ Λ0(U) with V ≼ W , let

πW,V : O(V ) −→ O(W ) : F 7−→ F|W

The family of algebras (O(V ))V ∈Λ0(U) with the maps πW,V is an inductive
system of algebras and it is denoted by (O(V ), πW,V ). Let lim−→ (O(V ), πW,V )
its inductive limit. We shall denote this simply by lim−→O(V ) and we have:

lim−→O(V ) =
∪

V ∈Λ0(U)
O(V )

In the sequel, we denote byA(U) the algebra of real analytic functions on U .
By lemma 2.1.1 of [1], the map

Ψ : A(U) −→ lim−→O(V ) : f 7−→ Ψ(f)

is an isomorphism algebra. Now let A be a commutative and unital Hermitian
Banach algebra (with continuous involution) and a ∈ A. Then a = h+ ik with
h, k ∈ H(A). Put a′ = (h, k) and SpAa′ the joint spectrum of (h, k). We
denote by Θa′ the map that defined the holomorphic functional calculus for
a′. One has SpA(h, k) ⊂ SpAh × SpAk ⊂ R2. By the identification R2 ≃ C,
via the map (x, y) 7−→ x + iy, we can consider that

SpAa ≃ SpA(h, k)

and this motivates the following definition:

Definition 1.1. ([1], définition 2.1.2) Let A be a commutative and
unital Hermitian Banach with continuous involution, a ∈ A, U an open subset,
of R2, containing SpAa and f ∈ A(U). We denote by f(a) the element of A
defined by:

f(a) = Θa′ (Ψ(f)) = Ψ(f) (h, k) ,

where a = h + ik and a′ = (h, k) with h, k ∈ H(A).

The fundamental properties of this functional calculus are contained in the
following result:
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Proposition 1.2. ([1]) 1. The mapping f 7−→ f(a) is a homomorphism
of A(U) into A that extends the involutive homomorphism from h(U) into A,
where h(U) is the set of all harmonic functions on U .

2. “Spectral mapping theorem":

SpAf(a) = f(SpAa), for every f ∈ A(U).

Let f(t) =
∑

n∈Z
aneint be a periodic function such that

∑
n∈Z

|an| < +∞. If F

is an holomorphic function defined on an open set containing the image of f ,
then F (f) can be developed in trigonometric series F (f) (t) =

∑
n∈Z

cneint such

that
∑

n∈Z
|cn| < +∞. This result due to P. Lévy ([7]) generalizes the famous

theorem of N. Wiener ([10]) which states that the reciprocal of a nowhere
vanishing absolutely convergent trigonometric series is also an absolutely con-
vergent trigonometric series. In this paper, we consider the general case of a
weight ω on Z which satisfies (2), (3) and

lim
|n|−→+∞

(ω(|n|))
1
n = 1. (4)

We then consider f ∈ Ap(ω) and F an analytic function in two real variables
on a neighborhood U of Spf . In this case, we obtain a weighted analogues
of Lévy’s theorem which states that F (f) can be developed in trigonometric
series F (f) (t) =

∑
n∈Z

cneint such that

∑
n∈Z

|cn|p ω(n) < +∞.

To proceed, we consider the Banach algebra (Ap(ω), ∥.∥p,ω) endowed with the
involution f 7−→ f⋆ defined by:

f⋆(t) =
∑
n∈Z

a−neint, for every f ∈ Ap(ω).

We prove that (Ap(ω), ∥.∥p,ω) is Hermitian. In the particular case where F is
a harmonic function in a neighborhood of f(R), we prove that the expression
of F (f) is also given by the Poisson integral formula ([1]).

2. Real analytic version of Levy’s theorem

Now we are ready to generalize Levy’s theorem for real analytic functions.
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Theorem 2.1. (Real analytic version of Lévy’s theorem) Let p
∈]1, +∞[ and ω be a weight on Z satisfying (2), (3) and (4). Let f(t) =∑
n∈Z

aneint be a periodic function such

∑
n∈Z

|an|pω(n) < +∞.

Let F be an analytic function in two real variables on an open U containing the
image of f , then the function F (f) also can be developed in a trigonometric
series F (f) (t) =

∑
n∈Z

cneint such that

∑
n∈Z

|cn|p ω(n) < +∞.

Proof. We consider the Banach algebra (Ap(ω), ∥.∥p,ω) endowed with the
involution f 7−→ f⋆ defined by:

f⋆(t) =
∑
n∈Z

a−neint, for every f ∈ Ap(ω).

One can prove that the map f 7−→ f⋆ is an algebra involution on
(Ap(ω), ∥.∥p,ω). Moreover, it is continuous for the algebra is semi-simple. By
the real analytic functional calculus given by Definition 1.1, the proof will be
completed by proving that the last involution is hermitian in (Ap(ω), ∥.∥p,ω).
By hypothesis, lim

|n|−→+∞
(ω(|n|))

1
n = 1. Then the character space M(Ap(ω)) of

(Ap(ω), ∥.∥p,ω) can be identified with [0, 2π] in such a way that each character
is an evaluation at some t0 ∈ [0, 2π]. This implies that

Spf = {f(t) : t ∈ [0, 2π]} , for every f ∈ Ap(ω).

Now, it is clear, that f(t) =
∑

n∈Z
aneint, t ∈ R, is a hermitian element of Ap(ω)

if and only, if
a−n = an, for every n ∈ Z

and so Sp(f) ⊂ R. Whence (Ap(ω), ∥.∥p,ω) is Hermitian with continuous
involution. This completes the proof.

Remark 2.2. Actually, the reader can prove that the algebra
(
Ap(ω),

∥.∥p,ω
)

is Hermitian if and only if lim
|n|−→+∞

(ω(|n|))
1
n = 1. Indeed if the al-

gebra (Ap(ω), ∥.∥p,ω) is Hermitian. Let f : t 7−→
∑

n∈Z
aneint be a hermitian
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element of (Ap(ω), ∥.∥p,ω). Then Sp(f) ⊂ R. Hence

Φζ(f) = Φζ(f), for every ζ ∈ Γω(ρ1, ρ2),

where

Φζ(f) =
∑
n∈Z

anζn and Φζ(f) =
∑
n∈Z

anζ−n, for every ζ ∈ Γω(ρ1, ρ2).

It follows that
|ζ| = 1, for every ζ ∈ Γω(ρ1, ρ2).

This yields ρ1 = ρ2 = 1, and one obtains that

lim
|n|−→+∞

(ω(|n|))
1
n = 1.

Harmonic functions are particular real analytic functions. In this case, we
have the following:

Corollary 2.3. (Harmonic version of Lévy’s theorem) Let p ∈
]1, +∞[ and ω be a weight on Z satisfying (2), (3) and (4). Let f(t) =

∑
n∈Z

aneint

be a periodic function such ∑
n∈Z

|an|pω(n) < +∞.

Let U be an open subset of C, z0 ∈ U such that D(z0, r) ⊂ U (r > 0) and
f(R) ⊂ D(z0, r). If F ∈ h(U), then

F (f) = 1
2π

∫
|z−z0|=r

F (z)Re[(z + f − 2z0)(z − f)−1] |dz|
r

can be developed in a trigonometric series F (f) (t) =
∑

n∈Z
cneint such that

∑
n∈Z

|cn|p ω(n) < +∞.
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